Journal Articles 2020(2 publications) [publication]Andrade, R. and Alves, A. and Bento, C. , "POI Mining for Land Use Classification: A Case Study", ISPRS International Journal of Geo-Information, vol. 9, pp. 1-23, 2020 [publication]Santos, J. and Duarte, L. and Ferreira, J. and Alves, A. and Gonçalo Oliveira, H, , " Developing Amaia: A Conversational Agent for Helping Portuguese Entrepreneurs—An Extensive Exploration of Question-Matching Approaches for Portuguese", Information, vol. 11, 2020 2017(1 publication) [publication]Alexandre Pinto and Gonçalo Oliveira, H, and Alves, A. , "Predicting the Relevance of Social Media Posts Based on Linguistic Features and Journalistic Criteria", New Generation Computing, vol. 35, pp. 451-472, 2017 [citation][year=2020]Mahmood, A., Khan, H. U., and Ramzan, M. (2020). On modelling for bias-aware sentiment analysis and its impact in Twitter. Journal of Web Engineering, 19(1):1–28. [citation][year=2020]Camilleri, S., Agius, M. R., and Azzopardi, J. (2020). Analysis of online news coverage on earthquakes through text mining. Frontiers in Earth Science, 8:141. [citation][year=2020]Jurado, F. (2020). Journalistic transparency using CRFs to identify the reporter of newspaper articles in Spanish. Applied Soft Computing. [citation][year=2019]Resende, J. S., Martins, R., and Antunes, L. (2019). A survey on using Kolmogorov complexity in cybersecurity. Entropy, 21(12). [citation][year=2017]Miranda, F. F. (2017). Computing the accuracy of an automatic system for relevance detection in social networks. Master’s thesis, Universidade do Porto. 2016(1 publication) [publication]Alves, A. and Ricardo Rodrigues and Gonçalo Oliveira, H, , "ASAPP: Alinhamento Semântico Automático de Palavras aplicado ao Português", Linguamática, vol. 8, pp. 43-58, 2016 [citation][year=2020]Cabezudo, M. A. S., Inácio, M., Rodrigues, A. C., Casanova, E., and de Sousa, R. F. (2020). Natural language inference for Portuguese using BERT and multilingual information. In Computational Processing of the Portuguese Language - 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings, volume 12037 of LNCS, pages 346–356. Springer. [citation][year=2020]Cabezudo, M. A. S., Inácio, M., Rodrigues, A. C., Casanova, E., and de Sousa, R. F. (2020). NILC at ASSIN 2: Exploring multilingual approaches. In Proceedings of the ASSIN 2 Shared Task: Evaluating Semantic Textual Similarity and Textual Entailment in Portuguese, volume 2583 of CEUR Workshop Proceedings. CEUR-WS.org. [citation][year=2019]Silva, A., Lozkins, A., Bertoldi, L. R., Rigo, S., and Bure, V. M. (2019). Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models. Vestnik of Saint Petersburg University, 15(2):235–244. [citation][year=2018]de Barcelos Silva, A. and Rigo, S. J. (2018). Enhancing Brazilian Portuguese textual entailment recognition with a hybrid approach. Journal of Computer Science, 14(9):945– 956. [citation][year=2018]Fonseca, E. R. and Aluísio, S. M. (2018). Syntactic knowledge for natural language inference in Portuguese. In Computational Processing of the Portuguese Language - 13th Inter- national Conference, PROPOR 2018, Canela, Brazil, September 24-26, 2018, Proceedings, volume 11122 of LNCS, pages 242–252. Springer. [citation][year=2018]Gamallo, P. and Pereira-Fariña, M. (2018). Exploring unsupervised methods to textual similarity. In Proceedings of 1st Workshop on Linguistic Tools and Resources for Paraphrasing in Portuguese (POP), Canela, Brazil. [citation][year=2018]Rocha, G. and Lopes Cardoso, H. (2018). Recognizing textual entailment: Challenges in the Portuguese language. Information, 9(4). [citation][year=2018]de Barcelos Silva, A. (2018). O uso de recursos linguísticos para mensurar a semelhança semântica entre frases curtas através de uma abordagem híbrida. Master’s thesis, Universidade do Vale do Rio dos Sinos (UNISINOS). [citation][year=2018]Gamallo, P. and Pereira-Fariña, M. (2018). Explorando métodos non-supervisados para calcular a similitude semántica textual. Linguamática, 10(2):63–68. [citation][year=2017]Cavalcanti, A. P., Ferreira, R., Ferreira, M. A. D., Neto, S., Passero, G., and Miranda, P. (2017). Uma Nova Abordagem para Detecção de Plágio em Ambientes Educacionais. In Anais do XXVIII Simpósio Brasileiro de Informática na Educação (SBIE 2017), pages 1177–1186. [citation][year=2017]Cavalcanti, A. P., de Mello, R. F. L., Ferreira, M. A. D., Rolim, V. B., and Tenório, J. V. S. (2017). Statistical and semantic features to measure sentence similarity in Portuguese. In Proceedings of 6th Brazilian Conference on Intelligent Systems, BRACIS 2017, pages 342–347, Uberlândia, MG, Brazil. [citation][year=2017]Rocha, G. and Cardoso, H. L. (2017). Recognizing textual entailment and paraphrases in Portuguese. In Progress in Artificial Intelligence - Proceedings of 18th Portuguese Conference on Artificial Intelligence, Porto, Portugal, September 5-8, 2017, volume 10423 of LNCS, pages 868–879. Springer. [citation][year=2017]Feitosa, D. B. and Pinheiro, V. C. (2017). Análise de medidas de similaridade semântica na tarefa de reconhecimento de implicação textual. In Proceedings of Symposium in Information and Human Language Technology. Uberlandia, MG, Brazil, October 25, 2017, STIL 2017, pages 161–170. SBC. [citation][year=2017]de Barcelos Silva, A., Rigo, S. J., Alves, I. M., and Barbosa, J. L. V. (2017). Avaliando a similaridade semântica entre frases curtas através de uma abordagem híbrida. In Proceedings of Symposium in Information and Human Language Technology. Uberlandia, MG, Brazil, October 25, 2017, STIL 2017, pages 93–102. SBC. [citation][year=2016]Erick Rocha Fonseca, Leandro Borges dos Santos, Marcelo Criscuolo, Sandra Maria Aluísio. Visão Geral da Avaliação de Similaridade Semântica e Inferência Textual. Linguamática, Vol. 8, #2, pp. 3-13. December 2016. [citation][year=2016]Pedro Fialho, Ricardo Marques, Bruno Martins, Luísa Coheur, Paulo Quaresma. INESC-ID@ASSIN: Medição de Similaridade Semântica e Reconhecimento de Inferência Textual. Linguamática, Vol. 8, #2, pp. 23-31. December 2016. 2015(3 publications) [publication]Jiang, S. and Alves, A. and Rodrigues, F. and Ferreira, J. and Pereira, F.C. , "Mining point-of-interest data from social networks for urban land use classification and disaggregation", Computers, Environment and Urban Systems, 2015 [citation][year=2020]Hu, S., He, Z., Wu, L., Yin, L., Xu, Y., & Cui, H. (2020). A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data. Computers, Environment and Urban Systems, 80, 101442 [citation][year=2020]Zhou, W., Ming, D., Lv, X., Zhou, K., Bao, H., & Hong, Z. (2020). SO–CNN based urban functional zone fine division with VHR remote sensing image. Remote Sensing of Environment, 236, 111458 [citation][year=2019]Yue, W., Chen, Y., Zhang, Q., & Liu, Y. (2019). Spatial Explicit Assessment of Urban Vitality Using Multi-Source Data: A Case of Shanghai, China. Sustainability, 11(3), 638. [citation][year=2019]Sparks, K., Thakur, G., Pasarkar, A., & Urban, M. (2019). A global analysis of cities’ geosocial temporal signatures for points of interest hours of operation. International Journal of Geographical Information Science, 1-18. [citation][year=2019]De Kok, R., Mauri, A., & Bozzon, A. (2019). Automatic processing of user-generated content for the description of energy-consuming activities at individual and group level. Energies, 12(1), 15. [citation][year=2019]Cao, K., Guo, H., & Zhang, Y. (2019). Comparison of approaches for urban functional zones classification based on multi-source geospatial data: A case study in Yuzhong district, Chongqing, China. Sustainability, 11(3), 660. [citation][year=2019]Niu, H., & Silva, E. (2019, September). Crowdsourced Data Mining for Urban Activity: Review of Data Sources, Applications, and Methods. ASCE. [citation][year=2019]Ge, P., He, J., Zhang, S., Zhang, L., & She, J. (2019). An Integrated Framework Combining Multiple Human Activity Features for Land Use Classification. ISPRS International Journal of Geo-Information, 8(2), 90. [citation][year=2019]Yi, D., Yang, J., Liu, J., Liu, Y., & Zhang, J. (2019). Quantitative Identification of Urban Functions with Fishers’ Exact Test and POI Data Applied in Classifying Urban Districts: A Case Study within the Sixth Ring Road in Beijing. ISPRS International Journal of Geo-Information, 8(12), 555. [citation][year=2019]Hu, Y., & Han, Y. (2019). Identification of Urban Functional Areas Based on POI Data: A Case Study of the Guangzhou Economic and Technological Development Zone. Sustainability, 11(5), 1385. [citation][year=2019]Lee, D., & Lee, S. (2019, September). Inferring the character of urban commercial areas from age-biased online search results: how place recommendation data can reveal dynamic seoul neighborhoods. In Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers (pp. 991-995). [citation][year=2019]Wu, J., Li, J., & Ma, Y. (2019). Exploring the Relationship between Potential and Actual of Urban Waterfront Spaces in Wuhan Based on Social Networks. Sustainability, 11(12), 3298. [citation][year=2019]Liu, X., Huang, Q., & Gao, S. (2019). Exploring the uncertainty of activity zone detection using digital footprints with multi-scaled DBSCAN. International Journal of Geographical Information Science, 33(6), 1196-1223. [citation][year=2019]Han, Z., Long, Y., Wang, X., & Hou, J. (2019). Urban redevelopment at the block level: Methodology and its application to all Chinese cities. Environment and Planning B: Urban Analytics and City Science, 2399808319843928. [citation][year=2019]Min, M., Lin, C., Duan, X., Jin, Z., & Zhang, L. (2019). Spatial distribution and driving force analysis of urban heat island effect based on raster data: a case study of the Nanjing metropolitan area, China. Sustainable Cities and Society, 101637. [citation][year=2019]Yang, J., Zhu, J., Sun, Y., & Zhao, J. (2019). Delimitating urban commercial central districts by combining kernel density estimation and road intersections: a case study in nanjing city, china. ISPRS International Journal of Geo-Information, 8(2), 93. [citation][year=2019]Zhao, Y., Li, Q., Zhang, Y., & Du, X. (2019). Improving the Accuracy of Fine-Grained Population Mapping Using Population-Sensitive POIs. Remote Sensing, 11(21), 2502. [citation][year=2019]Sideris, N., Bardis, G., Voulodimos, A., Miaoulis, G., & Ghazanfarpour, D. (2019). Using Random Forests on Real-World City Data for Urban Planning in a Visual Semantic Decision Support System. Sensors, 19(10), 2266. [citation][year=2019]Hong, Y., & Yao, Y. (2019). Hierarchical community detection and functional area identification with OSM roads and complex graph theory. International Journal of Geographical Information Science, 33(8), 1569-1587. [citation][year=2019]Gao, J., Zhang, Y. C., & Zhou, T. (2019). Computational socioeconomics. Physics Reports. [citation][year=2019]Zhu, Y., Deng, X., & Newsam, S. (2019). Fine-grained land use classification at the city scale using ground-level images. IEEE Transactions on Multimedia. [citation][year=2019]Zhai, W., Bai, X., Shi, Y., Han, Y., Peng, Z. R., & Gu, C. (2019). Beyond Word2vec: An approach for urban functional region extraction and identification by combining Place2vec and POIs. Computers, Environment and Urban Systems, 74, 1-12. [citation][year=2019]Pan, Y., Chen, S., Li, T., Niu, S., & Tang, K. (2019). Exploring spatial variation of the bus stop influence zone with multi-source data: A case study in Zhenjiang, China. Journal of Transport Geography, 76, 166-177. [citation][year=2019]Ye, T., Zhao, N., Yang, X., Ouyang, Z., Liu, X., Chen, Q., ... & Jia, P. (2019). Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Science of the total environment, 658, 936-946. [citation][year=2019]Yang, X., Ye, T., Zhao, N., Chen, Q., Yue, W., Qi, J., ... & Jia, P. (2019). Population Mapping with Multisensor Remote Sensing Images and Point-Of-Interest Data. Remote sensing, 11(5), 574. [citation][year=2019]Li, Q., Zhou, S., & Wen, P. (2019). The relationship between centrality and land use patterns: Empirical evidence from five Chinese metropolises. Computers, Environment and Urban Systems, 78, 101356. [citation][year=2019]Martí, P., Serrano-Estrada, L., & Nolasco-Cirugeda, A. (2019). Social media data: Challenges, opportunities and limitations in urban studies. Computers, Environment and Urban Systems, 74, 161-174. [citation][year=2019]Chen, M., Arribas-Bel, D., & Singleton, A. (2019). Understanding the dynamics of urban areas of interest through volunteered geographic information. Journal of Geographical Systems, 21(1), 89-109. [citation][year=2019]Lee, D., & Lee, S. (2019). Inferring the Character of Urban Commercial Areas from Age-biased Online Search Results. [citation][year=2019]Martí Ciriquián, P., Serrano-Estrada, L., & Nolasco-Cirugeda, A. (2019). Social Media data: Challenges, opportunities and limitations in urban studies. [citation][year=2019]Yang, C. (2019). A new perspective on urban form with the integration of Space Syntax and MCDA–An exploratory analysis of the city of Xi’an, China (Master's thesis, University of Waterloo). [citation][year=2019]Lin, Y., & Geertman, S. (2019, July). Can Social Media Play a Role in Urban Planning? A Literature Review. In International Conference on Computers in Urban Planning and Urban Management (pp. 69-84). Springer, Cham. [citation][year=2019]Wu Wanyu, & Niu Xinyi. (2019). Research on the Impact of the Diversity of the Built Environment on the Vitality of Streets: A Case Study of Nanjing West Road in Shanghai. Southern Architecture , (2), 14. [citation][year=2019]Soundararaj, B. (2019). Estimating Footfall From Passive Wi-Fi Signals: Case Study with Smart Street Sensor Project (Doctoral dissertation, UCL (University College London)). [citation][year=2019]Bahadorizadeh, H., & Malek, M. R. (2019). User Generate Spatial Content in Land Administration and Cadastre: Types and Usage. Geospatial Engineering Journal, 10(2), 51-62. [citation][year=2019]Vedernikov, O. (2019). Optimal route planning for hitchhiking (Doctoral dissertation). University of Melbourne, Australia. http://hdl.handle.net/11343/227596 [citation][year=2019]Sideris, N. (2019). Spatial decision support in urban environments using machine learning, 3D geo-visualization and semantic integration of multi-source data (Doctoral dissertation). Université de Limoges, France. https://tel.archives-ouvertes.fr/tel-02449667/file/2019LIMO0083.pdf [citation][year=2019]Chen, E., Ye, Z., Wang, C., & Zhang, W. (2019). Discovering the spatio-temporal impacts of built environment on metro ridership using smart card data. Cities, 95, 102359. [citation][year=2019]Firzatullah, R. M. (2019). A Development of Spatial Skyline Query Based on Surrounding Environment for Data Streaming Using Apache-Spark (Master thesis dissertation). Institut Pertanian Bogor University, Indonesia. http://repository.ipb.ac.id/handle/123456789/98738 [citation][year=2018]Akerkar, R., & Hong, M. (2018, May). Unlocking Value from Ubiquitous Data. In International Conference on Information and Communication Technologies in Education, Research, and Industrial Applications (pp. 3-17). Springer, Cham. [citation][year=2018]Rosina, K., Batista e Silva, F., Vizcaino, P., Marín Herrera, M., Freire, S., & Schiavina, M. (2018). Increasing the detail of European land use/cover data by combining heterogeneous data sets. International Journal of Digital Earth, 1-25. [citation][year=2018]Fan, D., Qin, K., & Kang, C. (2018, June). Understanding Urban Functionality from POI Space. In 2018 26th International Conference on Geoinformatics (pp. 1-6). IEEE. [citation][year=2018]Mou, F., He, Y., Peng, J., Ma, Y., Zheng, Z. Z., Wang, S. L., & Li, J. (2018, December). A New Urban Functional Regions Minig Method with MPETM. In 2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP) (pp. 73-76). IEEE. [citation][year=2018]Liu, X. (2018). Detection and Exploration of Individual Semantic Trajectories Using Social Media Data (Doctoral dissertation). [citation][year=2018]Yu, Y., Li, J., Zhu, C., & Plaza, A. (2018). Urban Impervious Surface Estimation from Remote Sensing and Social Data. Photogrammetric Engineering & Remote Sensing, 84(12), 771-780. [citation][year=2018]Wang, Y., de Almeida Correia, G. H., van Arem, B., & Timmermans, H. H. (2018). Understanding travellers’ preferences for different types of trip destination based on mobile internet usage data. Transportation Research Part C: Emerging Technologies, 90, 247-259. [citation][year=2018]Lin, J., & Cromley, R. G. (2018). Inferring the home locations of Twitter users based on the spatiotemporal clustering of Twitter data. Transactions in GIS, 22(1), 82-97. [citation][year=2018]Chen, W., Huang, H., Dong, J., Zhang, Y., Tian, Y., & Yang, Z. (2018). Social functional mapping of urban green space using remote sensing and social sensing data. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 436-452. [citation][year=2018]Aubrecht, C., Ungar, J., Aubrecht, D. O., Freire, S., & Steinnocher, K. (2018). Mapping Land Use Dynamics Using the Collective Power of the Crowd. In Earth Observation Open Science and Innovation (pp. 247-253). Springer, Cham. [citation][year=2018]Novack, T., Peters, R., & Zipf, A. (2018). Graph-Based Matching of Points-of-Interest from Collaborative Geo-Datasets. ISPRS International Journal of Geo-Information, 7(3), 117. [citation][year=2018]Zhou, H., & Hirasawa, K. (2018). Spatiotemporal traffic network analysis: technology and applications. Knowledge and Information Systems, 1-37. [citation][year=2018]Huang, L., Wu, Y., Zheng, Q., Zheng, Q., Zheng, X., Gan, M., ... & Zhang, J. (2018). Quantifying the Spatiotemporal Dynamics of Industrial Land Uses through Mining Free Access Social Datasets in the Mega Hangzhou Bay Region, China. Sustainability, 10(10), 3463. [citation][year=2018]Wang, S., Xu, G., & Guo, Q. (2018). Street Centralities and Land Use Intensities Based on Points of Interest (POI) in Shenzhen, China. ISPRS International Journal of Geo-Information, 7(11), 425. [citation][year=2018]Yang, S., Shen, J., Kone?ný, M., Wang, Y., & Štampach, R.( 2018). STUDY ON THE SPATIAL HETEROGENEITY OF THE POI QUALITY IN OPENSTREETMAP. [citation][year=2018]Liu, X., Niu, N., Liu, X., Jin, H., Ou, J., Jiao, L., & Liu, Y. (2018). Characterizing mixed-use buildings based on multi-source big data. International Journal of Geographical Information Science, 32(4), 738-756. [citation][year=2018]Song, J., Lin, T., Li, X., & Prishchepov, A. (2018). Mapping Urban Functional Zones by Integrating Very High Spatial Resolution Remote Sensing Imagery and Points of Interest: A Case Study of Xiamen, China. Remote Sensing, 10(11), 1737. [citation][year=2018]Martí, P., Serrano-Estrada, L., & Nolasco-Cirugeda, A. (2018). Social Media data: Challenges, opportunities and limitations in urban studies. Computers, Environment and Urban Systems. [citation][year=2018]Lei, P., Marfia, G., Pau, G., & Tse, R. (2018). Can we monitor the natural environment analyzing online social network posts? A literature review. Online Social Networks and Media, 5, 51-60. [citation][year=2018]Zhu, Y., Deng, X., & Newsam, S. (2018). Fine-grained land use classification at the city scale using ground-level images. arXiv preprint arXiv:1802.02668. [citation][year=2018]Chen, Y., Ge, Y., An, R., & Chen, Y. (2018). Super-Resolution Mapping of Impervious Surfaces from Remotely Sensed Imagery with Points-of-Interest. Remote Sensing, 10(2), 242. [citation][year=2018]Jana, Arnab & Verma, Deepank & Ramamritham, Krithivasan. (2018). HOW DIVERSE ARE THE NEIGHBOURHOODS? A DIVERSITY INDEX TO ASSESS LAND USE MIX THROUGH OPEN SOURCE AND ONLINE DATASETS. [citation][year=2017]Lin J, Cromley RG. Inferring the home locations of Twitter users based on the spatiotemporal clustering of Twitter data. Transactions in GIS. 2017;00:1–16. https://doi.org/10.1111/tgis.12297 [citation][year=2017]Khoshamooz, G. and Taleai, M. (2017), Multi-Domain User-Generated Content Based Model to Enrich Road Network Data for Multi-Criteria Route Planning. Geogr Anal, 49: 239–267. doi:10.1111/gean.12124 [citation][year=2017]Zhang, Y.; Li, Q.; Huang, H.; Wu, W.; Du, X.; Wang, H. The Combined Use of Remote Sensing and Social Sensing Data in Fine-Grained Urban Land Use Mapping: A Case Study in Beijing, China. Remote Sens. 2017, 9, 865. [citation][year=2017]Jeyasree, J., & Bhuvaneshwari, K. (2017). The Segmentation of Age Related Macular Degeneration in Color Fundus Image. Asian Journal of Applied Science and Technology (AJAST), 1(3), 27-30. [citation][year=2017]Bao, J., Xu, C., Liu, P., & Wang, W. (2017). Exploring Bikesharing Travel Patterns and Trip Purposes Using Smart Card Data and Online Point of Interests. Networks and Spatial Economics, 1-23. [citation][year=2017]Jia, T., & Ji, Z. (2017). Understanding the Functionality of Human Activity Hotspots from Their Scaling Pattern Using Trajectory Data. ISPRS International Journal of Geo-Information, 6(11), 341. [citation][year=2017]Wang, H., Dong, Y., & Zhang, K. (2017, May). A spatial-temporal model to improve PM2. 5 inference. In Computer and Information Science (ICIS), 2017 IEEE/ACIS 16th International Conference on (pp. 173-177). IEEE. [citation][year=2017]Xing, H., Meng, Y., Hou, D., Song, J., & Xu, H. (2017). Employing Crowdsourced Geographic Information to Classify Land Cover with Spatial Clustering and Topic Model. Remote Sensing, 9(6), 602. [citation][year=2017]Xing, H., Meng, Y., Hou, D., Cao, F., & Xu, H. (2017). Exploring point-of-interest data from social media for artificial surface validation with decision trees. International Journal of Remote Sensing, 38(23), 6945-6969. [citation][year=2017]Mesbah, S., Bozzon, A., Lofi, C., & Houben, G. J. (2017, February). Describing data processing pipelines in scientific publications for big data injection. In Proceedings of the 1st Workshop on Scholarly Web Mining (pp. 1-8). ACM. [citation][year=2017]Emmanouil Chaniotakis, Constantinos Antoniou, Georgia Aifadopoulou, and Loukas Dimitriou. Inferring Activities from Social Media Data. Transportation Research Record: Journal of the Transportation Research Board 2017 2666:, 29-37 [citation][year=2017]Xiao, Y.; Chen, X.; Li, Q.; Yu, X.; Chen, J.; Guo, J. Exploring Determinants of Housing Prices in Beijing: An Enhanced Hedonic Regression with Open Access POI Data. ISPRS Int. J. Geo-Inf. 2017, 6, 358. [citation][year=2017]Chaniotakis, E., Antoniou, C., Aifadopoulou, G., & Dimitriou, L. (2017). Inferring activities from social media data. Transportation research record, 2666(1), 29-37. [citation][year=2017]e Silva, F. B., Rosina, K., Schiavina, M., Marin, M., Freire, S., Craglia, M., & Lavalle, C. (2017). Spatiotemporal mapping of population in Europe: The “ENACT” project in a nutshell. In 57th european regional science association (ERSA) congress. [citation][year=2017]Lei, P., Marfia, G., Pau, G., & Tse, R. (2017). Online Social Networks and Media. [citation][year=2017]Deng, X., & Newsam, S. (2017, November). Quantitative Comparison of Open-Source Data for Fine-Grain Mapping of Land Use. In Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics (p. 4). ACM. [citation][year=2017]Wood, S., Muthyala, R., Jin, Y., Qin, Y., Rukadikar, N., Rai, A., & Gao, H. (2017, December). Automated industry classification with deep learning. In Big Data (Big Data), 2017 IEEE International Conference on (pp. 122-129). IEEE. [citation][year=2017]Touya, Guillaume, et al. "Assessing Crowdsourced POI Quality: Combining Methods Based on Reference Data, History, and Spatial Relations." ISPRS International Journal of Geo-Information 6.3 (2017): 80. [citation][year=2017]Ermagun, Alireza, et al. "Real-time trip purpose prediction using online location-based search and discovery services." Transportation Research Part C: Emerging Technologies 77 (2017): 96-112. [citation][year=2017]Liu, Xiaoping, et al. "Classifying urban land use by integrating remote sensing and social media data." International Journal of Geographical Information Science (2017): 1-22. [citation][year=2017]Yue, Yang, et al. "Measurements of POI-based mixed use and their relationships with neighbourhood vibrancy." International Journal of Geographical Information Science 31.4 (2017): 658-675. [citation][year=2017]Gao, Song, Krzysztof Janowicz, and Helen Couclelis. "Extracting urban functional regions from points of interest and human activities on location?based social networks." Transactions in GIS 21.3 (2017): 446-467. [citation][year=2017]Yao, Yao, et al. "Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model." International Journal of Geographical Information Science 31.4 (2017): 825-848. [citation][year=2017]Ricciato, Fabio, et al. "Beyond the “single-operator, CDR-only” paradigm: An interoperable framework for mobile phone network data analyses and population density estimation." Pervasive and Mobile Computing 35 (2017): 65-82. [citation][year=2017]Yao, Yao, et al. "Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata." International Journal of Geographical Information Science (2017): 1-28. [citation][year=2017]Niu, Ning, et al. "Integrating multi-source big data to infer building functions." International Journal of Geographical Information Science (2017): 1-20. [citation][year=2017]Chen, Y., Liu, X., Li, X., Liu, X., Yao, Y., Hu, G., Xu, X., Pei, F. Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method. Landscape and Urban Planning volume 160, issue , year 2017, pp. 48 - 60 [citation][year=2016]Muhammad Adnan, Francisco C. Pereira, Carlos Lima Azevedo, Kakali Basak, Milan Lovric, Sebastián Raveau, Yi Zhu, Joseph Ferreira, Christopher Zegras, Moshe Ben-Akiva, SimMobility: A Multi-scale Integrated Agent-Based Simulation Platform (2016) [citation][year=2016]Yao, Yao, et al. "Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model." International Journal of Geographical Information Science (2016): 1-24. [citation][year=2016]Vedernikov, Oleksii, Lars Kulik, and Kotagiri Ramamohanarao. "The Hitchhiker’s guide to the pick-up locations." Open Geospatial Data, Software and Standards 1.1 (2016): 12. [citation][year=2016]Gong, X. "Exploring Human Activity Patterns Across Cities through Social Media Data." MSc Thesis. TU Delft. Netherlands (2016). [citation][year=2016]Umwelt, Ingenieurfakultät Bau Geo. "Visual Analysis of Large Floating Car Data-A Bridge-Maker between Thematic Mapping and Scientific Visualization." Master Thesis. 2016 TECHNISCHE UNIVERSITÄT MÜNCHEN [citation][year=2016]Psyllidis, Achilleas. "Revisiting Urban Dynamics through Social Urban Data." A+ BE| Architecture and the Built Environment 6.18 (2016): 1-334. [citation][year=2016]Ricciato, Fabio, et al. "Beyond the “single-operator, CDR-only” paradigm: An interoperable framework for mobile phone network data analyses and population density estimation." Pervasive and Mobile Computing (2016). [citation][year=2016]Milad Mirbabaie, Stefan Stieglitz, and Stephan Volkeri. 2016. Volunteered Geographic Information and Its Implications for Disaster Management. In Proceedings of the 2016 49th Hawaii International Conference on System Sciences (HICSS) (HICSS '16). IEEE Computer Society, Washington, DC, USA, 207-216. DOI=http://dx.doi.org/10.1109/HICSS.2016.33 [citation][year=2016]Guy Lansley, Paul A. Longley, The geography of Twitter topics in London, Computers, Environment and Urban Systems, Volume 58, July 2016, Pages 85-96, ISSN 0198-9715, http://dx.doi.org/10.1016/j.compenvurbsys.2016.04.002. [citation][year=2016]Jonietz, D.; Zipf, A. Defining Fitness-for-Use for Crowdsourced Points of Interest (POI). ISPRS Int. J. Geo-Inf. 2016, 5, 149. doi:10.3390/ijgi5090149 [citation][year=2016]Yimin Chen, Xiaoping Liu, Xia Li, Xingjian Liu, Yao Yao, Guohua Hu, Xiaocong Xu, Fengsong Pei, Delineating urban functional areas with building-level social media data: A dynamic time warping (DTW) distance based k-medoids method, Landscape and Urban Planning, Volume 160, April 2017, Pages 48-60, ISSN 0169-2046, http://dx.doi.org/10.1016/j.landurbplan.2016.12.001. [citation][year=2015]E. Chaniotakis, C. Antoniou and E. Mitsakis.Data for Leisure Travel Demand from Social Networking Services. hEART 2015. 4th symposium of European Association for Research in Transportation. September 2015. http://www.heart2015.transport.dtu.dk/-/media/Sites/hEART2015/abstracts hEART/hEART_2015_submission_60.ashx?la=da [publication]Alves, A. and Ribeiro, B. , "Consensus-based Approach for Keyword Extraction from Urban Event Collections", Advances in Distributed Computing and Artificial Intelligence Journal, 2015 [citation][year=2019]VALERA-ROMÁN, A., MATEOS-MATILLA, D., OLIVA-RUBIO, E., & PAULE-PEREDA, Á.(2019). Multi-Agent Vehicle Share System. ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, 8(1), 27-35. [citation][year=2019]Manuel-Jesús Prieto Martín(2019) "Desarrollo de juegos con J2ME". Published by Ediciones Universidad de Salamanca (Journal), Spain. http://hdl.handle.net/10366/139638 [citation][year=2019]Florentino Fernández Riverola (2019) "Entorno tecnológico: servidores". Published by Ediciones Universidad de Salamanca (Journal), Spain. http://hdl.handle.net/10366/139688 [citation][year=2019]David Palomar Delgado (2019) "Gestión de conflictos en los proyectos". Published by Ediciones Universidad de Salamanca, Spain. http://hdl.handle.net/10366/139701 [publication]Alves, A. and Dias, T. and Silva, D. , "A Real-Time, Distributed and Context-Aware System for Managing Solidarity Campaigns", ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, vol. 4, 2015 [citation][year=2019]Corredera de Colsa, L. E., & García Fernández, F. (2019) Seguridad en gestión de redes y servicios. En, Masataka Inoune (ed.), Parallel and Distributed Systems (Congreso Iberoamericano de Filosofía de la Ciencia y la Tecnología (4o. 2017. Salamanca, España). Salamanca: Ediciones Universidad de Salamanca, pp. 89-209 [citation][year=2019]García Puga, J. (2019). Desarrollo de aplicaciones para sistemas móviles con tecnología Symbian y Mobile Widgets. En, Castillo, Luis Fernando (ed.), Mobile Computing and Applications (Congreso Iberoamericano de Filosofía de la Ciencia y la Tecnología (4o. 2017. Salamanca, España). Salamanca: Ediciones Universidad de Salamanca, pp. 401-464. [citation][year=2019]Díaz Gómez, F. (2019). Seguridad. En, Pinzón Trejos, Cristina (ed.), Knowledge extraction and representation (Congreso Iberoamericano de Filosofía de la Ciencia y la Tecnología (4o. 2017. Salamanca, España). Salamanca: Ediciones Universidad de Salamanca, pp. 643-674 [citation][year=2019]Rodríguez González, S., Zato Domínguez, C. (2019). Casos de éxito dentro del comercio y negocio electrónico. En, Mitsuaki Yano (ed.), Social Interactive Agents (Congreso Iberoamericano de Filosofía de la Ciencia y la Tecnología (4o. 2017. Salamanca, España). Salamanca: Ediciones Universidad de Salamanca, pp. 87-130 [citation][year=2019]Corchado Rodríguez, J. M. (2019) From the cloud to the Edge computing using AI, IoT and Blockchain. 7th International Engineering Sciences and Technology Conference (IESTEC), Panama, 9th-11th October 2019 [citation][year=2019]Pinzón Trejos, C., & Cuevas Badallo, A. (2019) Knowledge extraction and representation. Ediciones Universidad de Salamanca [citation][year=2019]Corchado Rodríguez, J. M. (2019) Cybersecurity in Industry 4.0: edge computing and deep AI for global data analysis. The International Conference on Cyber Security for Emerging Technologies 2019, 27-29 October 2019, Qatar University, Doha, Qatar 2013(1 publication) [publication]Rodrigues, F. and Alves, A. and Polisciuc, E. and Jiang, S. and Ferreira, J. and Pereira, F.C. , "Estimating disaggregated employment size from Points-of-Interest and census data: From mining the web to model implementation and visualization", International Journal on Advanced Intelligent Systems, vol. 6, pp. 41-52, 2013 [citation][year=2018]Folch, D. C., Spielman, S. E., & Manduca, R. (2018). Fast food data: Where user?generated content works and where it does not. Geographical Analysis, 50(2), 125-140. [citation][year=2018]Novack, T., Peters, R., & Zipf, A. (2018). Graph-Based Matching of Points-of-Interest from Collaborative Geo-Datasets. ISPRS International Journal of Geo-Information, 7(3), 117. [citation][year=2018]Gervasoni, L., Fenet, S., Perrier, R., & Sturm, P. (2018, October). Convolutional neural networks for disaggregated population mapping using open data. In IEEE International Conference on Data Science and Advanced Analytics (DSAA). [citation][year=2018]Gervasoni, L., Fenet, S., & Sturm, P. (2018, January). Une méthode pour l’estimation désagrégée de données de population à l’aide de données ouvertes. In 18ème Conférence Internationale sur l'Extraction et la Gestion des Connaissances. [citation][year=2017]Touya, G., Antoniou, V., Olteanu-Raimond, A. M., & Van Damme, M. D. (2017). Assessing crowdsourced POI quality: Combining methods based on reference data, history, and spatial relations. ISPRS International Journal of Geo-Information, 6(3), 80. [citation][year=2016]Jonietz, D.; Zipf, A. Defining Fitness-for-Use for Crowdsourced Points of Interest (POI). ISPRS Int. J. Geo-Inf. 2016, 5, 149. doi:10.3390/ijgi5090149 [citation][year=2015]DRAFT, S. 2015, Why so many people? Explaining non-habitual transport overcrowding with internet data.Montini, L., Rieser-Schüssler, N., Horni, A., & Axhausen, K. (2014). Trip purpose identification from GPS tracks. Transportation Research Record: Journal of the Transportation Research Board, (2405), 16-23. [citation][year=2014]Montini, L., Rieser-Schüssler, N., Horni, A., & Axhausen, K. (2014). Trip purpose identification from GPS tracks. Transportation Research Record: Journal of the Transportation Research Board, (2405), 16-23. [citation][year=2014]Montini, L., & Rieser, N. (2014). Implementation and pretest of the trip purpose detection. [citation][year=2014]Fine-resolution population mapping using OpenStreetMap points-of-interest Mohamed Bakillah , Steve Liang , Amin Mobasheri , Jamal Jokar Arsanjani , Alexander Zipf International Journal of Geographical Information Science Vol. 28, Iss. 9, 2014 [citation][year=2014]Limits of Predictability in Commuting Flows in the Absence of Data for Calibration (Yingxiang Yang, C. Herrera-Yagüe, N. Eagle, Marta C González),Nature Collections, Scientific Reports 4, Article number: 5662 doi:10.1038/srep05662 (2014) http://www.nature.com/srep/2014/140711/srep05662/full/srep05662.html [citation][year=2013]S Jiang, GA Fiore, Y Yang, J Ferreira Jrâ?¦, A review of urban computing for mobile phone traces: current methods, challenges and opportunities, Proceedings of the 2nd …, 2013 2009(1 publication) [publication]Alves, A. and Antunes, B. and Pereira, F.C. and Bento, C. , "Semantic Enrichment of Places: Ontology Learning from the Web", International Journal of Knowledge-Based & Intelligent Engineering Systems, vol. 13, pp. 19-30, 2009 [citation][year=2018]Burov, Y., Pasichnyk, A., & Katrenko, V. (2018). Building an ontology for system analysis. ECONTECHMOD: An International Quarterly Journal on Economics of Technology and Modelling Processes, 7. [citation][year=2017]Shimizu, C., & Cheatham, M. 2017. An Ontology Design Pattern for Microblog Entries. http://dase.cs.wright.edu/sites/default/files/paper_0.pdf [citation][year=2017]Casanova, M. A. (2017). Enriching and analyzing Semantic Trajectories with Linked Open Data (Doctoral dissertation, PUC-Rio). [citation][year=2017]Kavouras, Marinos, Margarita Kokla, and Eleni Tomai. "Semantic enrichment of user-generated educational scenarios with spatial concepts and entities. 2017. http://geosem.ntua.gr/images/Semantic-enrichment-of-user-generated-educational-scenarios-with-spatial-concepts-and-entities.pdf [citation][year=2016]Livia Ruback, Marco Antonio Casanova, Alessandra Raffaetà, Chiara Renso, and Vania Vidal. 2016. Enriching Mobility Data with Linked Open Data. In Proceedings of the 20th International Database Engineering & Applications Symposium (IDEAS '16), Evan Desai (Ed.). ACM, New York, NY, USA, 173-182. DOI: https://doi.org/10.1145/2938503.2938550 [citation][year=2015]Liviu Teodor Popescu, Pramod Lakshmi Narasimha, Aliasgar Mumtaz Husain. "Navigation system with point of interest classification mechanism and method of operation thereof ". PATENT US9026480. May 2015. [citation][year=2014]Burov, Eugene. "Complex ontology management using task models." International Journal of Knowledge-Based and Intelligent Engineering Systems 18.2 (2014): 111-120. [citation][year=2012]Steven Van Canneyt, Steven Schockaert, Olivier Van Laere and Bart Dhoedt "Using Social Media to Find Places of Interest: A Case Study in London". In Procs. of the First ACM SIGSPATIAL International Workshop on Crowdsourced and Volunteered Geographic Information 2012 [citation][year=2012]Pundt, Hardy. "Semantically Enriched POI as Ontological Foundation for Web-Based and Mobile Spatial Applications." Universal Ontology of Geographic Space: Semantic Enrichment for Spatial Data. IGI Global, 2012. 186-206. Web. 8 Feb. 2017. doi:10.4018/978-1-4666-0327-1.ch008 [citation][year=2012]Bakillah, Mohamed, and Mir Abolfazl Mostafavi. "Toward an Architecture for Enhancing Semantic Interoperability Based on Enrichment of Geospatial Data Semantics." Universal Ontology of Geographic Space: Semantic Enrichment for Spatial Data. IGI Global, 2012. 53-72. [citation][year=2012]Hwamin SohnIdentified author, Byoungsuk JiIdentified author, Kiyun YuIdentified. "Method for Extract Geographic Information from Non-geotagged Web Documents". The Korean Society For Geospatial Information System Journal. 2012.5, 131-132 (2 pages) [citation][year=2012]Nguyen, T. T. S. Semantic-enhanced web-page recommender systems. PhD Thesis. University of Technology, Sydney. Faculty of Engineering and Information Technology, 2012. [citation][year=2011]Ozdikis, O., Orhan, F., and Danismaz, F. Ontology-based recommendation for points of interest retrieved from multiple data sources. In Proceedings of the International Workshop on Semantic Web Information Management (SWIM ’11). ACM, New York, NY, USA, , Article 1, 6 pages. [citation][year=2011]Ferrari, L., and M. Mamei. Identifying and Understanding Urban Sport Areas using Nokia Sports Tracker. The First Workshop on Pervasive Urban Applications (PURBA) in conjunction with the 9th International Conference on Pervasive Computing in San Francisco, CA, USA on June 12-15, 2011. Conference Articles 2020(5 publications) [publication]Santos, J. and Alves, A. and Gonçalo Oliveira, H, , "Leveraging on Semantic Textual Similarity for Developing a Portuguese Dialogue System", in 13th International Conference on the Computational Processing of the Portuguese Language (PROPOR 2020), 2020 [publication]Sousa, T. and Alves, A. and Gonçalo Oliveira, H, , "Exploring Portuguese Word Embeddings for Discovering Lexical-Semantic Relations", in 13th International Conference on the Computational Processing of the Portuguese Language (PROPOR 2020), 2020 [publication]Santos, J. and Alves, A. and Gonçalo Oliveira, H, , "ASAPPpy: a Python Framework for Portuguese STS", in ASSIN 2 Shared Task: Evaluating Semantic Textual Similarity and Textual Entailment in Portuguese, 2020 [publication]Gonçalo Oliveira, H, and Ferreira, J. and Santos, J. and Fialho, P. and Ricardo Rodrigues and Coheur, L. and Alves, A. , "AIA-BDE: A Corpus of FAQs in Portuguese and their Variations", in 12th International Conference on Language Resources and Evaluation, 2020 [publication]Gonçalo Oliveira, H, and Clemêncio, A. and Alves, A. , "Corpora and Baselines for Humour Recognition in Portuguese", in 12th International Conference on Language Resources and Evaluation, 2020 2019(6 publications) [publication]Gonçalo Oliveira, H, and Filipe, R. and Ricardo Rodrigues and Alves, A. , "Using Lucene for Developing a Question-Answering Agent in Portuguese", in Proceedings of 8th Symposium on Languages, Applications and Technologies (SLATE 2019), 2019 [publication]Clemêncio, A. and Alves, A. and Gonçalo Oliveira, H, , "Recognizing Humor in Portuguese: First Steps", in 19th EPIA Conference on Artificial Intelligence, 2019 [publication]Andrade, R. and Alves, A. and Bento, C. , "Exploring different combinations of data and methods for urban land use analysis: a survey", in Workshop on Ambient Intelligence for promoting Sustainable Behaviors (BRAINS). Part of the 15th European Conference on Ambient Intelligence, 2019 [publication]Cunha, I. and Simões, J. and Alves, A. and Gomes, R. and Ribeiro, A. , "Characterization of Individual Mobility for Non-routine Scenarios from Crowd Sensing and Clustered Data", in 15th European Conference on Ambient Intelligence, 2019 [publication]Andrade, R. and Alves, A. and Bento, C. , "An overview of different data types and methods for urban land use analysis", in Poster Session at the 15th European Conference on Ambient Intelligence, 2019 [publication]Amaro, P. and Barreiros, J. and Coutinho, F. and Joao Duraes and Santos, F. and Alves, A. and Silva, M. and Cunha, J.C. , "Embedded Programming Bootcamp for Career Change", in 18th International Symposium on Ambient Intelligence and Embedded Systems, 2019 2018(4 publications) [publication]Simões, J. and Gomes, R. and Alves, A. and Jorge Bernardino , "Urban Mobility: Mobile Crowdsensing Applications", in 9th International Symposium on Ambient Intelligence (ISAmI 2018), 2018 [publication]Alves, A. and Gonçalo Oliveira, H, and Ricardo Rodrigues and Rui Encarnação , "ASAPP 2.0: Advancing the State-of-the-Art of Semantic Textual Similarity for Portuguese", in 7th Symposium on Languages, Applications and Technologies (SLATE'18), 2018 [citation][year=2020]Rodrigues, R. C., Rodrigues, J., de Castro, P. V. Q., da Silva, N. F. F., and da Silva Soares, A. (2020). Portuguese language models and word embeddings: Evaluating on semantic similarity tasks. In Computational Processing of the Portuguese Language - 14th International Conference, PROPOR 2020, Evora, Portugal, March 2-4, 2020, Proceedings, volume 12037 of LNCS, pages 239–248. Springer. [citation][year=2018]Souza, M. and Sanches, L. M. P. (2018). Detecção de Paráfrases na Língua Portuguesa usando Sentence Embeddings. Linguamática, 10(2):31–44. [publication]Almeida, A. and Alves, A. and Gomes, R. , "Automatic POI Matching Using an Outlier Detection Based Approach", in The Seventeenth International Symposium on Intelligent Data Analysis , 2018 [publication]Andrade, R. and Gonçalves, P. and Alves, A. , "Sensor-based Activity Recognition on Smartphones: A Simple Approach for Sharing Results with Other Applications", in 24th Portuguese Conference on Pattern Recognition, 2018 2017(3 publications) [publication]Gomes, R. and Demissie, M.G. and Francisco Antunes and Bento, C. and Alves, A. and Aguiar, A. , "URBY.SENSE - Urban mobility analysis and prediction for non-routine scenarios using digital footprints", in GET2017 - 14. Encontro Annual do Grupo de Estudos em Transportes, 2017 [publication]Almeida, A. and Alves, A. , "Activity Recognition for Movement-Based Interaction in Mobile Games", in 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, Demo Panel, 2017 [citation][year=2018]Nascimento, T. H., de Melo Nunes, F. A. A., do Nascimento, H. A. D., Salvini, R. L., Luna, M. M., Goncalves, C., & de Souza, E. F. (2018, July). Interaction with Platform Games Using Smartwatches and Continuous Gesture Recognition: A Case Study. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) (pp. 253-258). IEEE. [citation][year=2018]Zheng, Z., Du, J., Sun, L., Huo, M., & Chen, Y. (2018). TASG: An Augmented Classification Method for Impersonal HAR. Mobile Information Systems, 2018. [publication]Gonçalo Oliveira, H, and Alves, A. and Ricardo Rodrigues , "Gradually Improving the Computation of Semantic Textual Similarity in Portuguese", in 18th EPIA Conference on Artificial Intelligence, Porto, Portugal, September 5-8, 2017, 2017 [citation][year=2018]Souza, M. and Sanches, L. M. P. (2018). Detecção de Paráfrases na Língua Portuguesa usando Sentence Embeddings. Linguamática, 10(2):31–44. 2016(4 publications) [publication]Ferrugento, A. and Gonçalo Oliveira, H, and Alves, A. and Rodrigues, F. , "Can Topic Modelling benefit from Word Sense Information?", in 10th International Conference on Language Resources and Evaluation, 2016 [citation][year=2018]Pham, P., Do, P., and Ta, C. D. C. (2018). GOW-LDA: Applying term co-occurrence graph representation in lda topic models improvement. In Proceedings of International Conference on Computational Science and Technology, ICCST 2017, pages 420–431. Springer. [publication]Alexandre Pinto and Gonçalo Oliveira, H, and Alves, A. , "Comparing the Performance of Different NLP Toolkits in Formal and Social Media Text", in 5th Symposium on Languages, Applications and Technologies (SLATE'16), 2016 [citation][year=2020]Jalal, M., Mays, K. K., Guo, L., and Betke, M. (2020). Performance comparison of crowdworkers and NLP tools onnamed-entity recognition and sentiment analysis of political tweets. [citation][year=2020]Ilic, A., Licina, A., and Savic, D. (2020). Chatbot development using java tools and libraries. In 2020 24th International Conference on Information Technology (IT), pages 1–4. IEEE. [citation][year=2020]Moore, J., Cao, M., and Zhao, R. (2020). Detecting and correcting real-word errors in e-commerce search. In SDM Conference 2020 workshop on Data Science for Retail and E-Commerce Workshop. [citation][year=2020]James, P. E., Kit, M. H., Vaithilingam, C. A., and Wee Chiat, A. T. (2020). An integrated process based natural language processing system. Journal of Computational and Theoretical Nanoscience, 17(4):1842–1846. [citation][year=2020]Camilleri, S., Agius, M. R., and Azzopardi, J. (2020). Analysis of online news coverage on earthquakes through text mining. Frontiers in Earth Science, 8:141. [citation][year=2020]Cheng, X., Kong, X., Liao, L., and Li, B. (2020). A combined method for usage of nlp libraries towards analyzing software documents. In International Conference on Advanced Information Systems Engineering, pages 515–529. Springer. [citation][year=2020]Borrelli, D., Gongora Svartzman, G., and Lipizzi, C. (2020). Unsupervised acquisition of idiomatic units of symbolic natural language: An n-gram frequency-based approach for the chunking of news articles and tweets. Plos one, 15(6):e0234214. [citation][year=2020]Camilleri, S. (2020). Deriving business value from online data sources using natural language processing techniques. In Natural Language Processing for Global and Local Business, pages 17–39. IGI Global. [citation][year=2020]Zemnickis, J., Niedrite, L., and Kozmina, N. (2020). A little bird told me: Discovering KPIs from Twitter data. In International Baltic Conference on Databases and Information Systems, volume 1243 of CCIS, pages 161–175. Springer. [citation][year=2020]Dolatabadi, M., Fadardi, J. S., Kahani, M., and Karshki, H. (2020). Cognitive sequential dependencies in the wild: Sentiment analysis approach. https://psyarxiv.com/4mw8c/. [citation][year=2020]Beccaluva, E., Chiappetta, A., Mangut, J. C., Molteni, L., Mores, M., Occhiuto, D., and Garzotto, F. (2020). Deception of the “Elephant in the Room”: Invisible auditing multi-party conversations to support caregivers in cognitive behavioral group therapies. In Human-Computer Interaction. Human Values and Quality of Life. HCII 2020, volume 12183 of LNCS, pages 3–32. Springer. [citation][year=2019]Evans, L., Crockett, K., Owda, M., and Vilas, A. F. (2019). A Methodology for the Resolution of Cashtag Collisions on Twitter – a Natural Language Processing & Data Fusion Approach. Expert Systems with Applications, page (online since March 2019). [citation][year=2019]Abrami, G., Mehler, A., Lucking, A., Rieb, E., and Helfrich, P. (2019). Textannotator: A flexible framework for semantic annotations. In Proceedings of 15th Joint ACL - ISO Workshop on Interoperable Semantic Annotation, Gothenburg, Sweden. ACL Press. [citation][year=2019]Veliz, C. M., De Clercq, O., & Hoste, V. (2019, November). Benefits of Data Augmentation for NMT-based Text Normalization of User-Generated Content. In Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019) (pp. 275-285). [citation][year=2019]Zimmer, M., Al-Yacoub, A., Ferreira, P., and Lohse, N. (2019). Understanding human decision-making during production ramp-up using Natural Language Processing. In Proceedings of 17th IEEE International Conference on Industrial Informatics (INDIN), Helsinki-Espoo, Finland. [citation][year=2019]Martinez-Rodriguez, J. L., Lopez-Arevalo, I., Rios-Alvarado, A. B., Hernandez, J., and Aldana-Bobadilla, E. (2019). Extraction of RDF statements from text. In Iberoamerican Knowledge Graphs and Semantic Web Conference, volume 1029 of CCIS, pages 87–101. Springer. [citation][year=2019]Vychegzhanin, S. and Kotelnikov, E. (2019). Comparison of named entity recognition tools applied to news articles. In 2019 Ivannikov Ispras Open Conference (ISPRAS), pages 72–77. [citation][year=2019]Zahidi, Y., El Younoussi, Y., and Azroumahli, C. (2019). Comparative study of the most useful Arabic-supporting natural language processing and deep learning libraries. In Proceedings of 5th International Conference on Optimization and Applications (ICOA). IEEE. [citation][year=2019]Canosa, X., Gamallo, P., Varela, X., Taboada, J. A., Taboada, J. A., and Garcia, M. (2019). Uma utilidade para o reconhecimento de topónimos em documentos medievais. Linguamática, 11(1). [citation][year=2019]Camilleri, S., Azzopardi, J., and Agius, M. R. (2019). Investigating the relationship between earthquakes and online news. In Proceedings of 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE). IEEE. [citation][year=2019]Weiying, K., Pham, D. N., Eftekharypour, Y., and Pheng, A. J. (2019). Benchmarking NLP toolkits for enterprise application. In Proceedings of 16th Pacific Rim International Conference on Artificial Intelligence, Part III, volume 11672 of LNCS, pages 289–294, Cuvu, Yanuca Island, Fiji. Springer. [citation][year=2019]Lamberti, F., Gatteschi, V., Sanna, A., and Cannavò, A. (published online January 2019). A multimodal interface for virtual character animation based on live performance and natural language processing. International Journal of Human–Computer Interaction, pages 1–17. [citation][year=2019]Yogish, D., Manjunath, T. N., and Hegadi, R. S. (2019). Review on natural language processing trends and techniques using NLTK. In Proceedings of Second International Conference on Recent Trends in Image Processing and Pattern Recognition, RTIP2R 2018, Solapur, India, December 21–22, 2018, Revised Selected Papers, Part III, volume 1037 of CCIS, pages 589–606. Springer. [citation][year=2019]Hausl, M., Forster, J., Auch, M., Karrasch, M., and Mandl, P. (2019). An evaluation concept for named entity recognition and keyword apis in social media analysis. In Proceedings of the Second International Workshop on Entrepreneurship in Electronic and Mobile Business, IWEMB 2018, pages 79–96. PubliQation Academic Publishing. [citation][year=2019]Sánchez, L. E. (2019). Optimización de modelos de características con aplicaciones para la adaptación de composiciones de servicios. PhD thesis, Universidad Nacional del Centro de la Provincia De Buenos Aires. [citation][year=2019]Gao, S., Qiu, J. X., Alawad, M., Hinkle, J. D., Schaefferkoetter, N., Yoon, H.-J., Christian, B., Fearn, P. A., Penberthy, L., Wu, X.-C., Coyle, L., Tourassi, G., and Ramanathan, A. (2019). Classifying cancer pathology reports with hierarchical self-attention networks. Artificial Intelligence in Medicine, 101. [citation][year=2019]Schmitt, X., Kubler, S., Robert, J., Papadakis, M., and LeTraon, Y. (2019). A repli- cable comparison study of ner software: Stanfordnlp, nltk, opennlp, spacy, gate. In Proceedings of Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS). IEEE. [citation][year=2019]Schwenkler, G. and Zheng, H. (2019). The network of firms implied by the news. Technical Report 3320859, Boston University Questrom School of Business. [citation][year=2019]Silva, N., Ribeiro, D., and Ferreira, L. (2019). Information extraction from unstructured recipe data. In Proceedings of the 2019 5th International Conference on Computer and Technology Applications, ICCTA 2019, pages 165–168, New York, NY, USA. ACM. [citation][year=2019]O’Leary, D. E. (2019). What phishing e-mails reveal: An exploratory analysis of phishing attempts using text analyzes. Journal of Information Systems, 33(3):285–307. [citation][year=2018]Silva, N. G. N. (2018). Information extraction from unstructured recipe data. Master’s thesis, Universidade do Porto. [citation][year=2018]Nazaruka, E., & Osis, J. (2018, March). Determination of Natural Language Processing Tasks and Tools for Topological Functioning Modelling. In ENASE (pp. 501-512). [citation][year=2018]Fragkou, P. (2018). Combining information extraction and text segmentation methods in greek texts. Artificial Intelligence Research, 7(1). [citation][year=2018]Neumer, T. (2018). Efficient natural language processing for automated recruiting on the example of a software engineering talent-pool. Master’s thesis, Technische Universitat Munchen. [citation][year=2018]Gudivada, V. N., & Arbabifard, K. (2018). Open-Source Libraries, Application Frameworks, and Workflow Systems for NLP. Computational Analysis and Understanding of Natural Languages: Principles, Methods and Applications, 38, 31. [citation][year=2018]Suryawati, E., Munandar, D., Riswantini, D., Abka, A. F., and Arisal, A. (2018). Pos-tagging for informal language (study in indonesian tweets). Journal of Physics: Conference Series, 971. [citation][year=2018]Rudniy, A. (2018). De-identification of laboratory reports in stem. The Journal of Writing Analytics, 2:176–202. [citation][year=2017]Baumer, F. S. (2017). Indikatorbasierte Erkennung und Kompensation von ungenauen und unvollstandig beschriebenen Softwareanforderungen. PhD thesis, Universitat Paderborn. [citation][year=2017]da Gama Batista, F. D. (2017). Using named entity recognition for relevance detection in social network messages. Master’s thesis, Universidade do Porto. [citation][year=2017]Fragkou, P. (2017). Applying named entity recognition and co-reference resolution for seg- menting english texts. Progress in Artificial Intelligence. (online on May 2017) [citation][year=2017]Batista,F. and Figueira, A. (2017).The complementary nature of different NLP toolkits for named entity recognition in social media. In Progress in Artificial Intelligence - Proceedings of 18th Portuguese Conference on Artificial Intelligence, Porto, Portugal, September 5-8, 2017, volume 10423 of LNCS, pages 803–814. Springer. [publication]Gonçalo Oliveira, H, and Alves, A. , "Poetry from Concept Maps — Yet Another Adaptation of PoeTryMe’s Flexible Architecture", in 7th International Conference on Computational Creativity, 2016 [citation][year=2019]Cook, M., Colton, S., Pease, A., and Llano, M. T. (2019). Framing in computational creativity – a survey and taxonomy. In Proceedings of 10th International Conference on Computational Creativity, ICCC 2019, pages 156–163, UNC Charlotte, North Carolina, USA. ACC. [citation][year=2018]Lamb, C. E. (2018). TwitSong: A current events computer poet and the thorny problem of assessment. PhD thesis, University of Waterloo, Ontario, Canada. [publication]Znidarsic, M. and Amilcar Cardoso and Gervás, P. and Martins, P. and Hervás, R. and Alves, A. and Gonçalo Oliveira, H, and Xiao, P. and Linkola, S. and Toivonen, H. and Kranjc, J. and Lavrac, N. , "Computational Creativity Infrastructure for Online Software Composition: A Conceptual Blending Use Case", in Proceedings of the Seventh International Conference on Computational Creativity (ICCC 2016), 2016 [citation][year=2019]Confalonieri, R. and Kutz, O. (online since July 2019). Blending under deconstruction: The roles of logic, ontology, and cognition in computational concept invention. Annals of Mathematics and Artificial Intelligence. [citation][year=2018]McGregor, S. (2018). Geometric Methods for Context Sensitive Distributional Semantics (Doctoral dissertation, Queen Mary University of London). [citation][year=2018]Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, M., Plaza, E., & Kühnberger, K. U. (2018). A computational framework for conceptual blending. Artificial Intelligence, 256, 105-129. [citation][year=2017]Jordanous, A. (2017). Has computational creativity successfully made it “Beyond the Fence” in musical theatre?. Connection Science, 29(4), 350-386. [citation][year=2017]Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, M., Plaza, E., and Khnberger, K.-U. (2018). A computational framework for conceptual blending. Artificial Intelligence, page (available online since 2 December 2017). [citation][year=2017]McGregor, S. (2017). Geometric Methods for Context Sensitive Distributional Semantics. PhD thesis, Queen Mary University of London. [citation][year=2016]Sevilla, A. F., Fernández-Isabel, A., & Díaz, A. (2016, September). Grafeno: Semantic graph extraction and operation. In Digital Information Management (ICDIM), 2016 Eleventh International Conference on (pp. 133-138). IEEE. [citation][year=2016]Charnley, John, et al. "The FloWr Online Platform: Automated Programming and Computational Creativity as a Service." Proceedings of the Seventh International Conference on Computational Creativity, ICCC. 2016. 2015(4 publications) [publication]Alves, A. and Simões, D. and Gonçalo Oliveira, H, and Ferrugento, A. , "ASAP-II: From the Alignment of Phrases to Textual Similarity", in 9th International Workshop on Semantic Evaluation (SemEval 2015), 2015 [publication]Ferrugento, A. and Alves, A. and Gonçalo Oliveira, H, and Rodrigues, F. , "Towards the Improvement of a Topic Model with Semantic Knowledge", in 14th Portuguese Conference on Artificial Intelligence (EPIA 2015), 2015 [citation][year=2017]Mireles, V., & Revenko, A. (2017). Evolution of Semantically Identified Topics. In HybridSemStats@ ISWC. [publication]Alves, A. and Silva, D. , "Mobile CrowdSensing for Solidarity Campaings", in 6th International Symposium on Ambient Intelligence (ISAmI 2015), 2015 [citation][year=2016]Gasmi, A., Tamani, N., Faucher, C., & Ghamri-Doudane, Y. (2016, October). OAISIS: An ontological-based approach for interlinking CrowdSensing information systems. In Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on (pp. 003995-004000). IEEE. [publication]Polisciuc, E. and Alves, A. and Penousal Machado , "Understanding Urban Land Use through the Visualization of Points of Interest", in Fourth Workshop on Vision and Language (VL'15), part of 2015 Conference on Empirical Methods for Natural Language Processing (EMNLP15), 2015 [citation][year=2018]Shen, J. (2018). Profiling and Grouping Space-time Activity Patterns of Urban Individuals (Doctoral dissertation, UCL (University College London)). [citation][year=2018]Cheng, T., & Shen, J. (2018). Grouping people in cities: From space-time to place-time based profiling. In Human Dynamics Research in Smart and Connected Communities (pp. 181-201). Springer, Cham. [citation][year=2018]da Costa Rainho, F., & Bernardino, J. (2018, June). Web GIS: A new system to store spatial data using GeoJSON in MongoDB. In 2018 13th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE. 2014(2 publications) [publication]Geadas, P. and Alves, A. and Ribeiro, B. , " Ensemble Learning for Keyword Extraction from Event Descriptions", in IEEE International Joint Conference on Neural Networks (IJCNN), July 2014, 2014 [publication]Alves, A. and Ferrugento, A. and , M.L. and Rodrigues, F. , "ASAP: Automatic Semantic Alignment for Phrases", in SemEval Workshop, COLING 2014, Ireland, 2014 [citation][year=2017]Silva, A. D. B. (2017). O uso de recursos linguísticos para mensurar a semelhança semântica entre frases curtas através de uma abordagem híbrida. [citation][year=2017]Kadupitiya, J. C. S., Ranathunga, S., & Dias, G. (2017, July). Assessment and Error Identification of Answers to Mathematical Word Problems. In 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (pp. 55-59). IEEE. [citation][year=2016]Kadupitiya, J. C. S., Ranathunga, S., & Dias, G. (2016). Short Sentence Similarity Calculation using Corpus-Based and Knowledge-Based Similarity Measures. WSSANLP 2016, 44. [citation][year=2016]Luisa Bentivogli, Raffaella Bernardi , Marco Marelli, Stefano Menini, Marco Baroni, Roberto Zamparelli. SICK through the SemEval glasses. Lesson learned from the evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment. Journal of Language Resources and Evaluation. 10.1007/s10579-015-9332-5 [citation][year=2016]Lu, Wei, et al. "Joint semantic similarity assessment with raw corpus and structured ontology for semantic-oriented service discovery." Personal and Ubiquitous Computing 20.3 (2016): 311-323. [citation][year=2016]Kadupitiya, J. C. S., Surangika Ranathunga, and Gihan Dias. "Sinhala Short Sentence Similarity Measures using Corpus-Based Simi-larity for Short Answer Grading." WSSANLP 2016 (2016): 44. [citation][year=2015]Bentivogli, L., Bernardi, R., Marelli, M., Menini, S., Baroni, M., & Zamparelli, R. 2015. SICK Through the SemEval Glasses. [citation][year=2015]Yuanyuan Cai, Wei Lu, Xiaoping Che, Kailun Shi. Differential Evolutionary Algorithm Based on Multiple Vector Metrics for Semantic Similarity Assessment in Continuous Vector Space. 21st International Conference on Distributed Multimedia Systems (DMS'2015). http://ksiresearchorg.ipage.com/seke/dms15paper/dms15paper_1.pdf [citation][year=2015]Wei Lu, Yuanyuan Cai, Xiaoping Che, and Kailun Shi. 2015. Semantic Similarity Assessment Using Differential Evolution Algorithm in Continuous Vector Space. J. Vis. Lang. Comput. 31, PB (December 2015), 246-251. DOI=http://dx.doi.org/10.1016/j.jvlc.2015.10.015 [citation][year=2015]Cai, Yuanyuan, et al. "Knowledge-Enhanced Multi-semantic Fusion for Concept Similarity Measurement in Continuous Vector Space." Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), 2015 IEEE 12th Intl Conf on. IEEE, 2015. [citation][year=2014]Marelli, Marco, et al. "Semeval-2014 task 1: Evaluation of compositional distributional semantic models on full sentences through semantic relatedness and textual entailment." SemEval-2014 (2014). 2013(2 publications) [publication]Rodrigues, J. and Correia, P. and Alves, A. and Penousal Machado and Pereira, F.C. , "Constructing Route Choice Maps from GPS Traces", in World Conference on Transport Research (open track), 2013 [citation][year=2015]Adriano Galindo Leal; Alessandro Santiago dos Santos. Tendências e caminhos das pesquisas em sistemas inteligentes de transporte. CONGRESSO BRASILEIRO DE RODOVIAS & CONCESSÕES. 2015, Brasília. [publication]Polisciuc, E. and Alves, A. and Bento, C. and Penousal Machado , "Visualizing urban mobility", in Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH ’13, Anaheim, CA, USA, July 21-25, 2013, Poster Proceedings, page 115. ACM, 2013 [citation][year=2019]Sobral, T., Galvão, T., & Borges, J. (2019). Visualization of urban mobility data from intelligent transportation systems. Sensors, 19(2), 332. [citation][year=2017]Sobral, T., Galvão, T., & Borges, J. (2017). Semantic integration of urban mobility data for supporting visualization. Transportation Research Procedia, 24, 180-188 [citation][year=2016]Sobral, Thiago, et al. "OBAVUM: An ontology-based approach to visualizing urban mobility data." Big Data Analysis (ICBDA), 2016 IEEE International Conference on. IEEE, 2016. [citation][year=2015]Sobral, Thiago, Teresa Galvão Dias, and José Luís Borges. "Towards a Conceptual Framework for Classifying Visualisations of Data from Urban Mobility Services." Exploring Services Science. Springer International Publishing, 2015. 228-242. [citation][year=2014]Sobral, T. Developing visualisations for urban mobility data: a user-centred design approach, MSc. Thesis, University of Porto, 2014 [citation][year=2013]Lee, Won Ho, Park, Jae Wan (2013.10). An Approach to Visualizing a Social Network Service Using a Blob Algorithm - Focusing on User Profile Data. ?Journal of Digital Design?, 13(4), 465-476. 2012(3 publications) [publication]Alves, A. and Pereira, F.C. , "Making Sense of Location Context", in 1st International Workshop on Context Discovery and Data Mining part of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , 2012 [citation][year=2017]Kiseleva, J., & de Rijke, M. (2017). Evaluating Personal Assistants on Mobile devices. arXiv preprint arXiv:1706.04524. [citation][year=2016]Reichenbacher, Tumasch, et al. "Assessing geographic relevance for mobile search: A computational model and its validation via crowdsourcing." Journal of the Association for Information Science and Technology 67.11 (2016): 2620-2634. [citation][year=2016]Kiseleva, Julia, Jaap Kamps, and Charles LA Clarke. "Contextual search and exploration." Information Retrieval. Springer International Publishing, 2016. 3-23. [citation][year=2015]Kiseleva, J. (2015, August). Using contextual information to understand searching and browsing behavior. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 1059-1059). ACM. [citation][year=2015]Julia Kiseleva, Jaap Kamps, and Charles L. A. Clarke. Contextual Search and Exploration. RuSSIR Young Scientist Conference. August 2015. https://www.researchgate.net/profile/Julia_Kiseleva2/publication/283356889_Contextual_Search_and_Exploration/links/56376c4408aeb786b7044c95.pdf [citation][year=2015]JOTHIS CHEMBATH, Dr.S.K.MAHENDRAN. AN INSIGHT IN TO WEB MINING IN PARTICULAR WEBLOG FILES TO UNDERSTAND AND PREDICT BEHAVIORAL PATTERNS OF WEB USERS USING INTEGRATED MARKOV MODEL. International Journal of Commerce, Management and Computer Application. Volume(1) - Issue(4), 2015 pp 7 - 10, DOI:123.10.48 [citation][year=2013]Julia Kiseleva, Hoang Thanh Lam, Mykola Pechenizkiy, and Toon Calders. 2013. Predicting Current User Intent with Contextual Markov Models. In Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW '13). IEEE Computer Society, Washington, DC, USA, 391-398. DOI=10.1109/ICDMW.2013.143 http://dx.doi.org/10.1109/ICDMW.2013.143 [publication]Santos, J. and Alves, A. and Pereira, F.C. and Pedro Henriques Abreu , "Semantic Enrichment of Places for the Portuguese Language", in INForum2012, 2012 [citation][year=2017]Peixoto, J. J. L. (2017). Da Observação à Trajetória: formalização de uma estrutura de informação espaçotemporal. [citation][year=2015]Katerina, Papantoniou, et al. "LeveragingWeb 2.0 for Informed Real-Estate Services." EGC. 2015. [citation][year=2014]Hugo Gonçalo Oliveira: On the Utility of Portuguese Term-Based Lexical-Semantic Networks. PROPOR 2014: 176-182 [citation][year=2012]Oliveira, Hugo Gonçalo. Onto. PT: Towards the automatic construction of a lexical ontology for Portuguese. Diss. Ph. D. thesis, Univ. of Coimbra/Faculty of Science and Technology, 2012. [publication]Rodrigues, F. and Pereira, F.C. and Alves, A. and Jiang, S. and Ferreira, J. , "Automatic Classification of Points-of-Interest for Land-use Analysis", in GEOProcessing 2012 : The Fourth International Conference on Advanced Geographic Information Systems, Applications, and Services, 2012 [citation][year=2019]Yao, Y., Liu, P., Hong, Y., Liang, Z., Wang, R., Guan, Q., & Chen, J. (2019). Fine-scale intra- and inter-city commercial store site recommendations using knowledge transfer. Transactions in GIS, 23(5), 1029-1047. [citation][year=2018]Wong, J., Husain, A. M., & Panjwani, S. D. (2018). U.S. Patent No. 9,945,676. Washington, DC: U.S. Patent and Trademark Office. [citation][year=2018]Yu, Y., Li, J., Zhu, C., & Plaza, A. (2018). Urban Impervious Surface Estimation from Remote Sensing and Social Data. Photogrammetric Engineering & Remote Sensing, 84(12), 771-780. [citation][year=2018]Fang, F., Yuan, X., Wang, L., Liu, Y., & Luo, Z. (2018). Urban Land-Use Classification From Photographs. IEEE Geoscience and Remote Sensing Letters, (99), 1-5. [citation][year=2018]Zhang, X., Li, W., Zhang, F., Liu, R., & Du, Z. (2018). Identifying Urban Functional Zones Using Public Bicycle Rental Records and Point-of-Interest Data. ISPRS International Journal of Geo-Information, 7(12), 459. [citation][year=2017]Liu, Xiaoping, et al. "Classifying urban land use by integrating remote sensing and social media data." International Journal of Geographical Information Science (2017): 1-22. [citation][year=2017]Yao, Yao, et al. "Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model." International Journal of Geographical Information Science 31.4 (2017): 825-848. [citation][year=2017]Wood, S., Muthyala, R., Jin, Y., Qin, Y., Rukadikar, N., Rai, A., & Gao, H. (2017, December). Automated industry classification with deep learning. In Big Data (Big Data), 2017 IEEE International Conference on (pp. 122-129). IEEE. [citation][year=2016]Lin, Chow-Sing, and Shang-Hsuan Hsu. "Effective self-adjustment places of interest discovery in public places." International Journal of Ad Hoc and Ubiquitous Computing 22.4 (2016): 226-235. [citation][year=2016]Yao, Yao, et al. "Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model." International Journal of Geographical Information Science (2016): 1-24. [citation][year=2016]Chen, Chenru, et al. "Land use classification in construction areas based on volunteered geographic information." Agro-Geoinformatics (Agro-Geoinformatics), 2016 Fifth International Conference on. IEEE, 2016. [citation][year=2016]Montini, Lara. Extraction of transportation information from combined position and accelerometer tracks. PhD Thesis Diss. Eidgenössische Technische Hochschule Zürich. 2016. [citation][year=2014]Montini, L., Rieser-Schüssler, N., Horni, A., Axhausen, K., Trip Purpose Identification from GPS Tracks. Transportation Research Board, pp 16–23, 2014. [citation][year=2014]Montini, L., & Rieser, N. Implementation and pretest of the trip purpose detection. 2014 [citation][year=2014]Bakillah, M., Liang, S., Mobasheri, A., Jokar Arsanjani, J., & Zipf, A.. Fine-resolution population mapping using OpenStreetMap points-of-interest. International Journal of Geographical Information Science, (ahead-of-print), 1-24. 2014. [citation][year=2013]Küster, T., Lützenberger, M., Freund, D., & Albayrak, S. Distributed evolutionary optimisation for electricity price responsive manufacturing using multi-agent system technology. International Journal On Advances in Intelligent Systems, 6(1 and 2), 27-40, 2013. 2011(2 publications) [publication]Oliveirinha, J. and Pereira, F.C. and Alves, A. , "Acquiring semantic context for events from online resources", in 3rd International Workshop on Location and the Web, 2011 [citation][year=2016]Delgado, Melvin. Celebrating Urban Community Life: Fairs, Festivals, Parades, and Community Practice. University of Toronto Press, 2016. [citation][year=2010]Wilde, E., Boll, S., & Schöning, J. (2010, November). LocWeb 2010: Third International Workshop on Location and the Web. In Proceedings of the 3rd International Workshop on Location and the Web (p. 1). ACM. [publication]Alves, A. and Rodrigues, F. and Pereira, F.C. , "Tagging Space from Information Extraction and Popularity of Points of Interest", in International Joint Conference on Ambient Intelligence, 2011 [citation][year=2018]Cheng, T., & Shen, J. (2018). Grouping people in cities: From space-time to place-time based profiling. In Human Dynamics Research in Smart and Connected Communities (pp. 181-201). Springer, Cham. [citation][year=2017]Ganhoto, R. F. (2017). Inferência das atividades na modelização de escolhas de destinos e seu impacto na mobilidade urbana (Thesis dissertation). [citation][year=2016]Lee, J. E., Rho, G. I., Jang, H. M., & Yu, K. U. (2016). System Design and Implementation for Building a Place Information based on Crowdsourcing Utilizing the Graph Data Model. Journal of Cadastre & Land InformatiX, 46(1), 117-131. [citation][year=2015]Xiao Han. "Mining user similarity in online social networks : analysis,modeling and applications". PhD Thesis. Institut National des Télécommunications, 2015. English [citation][year=2015]Jitao Sang, Tao Mei, and Changsheng Xu. 2015. Activity Sensor: Check-In Usage Mining for Local Recommendation. ACM Trans. Intell. Syst. Technol. 6, 3, Article 41 (April 2015), 24 pages. DOI=10.1145/2700468 http://doi.acm.org/10.1145/2700468 [citation][year=2013]Sang, Jitao, Tao Mei, Changsheng Xu and Shipeng Li. "Contextual and Personalized Mobile Recommendation Systems." Tools for Mobile Multimedia Programming and Development. IGI Global, 2013. 82-97. Web. 7 Jan. 2015. doi:10.4018/978-1-4666-4054-2.ch005 [citation][year=2013]Chilooo Gachilio(2013). A Study on the Construction Method of POI Data Using SLI and Vector Map Fusion. Engineering Doctoral Thesis. Seoul National University Graduate School 2010(2 publications) [publication]Jiang, S. and Rodrigues, F. and Alves, A. and Pereira, F.C. and Ferreira, J. , "Towards an activity-based approach for estimating travel destinations", in World Conference in Transport Research (open track), 2010 [citation][year=2014]R Mansour, N Refaei, V Murdock, Augmenting Business Entities with Salient Terms from Twitter., COLING, 2014 [publication]Alves, A. and Pereira, F.C. and Rodrigues, F. and Oliveirinha, J. , "Place in perspective: Extracting online information about Points of Interest", in First International Joint Conference on Ambient Intelligence (acc. rate. 38.5%), 2010 [citation][year=2016]Martinkus, Phil, and M. S. C. S. Praveen Madiraju. "Personalizing Places of Interest Using Social Media Analysis." Poster in CATA 2016. [citation][year=2015]Onur Ekmekci, Andres Sevtsuk. 50 ways to Singapore Rail Corridor. Project at MIT. http://cityform.mit.edu/projects/50 [citation][year=2014]Eunyoung Kim, Hwon Ihm, and Sung-Hyon Myaeng. 2014. Topic-based place semantics discovered from microblogging text messages. In Proceedings of the companion publication of the 23rd international conference on World wide web companion (WWW Companion '14). International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 561-562. DOI=10.1145/2567948.2576955 [citation][year=2014]Kim, E., Ihm, H., & Myaeng, S. H. (2014, April). Topic-based place semantics discovered from microblogging text messages. In Proceedings of the 23rd International Conference on World Wide Web (pp. 561-562). ACM. 2009(3 publications) [publication]Pereira, F.C. and Alves, A. and Biderman, A. , "Fusion of Semantics with Mobility Information: Prospects and Opportunities", in InMotion \'09 : Pervasive Technologies for Improved Mobility and Transportation. Workshop of Pervasive 2009, 2009 [publication]Pereira, F.C. and Alves, A. and Oliveirinha, J. and Biderman, A. , "Perspectives on semantics of the place from online resources", in Third IEEE International Conference on Semantic Computing, 2009 [citation][year=2017]Grunick, M. (2017). U.S. Patent No. 9,792,378. Washington, DC: U.S. Patent and Trademark Office. [citation][year=2014]Kim, Byoungoh, et al. "SpinRadar: a spontaneous service provision middleware for place-aware social interactions." Personal and ubiquitous computing 18.2 (2014): 413-426. [citation][year=2014]Xiaoqi Cao, Matthias Klusch. Semantic Indexing for Efficient Retrieval of Multimedia Data. Adaptive Multimedia Retrieval: Semantics, Context, and Adaptation. Volume 8382 of the series Lecture Notes in Computer Science pp 165-180. October 2014. [citation][year=2013]Heesuk Son, Byoungoh Kim, Taehun Kim, Dongman Lee, and Soon Joo Hyun. 2013. SemanticRadar: AR-Based Pervasive Interaction Support via Semantic Communications. In Proceedings of the First International Conference on Distributed, Ambient, and Pervasive Interactions - Volume 8028, Norbert Streitz and Constantine Stephanidis (Eds.), Vol. 8028. Springer-Verlag New York, Inc., New York, NY, USA, 163-172. DOI: http://dx.doi.org/10.1007/978-3-642-39351-8_19 [citation][year=2011]Abascal-Mena, R. and Lopez-Ornelas. E. Information retrieval and visualization of geographic places coming from online newspapers. Proceedings of the 2011 7th International Conference on Next Generation Web Services Practices, Salamanca, Espanha, Outubro de 2011. [publication]Alves, A. and Pereira, F.C. and Biderman, A. and Ratti, C. , "Place Enrichment by Mining the Web", in 3rd European Conference on Ambient Intelligence, 2009 [citation][year=2019]Castillo, R. H., & Humphrey, B. A. (2019). U.S. Patent No. 10,339,375. Washington, DC: U.S. Patent and Trademark Office. [citation][year=2017]Grunick, M. (2017). Computerized systems and methods for identifying a character string for a point of interest. U.S. Patent No. 9,792,378. Washington, DC: U.S. Patent and Trademark Office. [citation][year=2017]Komninos, A., Besharat, J., Ferreira, D., Garofalakis, J., & Kostakos, V. (2017). Where’s everybody? Comparing the use of heatmaps to uncover cities’ tacit social context in smartphones and pervasive displays. Information Technology & Tourism, 17(4), 399-427. [citation][year=2017]Besarat, J. (2017). Dynamic spatiotemporal information on mobile devices, using data from social networks. (Doctoral dissertation). University of Patras, Greece. Retrieved from http://hdl.handle.net/10889/11011. [citation][year=2017]Castillo, Roger Henry, and Brian Andrew Humphrey. "Method, apparatus, and computer program product for classification of documents." U.S. Patent No. 9,589,184. 7 Mar. 2017. [citation][year=2015]Haag, F., Schlegel, T., & Ertl, T. (2015). A Time-location-Based Itinerary Visualization. IVAPP. [citation][year=2015]CHOI, Su Jeong; PARK, Seong-Bae; KIM, Kweon-yang. Estimating Category of Pois Using Contextual Information. Indian Journal of Science and Technology, [S.l.], p. 718-723, apr. 2015. ISSN 0974 -5645. Available at: . Date accessed: 09 Jul. 2015. doi:10.17485/ijst/2015/v8iS7/70475. [citation][year=2015]Benjamin Adams. Finding similar places using the observation-to-generalization place model. Journal of Geographical Systems. April 2015, Volume 17, Issue 2, pp 137-156 [citation][year=2014]S. Choi, S. Park, "Categorization of POIs Using Word and Context information," Journal of Korean Institute of Intelligent Systems, Vol 24 (5), pp. 470-476,2014 [citation][year=2013]Adams, B. (2013). Finding Geographic Analogs using the Observation-to-Generalization Place Model. Journal of Spatial Information Science, Under-review. [citation][year=2013]Ennis, A., Chen, L., Nugent, C., Ioannidis, G., & Stan, A. (2013, December). A System for Real-Time High-Level Geo-Information Extraction and Fusion for Geocoded Photos. In Proceedings of International Conference on Advances in Mobile Computing & Multimedia (p. 75). ACM. [citation][year=2013]Andreas Komninos, Jeries Besharat, Denzil Ferreira, and John Garofalakis. 2013. HotCity: enhancing ubiquitous maps with social context heatmaps. In Proceedings of the 12th International Conference on Mobile and Ubiquitous Multimedia (MUM '13). ACM, New York, NY, USA, , Article 52 , 10 pages. DOI=10.1145/2541831.2543694 http://doi.acm.org/10.1145/2541831.2543694 [citation][year=2013]Andrew Ennis, Liming Chen, Chris D. Nugent, George Ioannidis, Alexandru Stan, (2013) "High-level geospatial information discovery and fusion for geocoded multimedia", International Journal of Pervasive Computing and Communications, Vol. 9 Iss: 4, pp.367 - 382 [citation][year=2013]Tammet, T.; Luberg, A.; Järv, P. (2013). Sightsmap: crowd-sourced popularity of the world places. In: Information and Communication Technologies in Tourism 2013: ENTER 2013, Innsbruck, Austria, January 22-25, 2013. (Eds.)Cantoni, L.; Xiang, Z.. Springer, 2013. [citation][year=2012]Luberg, A., Järv, P., & Tammet, T. (2012). Information extraction for a tourist recommender system. In Information and communication technologies in tourism 2012 (pp. 332-343). Springer Vienna. [citation][year=2012]Adams, B. T. (2012). Operationalizing Place: Discovering, reasoning about, and exploring place knowledge from descriptions. University of California, Santa Barbara. [citation][year=2012]Luberg, A., & Tammeta’b, T. (2012, January). Tourist Recommender System. In Information and Communication Technologies in Tourism 2012: Proceedings of the International Conference in Helsingborg, Sweden, January 24-27, 2012 (p. 332). Springer. [citation][year=2010]Rodrigues, Filipe. POI Mining and Generation. Diss. MSc. thesis, University of Coimbra, 2010. [citation][year=2010]Baldauf, M. and Simon, R. 2010. Getting context on the go: mobile urban exploration with ambient tag clouds. In Proceedings of the 6th Workshop on Geographic information Retrieval (Zurich, Switzerland, February 18 - 19, 2010). GIR '10. ACM, New York, NY, 1-2. DOI= http://doi.acm.org/10.1145/1722080.1722094 2008(1 publication) [publication]Antunes, B. and Alves, A. and Pereira, F.C. , "Semantics of Place: Ontology Enrichment", in 11th Ibero-American Conference on Artificial Intelligence, 2008 [citation][year=2016]Tieke He, Hongzhi Yin, Zhenyu Chen, Xiaofang Zhou, Shazia Sadiq, and Bin Luo. 2016. A Spatial-Temporal Topic Model for the Semantic Annotation of POIs in LBSNs. ACM Trans. Intell. Syst. Technol. 8, 1, Article 12 (July 2016), 24 pages. DOI: https://doi.org/10.1145/2905373 [citation][year=2014]Kim, Byoungoh, et al. "SpinRadar: a spontaneous service provision middleware for place-aware social interactions." Personal and ubiquitous computing 18.2 (2014): 413-426. [citation][year=2013]Son, H., Kim, B.,Kim T., Lee, D., Hyun S. J. SemanticRadar: AR-Based Pervasive Interaction Support via Semantic Communications. First International Conference, DAPI 2013, Held as Part of HCI International 2013, Las Vegas, NV, USA, July 21-26, 2013. [citation][year=2013]Kim, B.,Kim T., Lee, D., Hyun S. J. SpinRadar: a spontaneous service provision middleware for place-aware social interactions. Journal: Personal and Ubiquitous Computing. DOI: 10.1007/s00779-013-0659-x. April 2013. [citation][year=2012]Pundt, Hardy. "Semantically Enriched POI as Ontological Foundation for Web-Based and Mobile Spatial Applications." Universal Ontology of Geographic Space: Semantic Enrichment for Spatial Data. IGI Global, 2012. 186-206. Web. 8 Feb. 2017. doi:10.4018/978-1-4666-0327-1.ch008 2007(3 publications) [publication]Pereira, F.C. and Alves, A. and Gomes, H. and Figueiredo, N.R. and Bento, C. , "The ejaki project: a quality of service regulator for citizens", in IEEE Conference on Portable Information Devices, 2007, 2007 [publication]Alves, A. , "Semantically enriched places: An approach to deal with the position to place problem.", in Doctoral Colloquium of UbiComp Conference, 2007 [publication]Alves, A. and Hervás, R. and Pereira, F.C. and Gervás, P. and Bento, C. , "Conceptual Enrichment of Locations Pointed Out by the User", in Knowledge-Based Intelligent Information and Engineering Systems 11th International Conference, KES 2007, 2007 [citation][year=2014]Wang, H. (2014). Research on the Spatial Relationships of 2D Images and Description Vocabulary Alignment (Doctoral dissertation). [citation][year=2012]Wang Yining. (2012). 2D image spatial relationship characteristics and description of lexical alignment (Master's thesis, Beijing University of Posts and Telecommunications). [citation][year=2010]William T. Niu and Judy Kay. PERSONAF: framework for personalized ontological reasoning in pervasive computing. Journal of User Modeling and User-Adapted Interaction (2010) User Modeling and User-Adapted Interaction. [citation][year=2009]William T Niu and Judy Kay. PERSONAF: Framework for Personalised Ontological Reasoning in Pervasive Computing. User modeling and User-Adapted Interaction: the Journal of Personalization Research. Springer. 2009 [citation][year=2009]YU Jian-wei,LI Qing-quan;Natural Language Description of Location Information in Location-Aware Computing[J];Geography and Geo-Information Science;2009-01 2001(1 publication) [publication]Alves, A. and Pereira, F.C. and Amilcar Cardoso , "Automatic Reading and Learning from Text", in International Symposium on Artificial Intelligence, ISAI'2001, 2001 [citation][year=2019]Pillutla, V. S., & Giabbanelli, P. J. (2019). Iterative generation of insight from text collections through mutually reinforcing visualizations and fuzzy cognitive maps. Applied Soft Computing, 76, 459-472. [citation][year=2019]Al-Aswadi, F. N., Chan, H. Y., & Gan, K. H. (2019). Automatic ontology construction from text: a review from shallow to deep learning trend. Artificial Intelligence Review, 1-28. [citation][year=2019]Falke, T. (2019). Automatic Structured Text Summarization with Concept Maps (Doctoral dissertation, Technische Universität). [citation][year=2019]Santos, V. D., Ferreira de Souza, É., Romero Felizardo, K., Massami Watanabe, W., Vijaykumar, N. L., Aluizio, S. M., & Cândido Júnior, A. (2019). Conceptual Map Creation from Natural Language Processing: a Systematic Mapping Study. Revista Brasileira de Informática na Educação, 27(3). [citation][year=2019]Jabbari, S. (2019). Ontology engineering using formal concept analysis from unstructured textual data (Doctoral dissertation). Université de Neuchâtel, Switzerland. [citation][year=2018]Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., & Abbasi, H. M. (2018). A survey of ontology learning techniques and applications. Database, 2018(1), bay101. [citation][year=2018]Konys, A. (2018). Knowledge systematization for ontology learning methods. Procedia Computer Science, 126, 2194-2207. [citation][year=2018]Somodevilla, M. J., Vilariño Ayala, D., & Pineda, I. (2018). An Overview on Ontology Learning Tasks. Computación y Sistemas, 22(1). [citation][year=2017]AL-Aswadi, F. N., & Yong, C. H. (2017). A Study of Various Ontology Learning Systems from Text and a Look into Future. work, 2(5), 9-10. [citation][year=2017]Project, TC, & Mai, TTN (2017). Constructing an automatic ontology from the glossary. Science Journal of Can Tho University , 133-139. [citation][year=2017]Benkhelil, H. (2017) Automatic generation of Concept Map from Text. Master Thesis. University of Mohamed Boudiaf - M'Sila, Algeria. [citation][year=2017]de Andrade Perin, Wagner, Davidson Cury, and Credine Silva Menezes. "iMap & CMPaaS–From Tool to a Service Oriented Platform for Concept Maps." Brazilian Journal of Computers in Education 24.03 (2017): 125. [citation][year=2017]Atapattu, Thushari, Katrina Falkner, and Nickolas Falkner. "A comprehensive text analysis of lecture slides to generate concept maps." Computers & Education (2017). [citation][year=2016]Nugumanova A., Mansurova M., Alimzhanov E., Zyryanov D., Apayev K. (2016) An Automatic Construction of Concept Maps Based on Statistical Text Mining. In: Helfert M., Holzinger A., Belo O., Francalanci C. (eds) Data Management Technologies and Applications. DATA 2015. Communications in Computer and Information Science, vol 584. Springer, Cham [citation][year=2016]de Andrade Perin, W., Cury, D., & Menezes, C. S. (2016). iMap & CMPaaS–From Tool to a Service Oriented Platform for Concept Maps. Brazilian Journal of Computers in Education, 24(03), 125. [citation][year=2016]Zhang Xiaoyong, Zhang Chengzhi and Zhou Qingqing, 2016. Research on the automatic construction of product concept hierarchy based on product evaluation. Information theory and practice , 39 (6), pp.120-125. [citation][year=2016]Aguiar, Z. Camila, and Davidson Cury. "A categorization of technological approaches to concept maps construction." Learning Objects and Technology (LACLO), Latin American Conference on. IEEE, 2016. [citation][year=2016]Rabadán Jurado, Adrián. "Generación de lenguaje natural a partir de grafos semánticos." (2016). MSc Thesis. Universidad Complutense de Madrid. [citation][year=2015]Mérième Ghenname. Le web social et le web sémantique pour la recommandation de ressources pédagogiques. Environnements Informatiques pour l’Apprentissage Humain. Université Jean Monnet - Saint-Etienne, 2015. Français. . [citation][year=2015]POUR, S. (2015). LE WEB SOCIAL ET LE WEB (Doctoral dissertation, UNIVERSITÉ JEAN MONNET SAINT ETIENNE). [citation][year=2015]Lee, Seulki, Youkyoung Park, and Wan C. Yoon. "Burst analysis for automatic concept map creation with a single document." Expert Systems with Applications 42.22 (2015): 8817-8829. [citation][year=2015]Mudiyanselage, A., Atapattu, T. A computational model for task-adapted knowledge organisation: improving learning through concept maps extracted from lecture slides. Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 2015 [citation][year=2015]Jizheng Wan, John Barnden. A New Semantic Model for Domain-Ontology Learning. Human Centered Computing Lecture Notes in Computer Science Volume 8944, 2015, pp 140-155 [citation][year=2015]Nugumanova, Aliya, et al. "An Automatic Construction of Concept Maps Based on Statistical Text Mining." International Conference on Data Management Technologies and Applications. Springer International Publishing, 2015. [citation][year=2015]Browarnik, Abel, and Oded Maimon. "Ontology Learning from Text: Why the Ontology Learning Layer Cake is not Viable." International Journal of Signs and Semiotic Systems (IJSSS) 4.2 (2015): 1-14. [citation][year=2014]Atapattu, Thushari, Katrina Falkner, and Nickolas Falkner. "Evaluation of concept importance in concept maps mined from lecture notes: computer vs human." proceedings of the 6th International conference on computer supported education. 2014. [citation][year=2014]Shunmughavel, V., and P. Jaganathan. "An Intelligent Bio-medical Document Retrieval Using Concept Map Identification." Journal of Emerging Technologies in Web Intelligence 6.4 (2014): 408-415. [citation][year=2014]Yoon, Wan C., Sunhee Lee, and Seulki Lee. "Burst Analysis of Text Document for Automatic Concept Map Creation." Modern Advances in Applied Intelligence. Springer International Publishing, 2014. 407-416. [citation][year=2014]Sijtsma, Bas, and A. Boer. "Semi-Automatic Construction of Skeleton Concept Maps from Case Judgement Documents." (2014). [citation][year=2014]Boer, A., Sijtsma, B., Winkels, R., & Lettieri, N. (2014). Semi-Automatic Construction of Skeleton Concept Maps from Case Judgments. In NAiL 2014: 2nd international workshop on network analysis in law. [Sn]. [citation][year=2014]Atapattu,T., Falkner, K., Falkner, N. An Evaluation Methodology for Concept Maps Mined from Lecture Notes: An Educational Perspective. 6th International Conference, CSEDU 2014, Barcelona, Spain, April 1-3, 2014, Revised Selected Papers [citation][year=2014]Žubrini?, Krunoslav. Automatic creation of concept map from unstructured text in Croatian language . PhD Thesis, University of Zagreb, Croatia, http://www.crosbi.znanstvenici.hr/prikazi-rad?&lang=ENKardum-Skelin&rad=704712 [citation][year=2014]Arbizu, A. V. (2014). Extracting knowledge from documents to construct concept maps (Doctoral dissertation, Indiana University). [citation][year=2014]IQBAL, R. (2014). METHODOLOGY FOR DOMAIN ONTOLOGY DEVELOPMENT WITH HUMAN-CENTERED DESIGN. [citation][year=2014]Winkels, Radboud, and Nicola Lettieri. "2 ND INTERNATIONAL WORKSHOP ON “Network Analysis in Law”." (2014). [citation][year=2014]Wan, Jizheng, and John Barnden. "A New Semantic Model for Domain-Ontology Learning." International Conference on Human Centered Computing. Springer International Publishing, 2014. [citation][year=2014]Atapattu, Atapattu Mudiyanselage Thushari Dilhani. A Computational Model for Task-adapted Knowledge Organisation: Improving Learning through Concept Maps Extracted from Lecture Slides. Diss. University of Adelaide, 2014. [citation][year=2013]Dasgupta, S., Padia, A., Shah, K., KaPatel, R., & Majumder, P. (2013). DLOLIS-A: Description Logic based Text Ontology Learning. CORR'13. [citation][year=2013]Yang Liu, Yanyan Li, Zhiqiang Zhang: Designing an Intelligent Interactive Tool for Scaffolding Concept Map Construction. ICHL 2013: 280-289 [citation][year=2012]Yoo, Jin Soung; Cho, Moon-Heum. Mining Concept Maps to Understand University Students' Learning. International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (5th, Chania, Greece, Jun 19-21, 2012) [citation][year=2012]Valerio, Alejandro and Leake, David B. and Cañas, Alberto J. (2012) Using Automatically Generated Concept Maps for Document Understanding: a Human Subjects Experiment. In: Concept Maps: Theory, Methodology, Technology. Proc. of the Fifth Int. Conference on Concept Mapping. University of Malta, Valetta, Malta, pp. 438-445. ISBN 978-99957-0-309-7 [citation][year=2012]Pai-Chen Shen. Designing a network-based concept visualizer to navigate news searching and browsing. PhD Thesis. http://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi/login?o=dnclcdr&s=id="100NTNU5447016".&searchmode=basic [citation][year=2012]Wilson Wong, Wei Liu, and Mohammed Bennamoun. 2012. Ontology learning from text: A look back and into the future. ACM Comput. Surv. 44, 4, Article 20 (September 2012), 36 pages. [citation][year=2012]Krunoslav Zubrinic, Damir Kalpic, Mario Milicevic, The automatic creation of concept maps from documents written using morphologically rich languages, Expert Systems with Applications, Volume 39, Issue 16, 15 November 2012, Pages 12709-12718, ISSN 0957-4174 [citation][year=2012]Juliana Hiroko Kowata, Davidson Cury, Maria Claudia Silva Boeres, Em direção à construção automática de Mapas Conceituais a partir de textos, Revista Brasileira de Informática na Educação, v.20, n.1 (2012) DOI: 10.5753/RBIE.2012.20.1.33 [citation][year=2012]BUIAR, José Antônio. Modelo para estruturação e representação de diálogos em fórum de discussão. 2012. 87 f. Dissertação (Mestrado em Computação Aplicada) – Universidade Tecnológica Federal do Paraná, Curitiba, 2012. [citation][year=2012]Kowata, Juliana Hiroko, Davidson Cury, and Maria Claudia Silva Boeres. "Towards the automatic construction of Concept Maps from texts." Brazilian Journal of Computers in Education 20.01 (2012): 33. [citation][year=2011]W. M. Wang and C. F. Cheung. 2011. A Semantic-based Intellectual Property Management System (SIPMS) for supporting patent analysis. Eng. Appl. Artif. Intell. 24, 8 (December 2011). [citation][year=2011]Sujatha R and Bandaru Rama krishna Rao. 2011. Taxonomy Construction Techniques - Issues and Challenges. Indian Journal of Computer Science and Engineering (IJCSE). Vol. 2. Issue 5. November 2011. e-ISSN:0976-5166 p-ISSN:2231-3850. [citation][year=2011]Jorge J. Villalón and Rafael A. Calvo. Concept Maps as Cognitive Visualizations of Writing Assignments. Journal of Educational Technology & Society 14(3): 16-27 (2011). [citation][year=2011]Gra?yna Szostek and Marek Jaszuk. Automatic Supply of a Medical Knowledge Base Using Linguistic Methods. Emerging Intelligent Technologies in Industry. Studies in Computational Intelligence, 2011, Volume 369/2011, 143-155. [citation][year=2011]Marco Tawfik, Mostafa Aref and Abdel-Badeeh Salem. An Overview of Ontology Learning From Uns- tructured Texts. INFORMATICS’2011 - International Scientific Conference on Informatics, Rož?ava, Slovakia, 2011. [citation][year=2011]Cheng-Zhi Zhang. Bilingual topic taxonomy generation based on bilingual documents clustering. Machine Learning and Cybernetics (ICMLC), 2011 International Conference on , vol.4, no., pp.1889- 1895, 10-13 Julho 2011 [citation][year=2011]Zubrinic, Krunoslav. Automatic creation of a concept map. 2011 [citation][year=2011]Zhang Chengzhi. Generating a multilingual taxonomy based on multilingual terminology clustering[J]. Chinese Journal of Library and Information Science,2011,4(2):27-40. [citation][year=2010]Yuen-Hsien Tseng, Chun-Yen Chang, Shu-Nu Chang Rundgren and Carl-Johan Rundgren. "Mining concept maps from news stories for measuring civic scientific literacy in media". Computers & Education. Elsevier. 2010 [citation][year=2010]Hsin-fu Chen. Dynamic Hierarchical Clustering Based on Taxonomy. MSc Thesis. National Central University. Taiwan. 2010. [citation][year=2010]J. H. Kowata, D. Cury and M. C. S. BOERES. A Review of Semi-Automatic Approaches to Build Concept Maps. In: 4th International Conference on Concept Mapping, 2010, Valparaíso - Chile. Proceedings of the 4th CMC 2010, 2010. v. 1. [citation][year=2010]J. H. Kowata, D. Cury and M. C. S. BOERES. CONCEPT MAPS CORE ELEMENTS CANDIDATES RECOGNITION FROM TEXT. In: 4th International Conference on Concept Mapping, 2010, Valparaíso - Chile. Proceedings of the 4th CMC 2010, 2010. v. 1. [citation][year=2010]Aguiar, Camila Z., Davidson Cury, and Tania Gava. "Um Estudo sobre Abordagens Tecnológicas para a Geração de Mapas Conceituais." (2010). [citation][year=2009]Tsui, E. , Wang, W.M. , Cheung, C.F. , Lau, A.S. "A concept-relationship acquisition and inference approach for hierarchical taxonomy construction from tags". Information Processing and Management. Elsevier. 2009 [citation][year=2009]Wong, W. (2009). Learning Lightweight Ontologies from Text across Different Domains using the Web as Background Knowledge. In: Doctor of Philosophy Thesis; University of Western Australia. [citation][year=2009]Blomqvist, Eva and Gangemi, Aldo and Presutti, Valentina. Experiments on pattern-based ontology design. K-CAP '09: Proceedings of the fifth international conference on Knowledge capture. ACM. Redondo Beach, California, USA. 2009 [citation][year=2009]Blomqvist, Eva. Semi-automatic Ontology Construction based on Patterns. PhD Thesis. Linköping University, Department of Computer and Information Science. Sweden [citation][year=2009]Juliana H. Kowata, Davidson Cury and Maria Claudia Silva Boeres. Caracterização das Abordagens para Construção (Semi) Automática de Mapas Conceituais. Anais do XX Simpósio Brasileiro de Informática na Educação. 17- 20 Novembro 2009. [citation][year=2008]W.M. Wanga, C.F. Cheung, W.B. Lee and S.K. Kwoka. "Mining knowledge from natural language texts using fuzzy associated concept mapping ". Information Processing & Management. Volume 44, Issue 5, September 2008, Pages 1707-1719 [citation][year=2008]A. Valerio, D. Leake, and A. J. Cañas. Associating Documents to Concept Maps in Context. In Proceedings of the Third International Conference on Concept Mapping (CMC 2008), 2008. [citation][year=2008]Villalon, J. J. and Calvo, R. A. 2008. Concept Map Mining: A Definition and a Framework for Its Evaluation. In Proceedings of the 2008 IEEE/WIC/ACM international Conference on Web intelligence and intelligent Agent Technology - Volume 03 (December 09 - 12, 2008). WI-IAT. IEEE Computer Society, Washington, DC, 357-360. DOI= http://dx.doi.org/10.1109/WIIAT.2008.387 [citation][year=2008]Antonio Lieto. Manually vs semiautomatic domain specific ontology building. MSc Thesis. University of Salerno. Italy. 2008. [citation][year=2007]Valerio, A., Leake, D., & Cañas, A. J. (2007). Automatically Associating Documents with Concept Map Knowledge Models. In Proceedings of the Thirty-third Latin American Conference in Informatics (CLEI 2007), San José, Costa Rica, Oct 2007. [citation][year=2006]Valerio, A., & Leake, D. B. (2006). Jump-Starting Concept Map Construction with Knowledge Extracted From Documents. In A. J. Cañas & J. D. Novak (Eds.), Concept Maps: Theory, Methodology, Technology. Proceedings of the Second International Conference on Concept Mapping. San Jose, Costa Rica: Universidad de Costa Rica. [citation][year=2005]Eva Blomqvist. "State of the Art: Patterns in Ontology Engineering". Report. University of Jonkoping, Sweden. ISSN 1404-0018 [citation][year=2004]Asunción Gómez-Pérez, David Manzano-Macho. "An overview of methods and tools for ontology learning from texts". The Knowledge Engineering Review (2004), 19: 187-212 Cambridge University Press [citation][year=2004]Eva Blomqvist. "State of the Art: Patterns in Ontology Engineering". Report. University of Jonkoping, Sweden. ISSN 1404-0018 [citation][year=2003]Sue, PC; A new approach for constructing the concept map. MSc Thesis. Institute of Computer Science and Engineering. National Chiao Tung University. 2003 2000(1 publication) [publication]Pereira, F.C. and Alves, A. and Amilcar Cardoso , "Extracting Concept Maps with Clouds", in ASAI'00, 2000 [citation][year=2019]Konys, A. (2019). Knowledge Repository of Ontology Learning Tools from Text. Procedia Computer Science, 159, 1614-1628. [citation][year=2019]Al-Aswadi, F. N., Chan, H. Y., & Gan, K. H. (2019). Automatic ontology construction from text: a review from shallow to deep learning trend. Artificial Intelligence Review, 1-28. [citation][year=2019]Jabbari, S. (2019). Ontology engineering using formal concept analysis from unstructured textual data (Doctoral dissertation). Université de Neuchâtel, Switzerland. [citation][year=2018]Asim, M. N., Wasim, M., Khan, M. U. G., Mahmood, W., & Abbasi, H. M. (2018). A survey of ontology learning techniques and applications. Database, 2018(1), bay101. [citation][year=2017]Benkhelil, H. (2017) Automatic generation of Concept Map from Text. Master Thesis. University of Mohamed Boudiaf - M'Sila, Algeria. [citation][year=2017]AL-Aswadi, F. N., & Yong, C. H. (2017). A Study of Various Ontology Learning Systems from Text and a Look into Future. work, 2(5), 9-10. [citation][year=2012]Wilson Wong, Wei Liu, and Mohammed Bennamoun. 2012. Ontology learning from text: A look back and into the future. ACM Comput. Surv. 44, 4, Article 20 (September 2012), 36 pages. [citation][year=2011]Grazyna Szostek and Marek Jaszuk. Automatic Supply of a Medical Knowledge Base Using Linguistic Methods. Emerging Intelligent Technologies in Industry. Studies in Computational Intelligence, 2011, Volume 369/2011, 143-155. [citation][year=2011]Jorge J. Villalón, Rafael A. Calvo. Concept Maps as Cognitive Visualizations of Writing Assignments. Educational Technology & Society 14(3): 16-27 (2011). [citation][year=2011]Marco Tawfik, Mostafa Aref and Abdel-Badeeh Salem. An Overview of Ontology Learning From Unstructured Texts. INFORMATICS’2011 - International Scientific Conference on Informatics, Ro??ava, Slovakia, 2011. [citation][year=2010]Yuen-Hsien Tseng, Chun-Yen Chang, Shu-Nu Chang Rundgren, Carl-Johan Rundgren. Mining concept maps from news stories for measuring civic scientific literacy in media, Computers & Education, Volume 55, Issue 1, August 2010, Pages 165-177, ISSN 0360-1315. [citation][year=2010]Hsin-fu Chen. Dynamic Hierarchical Clustering Based on Taxonomy. MSc Thesis. National CentralUniversity. Taiwan. 2010. [citation][year=2009]Wong, W. (2009)/ Learning Lightweight Ontologies from Text across Different Domains using the Web as Background Knowledge/. In: Doctor of Philosophy; University of Western Australia. [citation][year=2008]Antonio Lieto. Manually vs semiautomatic domain specific ontology building. MSc Thesis. University of Salerno. Italy. 2008. [citation][year=2007]Gelgi, F. (2007). Effective use of term relationships in Web content mining. Arizona State University. [citation][year=2006]Alireza Kashian, Mehdi Milanifard, Hashem Tatari. Collimator " Collaborative Image Annotator & Visual Concept Map Generator. In Proceedings of the 5th International Semantic Web Conference. 2006 [citation][year=2004]ASUNCIÿN GÿMEZ-PÿREZ and DAVID MANZANO-MACHO. "An overview of methods and tools for ontology learning from texts".The Knowledge Engineering Review (2004), 19: 187-212 Cambridge University Press [citation][year=2003]Gomez-Perez A., Manzano-Macho D.: A Survey of Ontology Learning Methods and Techniques. Deliverable 1.5, OntoWeb Project, 2003. Book Chapters 2014(1 publication) [publication]Alves, A. and Pereira, F.C. , "Semantic enrichment of places: From public places descriptions to linked data", in Perspectives of Ontology Learning (ISBN: 978-1-61499-378-0), vol. 1, pp. 201-218, 2014 [citation][year=2014]Lehmann, Jens, and Johanna Voelker. "An introduction to ontology learning." Perspectives on Ontology Learning. IOS Press, Amsterdam, The Netherlands (2014). PhD Theses 2012(1 publication) [publication]Alves, A. , "Semantic Enrichment of Places - Understanding the Meaning of Public Places from Natural Language Texts", 2012 [citation][year=2017]Grunick, M. (2017). U.S. Patent No. 9,792,378. Washington, DC: U.S. Patent and Trademark Office. MSc Theses 2013(1 publication) [publication]Polisciuc, E. and Alves, A. and Rebelo, A. and Penousal Machado , "Visual Tools for the Study of Urban Mobility", 2013 2004(1 publication) [publication]Alves, A. , "Distância Semântica entre Mapas Conceptuais: Uma Abordagem Experimental", 2004