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Abstract. This paper describes an approach to representing cases as nested
graph-structures, i.e., as hierarchicaly, spatialy, temporally and causaly inter-
connected nodes (case nodes), which may be themselves recursively described
by other sets of interconnected nodes. Each case node represents a case piece
(sub-case). An adjacency matrix may represent these nested graph-structured
cases. Within our approach, new cases are constructed using an iterative con-
text-guided retrieval of case nodes from multiple cases. In order to illustrate the
expressiveness of this case representation approach, we discuss its application
to the diagnosis and therapeutics of neurologica diseases, to architectural de-
sign and to storytelling. Some issues that come out of this approach, like its
contribution to the representation of cases of CBR and to integrate ordinary and
creative reasoning, are discussed.

1 Introduction

The need to keep to a minimum the knowledge engineering effort required to con-
struct case libraries, and the need of efficiency are the two main reasons to use smple
case representations in some CBR systems. These simple case representations usually
comprise two unstructured sets of attribute-value pairs or case features: the problem
and the solution features [12]. There is no description of the relationships or con-
straints between the features of a case. Moreover, these simple case representations
are characterised by having a low number of indexed features [36]. The retrieval
simply involves the standard nearest neighbour algorithm.

However, the construction of CBR systems in complex rea-world domains criti-
cally requires complex case representations. CBR systems for these domains are usu-
aly characterised by having a large problem space. As described by Watson and
Perera [36], and Leake [16], the larger the problem space is, the more likely the case
coverage is lower, and so, the more likely the case matching is poorer. Consequently,
the system may propose distant and less useful solutions, which will require more
adaptation effort.



Hierarchical-structured representations of cases [18, 36] aid overcoming the large
problem space drawback as they provide the implementation of the divide and con-
quer approach, offering the capability to treat subparts of cases as full-fledged cases.
This way they enable solving complex problems by recomposition of sub-solutions
[21]: alarge problem (or a large goal) is divided into several smaller sub-problems
(sub-goals), which can be independently solved using CBR. This means that the
problem space may be broken into sub-problem spaces, each one having less features
than the higher level problem space. The benefit of considering cases as set of pieces,
called snippets [28], instead of monalithic entities, can improve the results of a CBR
system in that solutions of problems may result from the contribution of multiple
cases. Therefore, they allow minimising the problems that appear when using parts of
multiple monolithic cases, particularly, the lot of effort taken to find the useful parts
in them.

However, conflicts may appear from the recomposition of sub-solutions. Context-
guided retrieval has been proposed to overcome this problem [19, 36].

Case representations cannot reflect only the hierarchical decomposition relation-
ship between the objects or case pieces that congtitute a case. Actually, in complex
real-world domains, although hierarchy is an important dimension to take into ac-
count, there are other kinds of relations between objects in a case, as, for example,
spatial (especialy in design) [8, 10, 37], temporal (especialy in planning) [1], or
simply causal explanations[31].

Graph-structured case representations, comprising objects and relations among
them, are a suitable approach to deal with the complex case representation problem,
since they allow the capability of expressing the relations between any two objects in
a case, they allow the variation of the set of relations used in different cases, they
allow the continuous addition of new relations to the set of relations used in a con-
tinuoudly updated case library, and they allow the implementation of both hierarchi-
cal and non-hierarchical case decomposition. Consequently, they provide a more
flexible and higher expressive power than attribute-value representations. However,
they have the problem of requiring complex retrieval mechanisms (e.g.: a structure
similarity is usually needed) that causes significant computational costs and a hard
case acquisition task. Actually, this is the main reason why some CBR systems have
used representations that fall between graph-structured and unstructured representa-
tions. The research group of Maryland University [2] has proposed a parallel structure
matching, and an automated case acquisition method to overcoming matching and
case acquisition costs, respectively. Plaza [27] and Borner [8] have also proposed
approaches to structure similarity measure.

In this paper we will focus on a nested graph-structured representation (NGSR) of
cases. These are described by pieces (sub-cases - represented by the nodes) and a set
of relations among them (represented by the edges), with the particularity that each
one of those case pieces may embed another graph, and so on. Each one of these case
piecesis considered, for indexing, matching, retrieving and validation purposes, as an
individual case, which facilitates the reuse of parts of multiple cases to construct a
new solution. We do not retrieve monolithic cases, but instead we construct new cases
using an iterative context-guided retrieval of case pieces from multiple cases. An



adjacency matrix representation for graphs is used to efficiently know whether or not
anodeisrelated (and how isrelated) with another node.

Our approach to case representation is presented in the next section. Three appli-
cation domains illustrate it. In Section 3 we give an overview of the solution con-
struction process. In section 4 we discuss some issues provided by our approach. At
last, a conclusion about our work is made in section 5.

2 Case Representation

Within our approach, a case is represented by a graph-structure, comprising a set of
interrelated case pieces. the case pieces are represented by the nodes, called case
nodes (sub-case is another synonym), and the relations are represented by the edges.
These cases are a kind of nested graph structures as their case nodes may be recur-
sively described by another set of interconnected case nodes, i.e., another graph
which we call the internal context (or the node graph) of the case node. This way,
these nested graphs allow representing the decomposition of a case into sub-cases. It
isworth notice that a case itself is also a node (a node of a higher graph-structure that
represents a case of CBR, as we will discuss in section 4). The internal context of a
case node comprises its sub-case nodes and the relations among them. It describes the
relevant aspects of the case node, as for example its constraints, its functionalities, its
behaviour and its structure (its constituent parts) [13]. It is worth notice that two case
nodes may have internal contexts with a non-null intersection, i.e., they may be de-
scribed by two different node graphs sharing a common set of case nodes. There may
be four main types of relations between case nodes: hierarchical (e.g.: decomposed
into, described by, etc.), spatia (e.g.: close to, touches, supported by, etc., [8; 10,
37]), temporal (e.g.: meets, during, overlaps, etc., [1]), or simply causal justifications
or explanations (e.g.: cause, implies, explains) [31]. Notice that there may be more
than one relation between two case nodes. Additionally, each relation may be directed
or undirected. Several case nodes of the same case may explain the existence of an-
other node in that case. We call the external context of the case node to the set of case
nodes and relations that surrounds it. This means the external context of a case node n
is also a graph (its neighbourhood graph) comprising the case nodes and the edges
that surround it.

Figures 1, 3 and 5 present three illustrative examples of rea-world cases from
three different domains. diagnosis and treatment of neurological diseases (RECIDE
[4, 5]), architectural design (e.g: FABEL project [12]) and storytelling (e.g.: MIN-
STREL [34], TALESPIN [23], SPIEL [9], [22]). Figures 2, 4 and 6 present their cor-
respondent NGSR, showing evidences for the main features of NGSR described
above, like the integration in a same case of spatial, temporal, causal and hierarchical
links between case nodes, or the possibility of treating a set of case nodes as a unique
case node (just like propositions in conceptual graphs [33]). Nested oval curves im-
plicitly represent the hierarchical relations between case nodes'.

! For the sake of simplicity and lack of space the cases are partially represented.



Patient Description:
Name: |. B. ; Sex: female; Age: 22
Diagnosis: Microadenoma (Prolactinoma)
Disease History:
Signals and Symptoms: Headaches;
Previous Therapeutics: 0.5 mg/day of Parlodel and 10 mg/day of Sibelium
Exams:
CAT (Computerised Axia Tomography:
NMR (Nuclear Magnetic Resonancy):
Date: 93/06/23 -> Description: The Saddle Diafragm is large and the Turkish Saddle is partially de-
stroyed;
Blood Analysis:
Date: 92/01/27 -> Description: level of PRL hormone = 139.3 (very high); TSH= 12(norma|)
Date: 92/03/22 -> Description: level of PRL hormone = 123 (high); TSH=1.2 (normal) ;
Therapeutics: 10 mg/day of Sibelium; 0.5 mg/day of Parlodel

Fig. 1. A real-world case from the neurological domain
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Fig. 2. The correspont NGSR for the case of Figure 1
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Fig. 3. A real-world case from the architectural domain



Fig. 4. The correspont NGSR for the case of Figure 3

(s1)There was a penguin who lived by himself on a floating iceberg in a cozy little igloo. (s2) One day a storm
destroyed all the igloos around him. (s3) The penguin was truly sorry his friends have no home. (s4) So, he decided
he must share his igloo with his friends. (s5) He invited everyone to spend the night in his house. (s6) All the

animals accepted his offer to stay with him. (s7) His home got so full that the penguin slept outside.

Fig. 5. A fable story
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Fig. 6. The correspondent NGSRfor the case of Figure 5. s, s2, s3, ..., s7 are the sentences
represented in the case of Figure 52

Mapping the case nodes to a set of contiguous integers (0, [N|-1), where N is the
number of case nodes of the case, we may adopt the adjacency matrix approach to
represent the relations (the edges) between the case nodes (Figures 7 and 8). Notice
that according to the theory of graphs an adjacency matrix is a [N|x|N| matrix of
booleans. The value of the element A(i,j) of an adjacency matrix A (wherei and j are
integers) is either true (represented by the number one) or false (represented by a
zero), depending upon whether or not node j is adjacent to node i. Remember also
that anodej is adjacent to anodei if there is an edge from i to j. We adopt a dlightly
different adjacency matrix because we don’t want to represent only the presence of an
edge (or edges) between two case nodes, but also the relation(s) that the edge(s) rep-

2 For more details about the language and story representation approach see [22, 26, 30].



resents (represent). Therefore, the value of the element A(i,j) is a set whose elements
are the relation(s) between case node i and case node j. If that set is empty then the
value of A(i,j) is 0. For example, a possible matrix and necessary mapping of the case
nodes for the case of Figure 1 is portrayed in Figures 7 and 8.

The row and column i of the adjacency matrix efficiently give us the external and
the internal context of the case node mapped to the integer i. For example, the exter-
nal context of the case node 19 comprises the nodes 2, 10 and 20, related with it by
the relations &, a e 3, respectively.

Case Node Integer

Relation Symbol
prifl 1

described-by 5
diagnosis 2

(decomposed-into)
exams 3

evidence a
NMR 10

is B
saddle diafragm 11

cause X
microadenoma 19
prolactinoma 20

Fig. 7. An example of a mapping for the case of Figure 1

1 2 3 0 1 19 20
1 [o [s.x] o 0 0 0
2 |o 0 0 0 0 5 5
3 |o 0 0 5 0 0 0

10 . . .. . 0 5 . . a 0

11 . . .. .0 o . . o0 0

9 |o 0 o . . o0 o . . o0 B

20 |0 0 o . . o0 o . . 0 0

Fig. 8. An adjacency matrix representation for the case of Figure 1 using the mapping
of Figure 7

3 Overview of the Solution Construction Process

A problem proposed to the system is a partially complete solution, as it may comprise
a set of possibly connected case nodes, which we call the query case nodes. The con-
struction of a solution consists on completing that partially complete solution by it-
eratively retrieving case nodes from previous cases. For each query case, and starting
by the broader one (the hierarchically higher), the system has to complete its external
and internal contexts and fill them (i.e., construct their record description structure?).

3 A case node may have arecord structure associated with it to describe, for example, itstype.



To do that the system retrieves a case node from memory according to an algorithm
similar to the one presented in [19] (in CBR the most similar case node is usually
retrieved). However, we do not use the similarity metric described there because,
although it takes into account the context similarities, it also takes into account simi-
larities between the addresses of the nodes (a code that uniquely represents the posi-
tion of the nodes in a case), which is not represented anymore in the current repre-
sentation approach. Instead of that similarity metric, we may apply one of the several
structural similarity metrics like the presented by Borner et al. [8] (specifically based
on the computation of the maximal clique), by Sanders et a [29] (based on an algo-
rithm for finding sub-graph isomorphisms) or by Plaza [27] (based on the concept of
antiunification of cases). Another structural similarity metric (our own) that we adopt
is based on the error-correcting algorithms for sub-graph isomorphism detection usu-
aly used in Pattern Recognition [24]. It measures the structural similarity between the
contexts of the candidate case nodes and those of the (possibly partially missing)
query case node. The edges of the retrieved case node are then reused by (added to)
the query case node of the partially complete solution. These edges follow from or to
missing (or partially missing) case nodes of the internal and external context of the
concerned case node. It is worth notice that these edges are not just pointers to miss-
ing case nodes, but also may embed suggestions for some aspects that those partially
or completely missing case nodes should have (for example, their functionalities,
their types, etc). These missing case nodes are then filled, using the algorithm men-
tioned above. The process stops when there is no more missing case nodes.

4 Discussion

Other works on hierarchical CBR are the stratified CBR technique presented in [7],
the recursive hierarchical CBR of Déja Vu system [32] and the Schank’s Dynamic
Memory [30]. Some systems like JULIA [15], PRODIGY/ANALOGY [35], and
CAPlan/CbC [25], NIRMANI [36], etc., use hierarchical-structured representations
for cases. CHIRON and CAPER [29], GREBE [6], SME [11], FABEL [12], Saxex
[3], etc., are examples of CBR and analogical reasoning projects that have used
graph-structured case representations.

Besides the benefits of graph-structured representations already presented in other
related works such as presented in [29, 12], we additionally discuss here some other
positive aspects that come out of our NGSR approach.

First, NGSR allows the representation of the decomposition of a case into sub-
cases (sub-case nodes), with all the benefits that come from, as we mentioned above
in the introduction. This means cases are stored as interconnected individual pieces
(case nodes) facilitating the access to all useful case pieces from several cases, and
thus improving the efficiency of retrieval. In contrary, CBR systems dealing with
monolithic cases have two steps to access the useful parts of previous cases: they
need to retrieve the whole case and then they take a lot of effort to find its relevant

part(s).



An issue worth addressing is the case piece size, because CBR systems' efficiency
and capability to solve new problems depend on that. It could be expected that a sys-
tem dealing with smaller case pieces would be less efficient than one dealing with
bigger ones (or with no case pieces at all), because of the greater number of retrieval
operations that have to be performed. However, this drawback is overwhelmed by
providing direct access to the case pieces in memory, avoiding unnecessary process-
ing.

We also think that the capability of a CBR system to solve problems grows when
the case piece size decreases: using smaller case pieces, we may dispose of a higher
number of combinations to construct the solution.

The approach we presented constitutes a generic case representation tool to support
several kinds of domains (diagnosis, planning and design). This is mainly because
NGSR allows the representation not just of decomposition (or hierarchical) relations,
but also of temporal, spatial and (simply) causal relations between objects of a case
(even in a same case). A consequence of supporting the integration of those relations
in a same case allows the representation of a considerable amount of information in a
case, which obvioudly improves CBR.

Our retrieval process is context-guided, taking advantage of the benefits pointed by
Watson and Perera [36]. Additionally, it is an iterative retrieval process which may be
more efficient than usually graph retrieval, as it is confined to the problem of com-
paring internal and external context graphs of the case node, which are significantly
smaller graphs than whole case graphs. Then the structure similarity algorithms (e.g.:
sub-graph finding, etc.) may become less complex. However, empirical proof of this
has not been done yet.

In our approach, we represent cases of CBR [17]. This way the reasoning steps
(adaptations made, similarity parameters used, etc.) may be stored for further use.
Each case of the case-base is explained by other cases. Therefore, the case-base stores
information of how a specific case was constructed. The case-base it is akind of his-
tory of the reasoning performed before. Considering that in our approach cases are
themselves represented as nodes, and that NGSR allows the representation of rela-
tions between different grainsize case nodes, the case-base may be seen itself as a
continuously updated case, since it is a network of interconnected nodes (case or sub-
case nodes) (see Figure 9). The system may pick successful and unsuccessful ideas of
reasoning strategies from previous cases of CBR, when dealing with similar reason-
ing problems (e.g.: which adaptation strategies were used when a specific case node
was added to a particular case, which similarity parameters were used, etc.).

Fig. 9. A case of acase-base



As a consequence of the most aspects we have been pointing, NGSR provides a
suitable approach to support creative reasoning (it is particularly appropriate for do-
mains like storytelling and architectural design). This makes sense if we consider one
of the main definitions of creativity, the combination theory, that says creativity con-
sists on relating or combining previously unrelated things [19]. Actualy, this idea
may be easily transferred to the context of NGSR as relating previously unrelated
case nodes. Using a process that does not retrieves the case node with the most simi-
lar context, but instead, for instance the second or third most similar, a case node may
be placed in the new case in a context that is different from the context it had in the
origina case. This way new and even non-obvious combinations of case nodes may
be constructed, although taking some cognitive risks that sometimes lead to bizarre
solutions. Nonetheless, a required adaptation process may avoid that bizarreness.
Moreover, creative reasoning basically requires taking cognitive risks in some degree.
Thisidea is very related with the relaxing retrieval technique used by Schank to in-
crease creativeness of CBR [31].

If the retrieval process is repeated several times, each time choosing a case node
with a different degree of structural similarity [19], i.e., changing the ranking of the
candidate case nodes, then a wide variety of solutions may be constructed to a same
problem. Thisis a case-based computational implementation of the concept of diver-
gent production of solutions [20], which, as claimed by the psychologist Guilford
[14], is the foundation of the creative process, in contrast to convergent production
used in ordinary problem solving. He defended that fluency, a creative ability deeply
connected with divergent production, and measured by the number of solutions that
one may give to a same problem, may play an important role in creativity. NGSR
may strongly contribute to improve the fluency of CBR systems, as it provides the
recombination of case nodes in several ways, through restructuring previous cases.
Another two important creative abilities are analysis and synthesis [14], i.e., the abil-
ity to decompose things into pieces, and the ability to recompose them, respectively.
As we previously explained, both ahilities are also provided by NGSR, as well as by
other hierarchical CBR approaches presented above. As claimed by Guilford, a flexi-
ble knowledge representation is another important issue in creative reasoning. NGSR
provides that flexibility, allowing the representation of cases from disparate domains,
as we have described in section 2. Furthermore, the case nodes may be considered
with different contexts, and thus viewed in different ways.

Our approach integrates ordinary and creative case-based problem solving, since
we use the same case representation, the same retrieval, reusing and revision proc-
esses, athough the goals that guide these processes are different: while creative
problem solving is appropriateness and originality-guided, ordinary problem solving
is just appropriateness-guided. These distinct driven-goals imply some dlight differ-
ences in those processes. For example, a dight distinction in the retrieval process is
presented as follows. In creative problem solving, presented for instance in architec-
tural design, storytelling or musical composition [18, 19], the most useful case pieces
are not necessarily the ones with more similarity metric value. We think that the most
useful case piece [15] in these cases is the one with: (i) higher similarity value; (ii)
which gives originality to the new case; (iii) and that does not confront the coherence



and meaningfulness of the new case. However, in domains such as diagnosis of neu-
rological diseases, that originality-guided retrieval must be avoided. When solving a
problem in a particular domain, the system must know whether or not originality (and
which degree of originality) is pretended for the solution. It may pick that information
from previous cases of CBR of that particular domain. For example, when solving a
diagnosis problem it should take knowledge from previous cases of CBR diagnosis
that tell it to use no originality.

The main drawback of this approach may be the required computational costs.
However, research on graph theory is being made to overwhelm or at least decrease
that.

5 Conclusions

We have presented an approach to representing cases as nested graphs: cases are split
into hierarchically, spatially, temporally or causaly interconnected pieces (nodes)
that may be described by another set of interconnected pieces, and so on. An adja-
cency matrix may represent a graph. We use an iterative context-guided retrieval of
case nodes. A structural similarity function compares the contexts of the query case
node and of the candidate case nodes. This case representation approach allows the
representation of cases from different types of domains (diagnosis, design and plan-
ning). Among other things, it supports the integration of ordinary and creative prob-
lem solving and the representation of cases of CBR.
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