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Abstract – This paper presents an algorithm for S1 and S2 heart 
sound segmentation using variance fractal dimension. Heart 
sound is assumed as a non-stationary signal embedding two main 
sounds S1 and S2, murmurs and eventually unusual ambient 
sound. The variance fractal dimension is applied to adaptively 
identify the boundaries of sound lobes. S1 components are 
detected using QRS synchronization while for S2 components a 
non-supervised classification approach is applied, based on 
temporal features of the lobes. This allows a 2-lead ECG signal to 
be used for the task. Some preliminary results are presented using 
recorded heart sounds taken a few days after valve replacement. 

Keywords – Heart Sound Segmentation, Variance Fractal 
Dimension, Clustering. 

I. INTRODUCTION 

Heart disorders are the primary cause of death in 
industrialized countries. The solution to this health problem is 
believed to be changing the focus from curative healthcare to 
preventive healthcare, i.e., controlling costs (social and 
economical) by reducing preventable healthcare conditions. In 
this sense long term tele-monitoring is a promising tool to 
achieve the aforementioned goal. In order to be cost effective 
and usable for long time periods, these tools require intelligent 
systems to be able to autonomously perform diagnostic 
functions and to support users in solving problems, hence 
requiring low computational algorithms that could be run in 
real-time using low power processing devices.     

This paper introduces a low complexity algorithm for heart 
sound segmentation into clinically relevant lobes. This 
segmentation method is the basis for a tele-monitoring system, 
currently being developed, which aims at reducing risks 
associated with detection of late prosthetic heart valve 
dysfunction by means of a regular monitoring of timbre 
changes of implanted prosthetic valves as well as identification 
of new heart murmur development. A number of clinical 
disorders, namely heart disorders, can be diagnosed using 
auscultation techniques. Experienced cardiologists are able to 
detect subtle heart disorders just by listening to the timbre and 
the sequence of its beats and murmurs. In fact, there are several 
potentially deadly heart diseases, such as native and prosthetic 
heart valve dysfunction, where the heart sound auscultation is 
one of the most reliable and successful tool for early diagnosis 

[10]. In order to exploit the capabilities of automatic heart 
disorder diagnostic tools based on the heart sound, it is 
imperative to first carry out a segmentation for the recorded 
sound into a clinically meaningful sound segments or lobes. 
Diagnostic algorithms are then designed to identify and to 
assess the degree of illness based on dedicated features 
extracted from these lobes. 

Several researchers have suggested methods for heart sound 
localization [8][12][13][14]. Usually in the literature, heart 
sound localization is addressed in order to reduce their 
influence in lung sound signal recordings. Nevertheless, 
applications can be found where the problem of heart sound 
component separation is addressed. Heart sounds are 
recognised by several means of signal processing and statistics, 
e.g.  Wavelet decomposition methods [3], Hidden Markov 
models [1], decimation methods [1], linear and high order 
statistical methods [4], wavelet packet decomposition [5], S-
transform [2], Time-frequency analysis [6] or involving 
artificial neural networks [7]. Even though they already might 
achieve significant results in identifying some particular 
sounds, it is recognized that these algorithms tend to be 
computationally very demanding and/or require supervised 
learning approaches, therefore not being suited for real-time 
heart sound segmentation in low power processing devices. 
Furthermore, since heart sounds, namely those produced by 
prosthetic valves, are highly dependent on the valve type, 
surgery technique, location and body morphology, supervised 
learning approaches tend to induce cumbersome setup 
procedures for each individual patient.  

The heart sound segmentation method described herein is 
based on the variance fractal dimension (VFD) to achieve low-
level sound segmentation. Using the ECG as a reference signal, 
Q components of the ECG are identified in order to classify the 
systole sound (S1) using a nearest neighbour approach. In order 
to keep system sensors and complexity to a minimum, a 2-lead 
ECG is used instead of higher complexity configurations. 
Under this setup it is not possible to identify T-wave 
components which mark the start of the diastole of the heart 
cycle. Even for a 3-lead ECG the existence of clear T-waves 
may not be assumed for all lead positions. In order to classify 
the diastole sound components (S2) a classification approach is 
applied based on temporal features. 
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The paper is structured as follows: in section 2 the proposed 
algorithm for heart sound segmentation into coherent sound 
lobes is described. In section 3 the problem of features 
extraction and heart sound classification are addressed and 
some results discussed. In section 4, obtained results are 
analysed. Finally, in section 5 the main conclusions are drawn 
and some future research directions are pointed out. 

II. SEGMENTATION OF HEART SOUND INTO LOBES 

The main stages of the proposed segmentation algorithm for 
sound lobes identification are depicted in Figure 1. After heart 
sound acquisition and quality assessment, the signal is first 
high-passed to eliminate inaudible components, which may be 
induced by slow movements, such as chest and muscle 
movements, during sound recording. In the current 
implementation of the algorithm a fourth order Butterworth 
filter with a cut-off frequency of 25Hz is utilized for this 
propose. In the second stage the variance fractal dimension of 
the filtered signal is computed using several scale resolutions. 
It should be noted that significant sound lobs should exhibit 
persistency at fine and coarse detail scales. This observation 
will be one of the criteria applied during the lob validation 
stage. After low pass filtering, the variance fractal dimension is 
applied to identify sound lob boundaries. Finally, some criteria 
are then applied to reject false sound lobes. 

 

High-pass Filter Fractal Dimension

Low-pass FilterBoundary Allocation
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Figure 1: Block Diagram of the proposed algorithm.  
 

Prior to segmentation the sound quality is validated. In the 
current implementation, this validation is performed using the 
correlation between the spectral power distributions (SPD) of 
the sound of each heart cycle with respect to a reference SPD. 
The heart cycle is considered to be defined between each 
consecutive pair of identified Q components of the ECG. A 
threshold approach is followed to discard noisy sound 
segments, which exhibit a correlation lower than 0.995  with 
respect to the reference SPD. The reference heart cycle is 
computed from the first 10 heart cycles acquired, i.e., the cycle 
whose SPD exhibits the largest average correlation in the set 
among all cycles in the set. Furthermore, if more than 2 cycles 
exhibit an average correlation below 0.995  the entire set is 
considered noisy and discarded. This simple procedure is able 
to detect noisy sound segments due to coughing, speaking, 
stethoscope movements and ambient noises. 
 

A. Variance Fractal Dimension 

Heart sounds exhibit a set of properties which suggest they 
are fractal in nature [8]. First, these signals do not self-cross. 
Second, these signals exhibit quasi-periodicity, since they 
emerge from natural biological processes, i.e., heart beats. 
Furthermore, they are self-affine, since, in order to scale them, 
a different scaling factor is required for each axis [16]. This 
suggests that fractal dimension can be utilised to properly 
characterise and analyse these signals.   

Fractal dimension quantifies the complexity of a pattern or 
the information embodied in the pattern in terms of 
morphology, entropy, spectra or variance [15]. In this work the 
variance fractal dimension is utilised, since it enables real time 
computation.  

VFD has found several applications in signal analysis. For 
instance, in [8] VFD is used to locate heart sounds in lung 
sound recordings, Lazareck and Moussavi [17] have developed 
an algorithm based on VFD for swallowing sound 
segmentation, whereas Yap and Moussavi [18] applied the 
same analysis tool for respiratory onset detection. In another 
field of application, Hall et al. [9] utilize VFD for the detection 
of transient in radio frequency fingerprinting. 

In deriving the variance fractal dimension, the Hurst 
exponent is computed based on the power law relation which 
exists between the variance of the signal’s amplitude 
increments over time increments (see (1)) [8][15]. 
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Using the result from equation (1) it is observed that the 

Hurst exponent may be obtained from (2). 
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In the above equations, x  and t  represent, respectively the 

signal and time, whereas ∆  stands for increment, i.e.,  

1i it t t+∆ ≡ −  (3) 

( ) ( )1t i ix x t x t∆ +∆ ≡ −  (4) 

 
From the above equations it is observed that the variance 

dimension is a measurement calculated by analysing the spread 
of the increments in the signal amplitude in the time domain. 
This spread is indicative of the multifractal richness in the 
signal, e.g., a unifractal object yields a flat line. The VFD 
( Dσ ) for a process with embedding Euclidian dimension E  is 
computed as in equation (5), 
  

1D E Hσ = + −  (5) 

 



Since it is known that the variance in heart sound lobes and 
channel noise differ significantly, heart sound boundaries 
should be clearly marked by accentuated changes in variance. 
Therefore, these boundaries should be captured from the 
variance fractal dimension. To accentuate this effect, in this 
work the variance fractal dimension is determined from the 
energy of x rather from x itself, i.e., from 2x x← . 

Let TN  be the size of the sliding centred analysis window. 
This window is chosen according to known important heart 
sound characteristics as will be explained later in the next 
section. For each window, VFD is computed for time 
increments k i k it t t+∆ ≡ − . The value k  represents an integer 
chosen such that each window contains a number of 

( )intk TN N k=  of kt∆  increments. In practice k  is selected 
such that there is a reasonable separation between data samples 
for kt∆  and, on the other hand, kN  is sufficiently large for 
variance calculation. Finally, for each analysis window the 
variance is determined using the likelihood approach. 

To obtain each VFD the previous analysis window is shifted 
by shift Tp N≤ , and the VFD is calculated for this new window 
and set of samples. It should be noted that the effect of TN  is 
similar to scale in multi-scale analysis. In fact, as TN  increases 
it is observed that features tend to be blurred [8][15]. 
Therefore, TN  can be utilised as the analysis scale to devise 
analysis approaches common to multi-scale signal processing. 
For instance, significant features tend to be persistent at fine 
and coarse detail analysis scales. Hence, to discriminate 
between significant and less significant features, several TN  
(small for fine analysis and large for coarse analysis) may be 
applied to determine their persistency.  

As in multi-scale analysis it is observed that for coarser 
scales features tend to be shifted, leading to less accurate 
localization. Furthermore, for small windows VFD tends to 
oscillate due to redundant calculations [8]. To avoid these 
effects, in this work a low-pass filter (implemented by a sinc 
filter) is applied for finer scales, enabling the elimination of 
high frequency variations in VFD, i.e., the elimination of 
spurious features and VFD oscillation, while keeping 
localization of relevant ones.  

B. Finding heart sound boundaries using VFD 

To identify boundaries in the significant heart sound 
segments VFD is computed using two distinct scales c

TN  
(coarse scale) and  f

TN  (fine scale), being  

10

c
f T

T
NN ≡  (6) 

 
Regarding c

TN  it is defined based on the observed average 
duration of S1, S2 and murmur sound segments, and the 
average distance between the first and second heart sounds. 

The distance between the first and second heart sounds is 
typically 200 400c

Tms N ms≤ ≤ , while the duration of S1 and 
S2 is usually around 100ms . Therefore, c

TN  is chosen to be 
100c

T sN t= . This ensures the analysis window covers the 
main peaks, while avoiding an analysis window which includes 
multiple peaks. For sound signals sampled with a 44.1kHz 
sampling frequency it was experimentally determined that 
64 128k≤ ≤ . In each iteration the shiftp  was selected such that 
the sliding window exhibits a 50 percent overlap, i.e., 

2shift Tp N= . Finally, the cut-off frequency of the sinc low-

pass filter applied for the VFD computed with f
TN  was 

experimentally selected to be 0.05 ts .  
Figure 2 depicts the scaled VFD values determined with 
f

TN  and c
TN , respectively. As can be observed, sound segment 

boundaries are clearly identified by the slope and slope change 
(second derivative) of VFD and could readily be identified 
using a threshold procedure. However, it was observed that for 
heart sounds, significant segments exhibit around 50% of the 
overall area of VFD if a sufficiently large window is applied. 
Hence, sound segment boundaries are identified by the zero 
crossings of y , where ( ⋅  - average operator) 

Segmenty VFD th≡ −  (7) 

( ) 11k k k
Segment Segmentth VFD th −= α + − α  (8) 

1 1
Segmentth VFD=  (9) 

As can be observed from equations (8) and (9), a convex 
combination is applied in order to update the threshold for each 
contiguous sound window k  identified during noise 
suppression. In the current implementation 0.9α = . 

Significant sound segments are characterised by higher 
VFD, since their variance is greater than the variance of the 
channel’s noise. Hence, significant sound segments exhibit  

0y ≥ .  

C. Sound segment validation 

As mentioned above S1, S2 and murmur sound segments 
exhibit characteristic durations. Furthermore, significant sound 
segments should be persistently identified for different analysis 
scales (defined by the analysis windows). This is an useful 
observation to discriminate between valid and non-valid 
murmur segments (see Figure 2). In fact, in many situations 
murmur segments highly resemble channel noise. Using these 
principles the following criteria are applied to each of the 
identified sound segments for validation. Let ( )iS x j ts≡ ⋅ , 

,...,start stop
i ij n n= , be the identified sound segment. Segment iS  

is considered a valid heart sound segment if the following 
criteria are verified: 
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Figure 2: Identification of invalid sound lobes that are not segmented. Arrow 
show invalid lobes. 
 
 
Duration limits:   

( )min max
stop start
i it ts n n t≤ − ≤  (10) 

 
Fine-coarse scale support:  

{ } ( ) ( ),..., : , 0start stop C C
i i T Tj n n VFD N j VFD N∃ ∈ − ≥  (11) 

 
In equation (11)   ( ),C

TVFD N j  stands for the VFD value 
computed for point j using the coarse scale analysis window, 
while ( )C

TVFD N  represents the average VFD value. In the 

current implementation of the algorithm min 10t ms=  and 

max 300t ms=  (average value of the S1-S2 between time).  
Some results of this procedure are illustrated in figure 3.                       
                         

III. CLASSIFICATION OF HEART SOUND LOBES 

 
Classification of segmented lobes is done based on their 

features and ECG QRS complexes. In this section the 
classification of the extracted sound segments is introduced. To 
design the classifier a two temporal related features are 
extracted for each identified sound segment:  
 

S1-S2 Duration: Sound lobes of type S1 and S2 exhibit 
characteristic duration ranges. This is also true for the between 
sound duration period, namely for the interval between systolic 
and diastolic sounds. This time interval tends to be very 
regular, even for patients suffering arrhythmia. 
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Figure 3: Example of achieved S2 identification using the defined approach. 
This example shows a patient with a valve prolapse. The sound energy instead 
of the sound wave is shown in this figure. 

 
Root Square Amplitude: RMS is a measure of the loudness 

of a window. This feature is unique to segmentation, since 
changes are important cues. Namely, S1, S2 and murmur 
sounds tend to exhibit a characteristic loudness for each 
individual and acquisition location. Since, for each data set 
these parameters are kept constant, loudness is a valuable cue 
to distinguish between these sounds as well as to identify sound 
segments corresponding to noise. 

D. Classification  

Having successfully figured out the boundaries of sound 
lobes of type S1 and S2 as well as major murmurs and noisy 
segments, the next step is to classify these segments 
accordingly to a predefined set of classes, i.e., S1, S2 and 
murmur or noise, if present. 

S1 segments are identified using ECG Q component 
synchronization, i.e., the lobe closer to each Q component of 
the ECG is assumed to be a S1 lobe, systole occurs during this 
time period. 

In order to detect S2 segments, a fuzzy C-means classifier in 
two classes is applied. The class that corresponds to the S2 
sound component is chosen as the one which exhibits the most 
compact support and highest regularity with respect to the S1-
S2 time interval. The motivation for this last criterion stems 
from the fact that, even for patients suffering from arrhythmia, 
S1-S2 time interval tends to be the most regular time feature. 
Here compactness is assessed using the class standard 
deviation. 

After S2 class identification, outliers are removed from this 
class using the following criterion: let C  be the centre of the 
identified class. For each pair of consecutive S1 sound 
components it is verified if only one sound lobe exists. If there 
exist more than one candidate segment in the heart cycle for S2 
then only the one which exhibits the smallest deviation of its 
S1-S2 duration with respect to C is selected.  

A typical result obtained using this procedure is depicted in 
Figure 3. 



For patients exhibiting murmurs or S3/S4 heart sound 
splitting (these sound components usually overlap S1 and S2) it 
is observed that, when these murmurs occur near the S1 or S2 
boundaries they might be included into these segments. In 
order to account for this situation the VFD of the identified 
segments is subsequently analysed. Should local minima in the 
VFD occur inside the identified segments these are used to split 
the segment into sub-segments. Results obtained with this 
procedure are depicted in Figure 4.  
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Figure 4: Identified S2 segment splitting boundaries. S2 segments are 
identified with the symbol ‘*’  located inside the dashed vertical boundary 
lines. S1 segment boundaries are identified by continuous vertical lines. The 
show signal envelops correspond to the computed VFD values. The sound 
energy instead of the sound wave is shown in this figure. 

IV. RESULTS 

In Figure 5 some results obtained using the proposed 
segmentation methodology are shown for three distinct heart 
sounds taken, respectively, from a patient with a bio-prosthetic 
valve implant and from two patients with an aortic and a mitral 
mechanical valve implant.  These phonocardiogram (PCG) 
records were taken from patients a few days after valve 
replacement (implant) using an electronic stethoscope 
presenting a flat frequency response from 20 Hz to 20 kHz 
(Meditron Stethoscope System) connected to a laptop 
computer. The sampling rate used in the acquisition was 
chosen as 44.1 kHz with a 16 bits resolution. Prior to the 
acquisition of each sound sample, the ideal position for the 
stethoscope was selected by an experienced cardiologist.  

As can be observed from table I, for all samples correct 
detection results were always above 90% of the S1 and S2 
components. The average detection efficiency was 96.19% for 
S1 and 96.23% for S2 heart sounds.  

An interesting case is presented in Figure 5 middle. This 
patient exhibits non constant heart rhythm. Nevertheless, as can 
be observed, the S1-S2 interval is relatively regular. 
Furthermore, this patient presents some heart murmurs that, for 
some heart cycles, are undistinguishable in terms of loudness 
from the S1 component. However, as can be seen, due to the 
synchronization process using Q-wave, the algorithm is able to 
distinguish these segments from S1 and S2 segments. It should 
be noted that these conditions are quite common for patients 
with heart diseases, namely patients with prosthetic valve 
implants. This is also a function of heart sound acquisition 
locations. Furthermore, these patients frequently exhibit or tend 
to develop atrial or ventricular arrhythmias, which induce heart 
sounds of different characteristics. These sounds can interfere 
in diagnosis algorithms based on heart sound. Using the 

proposed algorithm, it is observed that these pathologies are 
easily identifiable using the ECG and, therefore, can be filtered 
during the sound validation stage. Solving the aforementioned 
situations would be a difficult task for algorithms where 
segment classification is not based on the ECG.  

In general, it is observed that the proposed algorithm is able 
to detect S1 and S2 components as long as no significant 
regular noisy segments exist in the sound samples given as 
input to the segmentation algorithm. Since the classification 
stage relies only on temporal features, under these 
circumstances the algorithm would not be able to distinguish 
between valid S1 and S2 segments and the noisy ones, i.e., a 
wrong estimation of the S1-S2 interval could induce 
misclassification. Furthermore, this could affect the sound lobe 
boundary estimation accuracy in case of long duration noisy 
sound segments. Fortunately, these noisy sound segments (e.g. 
external noises, coughing, speech, etc.) tend to exhibit very 
different SPDs from regular heart sounds and are therefore 
captured using the sound validation strategy introduced in 
section II.  
 
Sound S1  S2  S1&S2 
Mitral Mechanical 
Prosthesis 

34/37 
(91.9%) 

35/38 
(94.6%) 

2/4 

Bioprosthetic Valves 23/23 
(100%) 

23/23 
(100%) 

2/0 

Aortic Mechanical 
Prosthesis 

44/45 
(97.8%) 

44/45 
(97.8%) 

1/1 

 
Table 1: Results for three sound samples. Column S1 – number of correctly 
detected S1 components/number of real S1 components in sound sample. 
Column S2 – number of correctly detected S2 components/number of real S1 
components in sound sample. Column S1&S2 - number of missed S1 and S2 
components/number of misclassified S1 and S2 components in sound sample. 
 

V. CONCLUSIONS  

The problem of heart sound segmentation and classification 
using low complexity methodologies was addressed in this 
paper. The variance fractal dimension, which is a measure of 
signal complexity, is here applied in the segmentation of heart 
sounds. In order to clearly detect the boundaries of segments 
two distinct time scales are considered, which are based on the 
observed average time duration of relevant heart sound 
segments. The classification lobes is based on ECG - QRS 
complex and using a fuzzy C-means classifier. Results show 
clearly the inherent potential of the proposed methodology. 
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Figure 5: S1 and S2 identification results (ECG signal shown for reference). 
(top) Biological valves. (middle) Mechanical prosthesis in mitral position. 
(bottom) Mechanical prosthesis in aortic position. 
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