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Abstract. We present a technique, designated as dynamic maximum
tree depth, for avoiding excessive growth of tree-based GP individuals
during the evolutionary process. This technique introduces a dynamic
tree depth limit, very similar to the Koza-style strict limit except in two
aspects: it is initially set with a low value; it is increased when needed
to accommodate an individual that is deeper than the limit but is better
than any other individual found during the run. The results show that
the dynamic maximum tree depth technique efficiently avoids the growth
of trees beyond the necessary size to solve the problem, maintaining the
ability to find individuals with good fitness values. When compared to
lexicographic parsimony pressure, dynamic maximum tree depth proves
to be significantly superior. When both techniques are coupled, the re-
sults are even better.

1 Introduction

Genetic Programming (GP) solves complex problems by evolving populations of
computer programs, using Darwinian evolution and Mendelian genetics as inspi-
ration. Its search space is potentially unlimited and programs may grow in size
during the evolutionary process. Code growth is a healthy result of genetic oper-
ators in search of better solutions. Unfortunately, it also permits the appearance
of pieces of redundant code, called introns, which increase the size of programs
without improving their fitness. Besides consuming precious time in an already
computationally intensive process, introns may start growing rapidly, a situation
known as bloat. Several plausible explanations for this phenomenon have been
proposed (reviews in [9,12]), and a combination of factors may be involved, but
whatever the reasons may be, the fact remains that bloat is a serious problem
that may stagnate the evolution, preventing the algorithm from finding better
solutions.

Several techniques have been used in the attempt to control bloat (reviews
in [7,11]), most of them based on parsimony pressure. This paper presents a
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technique especially suited for tree representations in GP, based on tree depth
limitations. The idea is to introduce a dynamic tree depth limit, very similar to
the Koza-style strict limit [3] except in two aspects: it is initially set with a low
value; it is increased when needed to accommodate an individual that is deeper
than the limit but is better than any other individual found during the run.
Unlike some of the most recent successful approaches, this technique does not
require especially designed operators [6,14] and its performance is not reduced in
the presence of populations where all individuals have different fitness values [7].
It is also simple to implement and can easily be coupled with other techniques
to join forces in the battle against bloat.

2 Introns

In GP, the term intron usually refers to a piece of redundant code that can be
removed from an individual without affecting its fitness [1]. The term exon refers
to all non-intron code. However, on designing a procedure for detecting introns
in GP trees, a more precise definition arises.

Our procedure for detecting introns works recursively in a tree from its root
to its terminals, trying to maximize the number of introns detected. It can be
described by the following pseudo-code, where nintrons designates the number
of introns detected:

If tree is a terminal node:

nintrons = 0

Otherwise:

Evaluate tree and all its branches
If none of the branches returns the same evaluation as tree:

nintrons = sum of the number of introns in each branch
Otherwise:

Count nodes and introns in branches with same evaluation as tree
Pick branch with lowest number of non intron nodes: ibranch
nintrons = all nodes in tree minus non intron nodes in ibranch

This does not detect introns in code like not(not(X)) or -(-(X)), although
removing pieces of this code, leaving only the underlined parts, would not affect
the fitness of the individual. We use the term redundant complexity to designate
these and other cases where a tree could be replaced by a smaller tree (but not
by one of its branches) without affecting the fitness of the individual. Redundant
complexity is also a problem in GP [10].

We use the term bloat loosely to designate a rapid growth of the mean pop-
ulation size in terms of the number of nodes that make up the trees, whether it
happens in the beginning or in the end of the run, and whether the growth is
caused by introns or exons.
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3 Dynamic Maximum Tree Depth

Dynamic maximum tree depth is a technique that introduces a dynamic limit
to the maximum depth of the individuals allowed in the population. It is similar
to the Koza-style depth limiting technique, but it does not replace it – both
dynamic and strict limits are used in conjunction. There is also an initial depth
limit imposed on the trees that form the initial population [3], which must not
be mistaken for the initial value of the dynamic limit. The dynamic limit should
be initially set with a low value at least as high as the initial tree depth. It can
increase during the run, but it always lies somewhere between the initial tree
depth and the strict Koza limit. Whenever a new individual is created by the
genetic operators, these rules apply:

— if the new individual is deeper than the strict Koza depth limit, reject it and
consider one of its parents for the new generation instead;

— if the new individual is no deeper than the dynamic depth limit, consider it
acceptable to participate in the new generation;

— if the new individual is deeper than the dynamic limit (but no deeper than
the strict Koza limit) measure its fitness and:

– if the individual has better fitness than the current best individual of
the run, increase the dynamic limit to match the depth of the individual
and consider it acceptable to the new generation;

– if the individual is not better than the current best of run, leave the
dynamic level unchanged and reject the individual, considering one of
its parents for the new generation instead.

Once increased, the dynamic level will not be lowered again. If and when
the dynamic limit reaches the same value as the strict Koza limit, both limits
become one and the same. By setting the dynamic limit to the same value as
the strict Koza limit, one is in fact switching it off, and making the algorithm
behave as if there were no dynamic limit.

The dynamic maximum depth technique is easy to implement and can be
used with any set of parameters and/or in conjunction with other techniques
for controlling bloat. Furthermore, it may be used for another purpose besides
controlling bloat. In real world applications, one may not be interested or able to
invest a large amount of time in achieving the best possible solution, particularly
in approximation problems. Instead, one may only consider a solution to be
acceptable if it is sufficiently simple to be comprehended, even if its accuracy is
known to be worse than the accuracy of other more complex solutions. Choosing
less stringent stop conditions to allow the algorithm to stop earlier is not enough
to ensure that the resulting solution will be acceptable, as it cannot predict its
complexity. By starting with a low dynamic limit for tree depth and repeatedly
raising it as more complex solutions prove to be better than simpler ones, the
dynamic maximum tree depth technique can in fact provide a series of solutions
of increasing complexity and accuracy, from which the user may choose the most
adequate one. Once again, it is important to choose a low value for the initial
dynamic depth limit, to force the algorithm to look for simpler solutions before
adopting more complex ones.
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4 Experiments

To test the efficacy of the dynamic maximum tree depth technique we have de-
cided to perform the same battery of tests using six different approaches: (1)
Koza-style tree depth limiting alone [3]; (2) lexicographic parsimony pressure
(coupled with the Koza-style limit, which yielded better results than lexico-
graphic parsimony pressure alone, with no bucketing) [7]; (3) dynamic maximum
tree depth (also coupled with the Koza-style limit, as described in the previous
section) with initial dynamic limit 9; (4) dynamic maximum tree depth, with
initial dynamic limit 9, coupled with lexicographic parsimony pressure; (5) dy-
namic maximum tree depth with initial dynamic limit 6 (the same as the initial
tree depth); (6) dynamic maximum tree depth, with initial dynamic limit 6,
coupled with lexicographic parsimony pressure.

Two different problems were chosen for the experiments: Symbolic Regression
of the quartic polynomial (x4 + x3 + x2 + x, with 21 equidistant points in the
interval −1 to +1), and Even-3 Parity. These problems are very different in the
number of possible fitness values of the evolved solutions – from a potentially
infinite number in Symbolic Regression, to very few possible values in Even-
3 Parity. This facilitates the comparison with lexicographic parsimony pressure
because it covers the two domains where this technique, due to its characteristics,
behaved most differently [7].

A total of 30 runs were performed with each technique for each problem. All
the runs used populations of 500 individuals evolved during 50 generations, even
when an optimal solution was found earlier. The parameters adopted for the ex-
periments were essentially the same as in [3] and [7], to facilitate the comparison
between the techniques, but a few differences must be noted. Although some
effort was put into promoting the diversity of the initial population, the tree
initialization procedure used (Ramped Half-and-Half [3]) did not guarantee that
all individuals were different. For 500 individuals and initial trees of maximum
depth 6, the mean diversity of the initial population was roughly 75% for Sym-
bolic Regression and 80% for Even-3 Parity, where diversity is the percentage
of individuals in the population that account for the total number of different
individuals (based on variety in [5]). Standard tree crossover was used, but with
total random choice of the crossover points, independently of being internal or
terminal nodes.

As stated in the previous section, the dynamic maximum tree limit can be
switched on and off without affecting the rest of the algorithm, and switching it
off is setting it to the same value as the Koza-style limit, which was always set to
depth 17. Likewise, lexicographic parsimony pressure can be switched on by using
a modified tournament selection that prefers smaller trees when their fitness
values are the same, or switched off by using the standard tournament selection.
Table 1 summarizes the combinations of tournament and initial dynamic limit
that lead to each technique.

All the experiments were performed with GPLAB [8], a GP Toolbox for
MATLAB [13]. Statistical significance of the null hypothesis of no difference was
determined with ANOVAs at p = 0.01.
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Table 1. Tournament and initial dynamic limit settings for each technique used

Technique Tournament Initial dynamic limit

(1) Koza-style tree depth limiting (K) standard 17
(2) Lexicographic parsimony pressure (L) modified 17
(3) Dynamic maximum tree depth 9 (S9) standard 9
(4) L+S9 modified 9
(5) Dynamic maximum tree depth 6 (S6) standard 6
(6) L+S6 modified 6

5 Results

The results of the experiments are presented as boxplots and evolution curves
concerning the mean size of the trees (Fig. 1), where size is the number of nodes,
the mean percentage of introns in the trees (Fig. 2), the population diversity as
defined in the last section (Fig. 3), and best (lowest) fitness achieved (Fig. 4).
The boxplots are based on the mean values (except Fig. 4, based on the best
value) of all generations of each run, and each technique is represented by a
box and pair of whiskers. Each box has lines at the lower quartile, median, and
upper quartile values, and the whiskers mark the furthest value within 1.5 of
the quartile ranges. Outliers are represented by + and × marks the mean. The
evolution curves represent each generation separately (averaged over all runs),
one line per technique. Throughout the text, we use the acronyms introduced in
Table 1 to designate the different techniques.

5.1 Mean Size of Trees

Figure 1 shows the results concerning the mean size of trees. In the Symbolic
Regression problem, techniques S9 and S6 performed equally well and were able
to significantly lower mean tree sizes of run when compared to K and L. None
of the compound techniques (L+S9, L+S6) proved to be significantly different
from its counterpart (S9 and S6, respectively). The evolution curves show a
clear difference in growth rate between the four techniques that use dynamic
maximum tree depth (S9, L+S9, S6, L+S6) and the two that do not (K, L).

In the Even-3 Parity problem, techniques S9 and S6 were significantly dif-
ferent from each other. Both outperformed K, but only S6 performed better
than L (no significant difference between S9 and L). However, both compound
techniques (L+S9, L+S6) were able to outperform L, as well as their respective
counterparts S6 and S9. The evolution curves show a tendency for stabilization
of growth in all three techniques that use lexicographic parsimony pressure (L,
L+S9, L+S6).

5.2 Mean Percentage of Introns

Figure 2 shows the results concerning the mean percentage of introns. Starting
with Symbolic Regression, the striking fact about this problem is that it prac-
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Fig. 1. Boxplots and evolution curves of mean tree size. See Table 1 for the names of
the techniques

tically does not produce introns, redundant complexity being the only apparent
cause of bloat. The differences between techniques in mean intron percentage
of run were not significant. The evolution curves show that the percentage of
introns tends to slowly increase after an initial reduction.

In the Even-3 Parity problem the percentage of introns is generally high.
Techniques S9 and S6 outperformed K, and S6 also outperformed L, with no
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Fig. 2. Boxplots and evolution curves of mean intron percentage. See Table 1 for the
names of the techniques

significant difference between S9 and L (similarly to what had been observed in
mean tree size). The compound techniques (L+S9, L+S6) showed no significant
differences from their counterparts (respectively S9 and S6), but both were able
to significantly outperform L. The evolution curves show that, by the end of the
run, the mean intron percentage has not increased from its initial value, in all
techniques except K.
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Fig. 3. Boxplots and evolution curves of population diversity. See Table 1 for the names
of the techniques

5.3 Population Diversity

Figure 3 shows the results concerning the population diversity. In Symbolic Re-
gression, techniques S9 and S6 caused a significant decrease in population di-
versity when compared to K and L. None of the compound techniques (L+S9,
L+S6) was significantly different from its counterpart (S9 and S6, respectively).
The evolution curves show a conspicuous decrease in population diversity in the
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Fig. 4. Boxplots and evolution curves of best fitness. See Table 1 for the names of the
techniques

beginning of the run, promptly recovered afterwards. The two techniques that
do not use dynamic maximum tree depth (K, L) are able to sustain much higher
population diversity in later generations.

In the Even-3 Parity problem, once again S9 and S6 caused a significant
decrease in population diversity when compared to K, but showed significantly
different performances when compared to each other. While S9 outperformed L,
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maintaining significantly higher population diversity, S6 was outperformed by
L. Both compound techniques (L+S9, L+S6) significantly lowered population
diversity when compared to L and to their counterparts S9 and S6. The evolution
curves for this problem also show an abrupt loss of diversity in the beginning of
the run, but only in the techniques that use lexicographic parsimony pressure
(L, L+S9, L+S6). In this problem, techniques using dynamic maximum tree
depth (S9, L+S9, S6, L+S6) also result in lower population diversity in later
generations, with both S6 and L+S6 yielding the worst results.

An initial decrease in population diversity is expected in problems where
the number of possible fitness values is unlimited, as in Symbolic Regression.
Since most of the random initial trees (particularly the larger ones) have very
poor fitness, selection quickly eliminates them from the population in favor of a
more homogeneous group of better (and usually smaller) individuals. It can be
observed that the abrupt loss of diversity shown in Fig. 3 occurs at the same
time in the run as the decrease in mean tree size shown in Fig. 1 (evolution curve
on the left). In the Even-3 Parity problem, the number of possible fitness values
is very limited, so the initial trees never have very poor fitness. However, several
different trees have the same fitness value, and lexicographic parsimony pressure
quickly eliminates the larger trees in favor of the smaller ones, thus producing
the same effect (which also explains the initial decrease of the intron percentage
that can be observed in Fig. 2, evolution curve on the right). This behavior has
not been reported before.

A higher number of clonings resulting from unsuccessful crossovers, or simply
the reduction of the search space, caused by the introduction of the dynamic
limit, may account for the persistent lower diversity observed in the later stages
of the run, with all techniques using dynamic maximum tree depth.

5.4 Best Fitness

Figure 4 shows the results concerning the best fitness. Although there has been
some concern regarding whether depth restrictions may affect GP performance
negatively when using crossover [2,4], in both Symbolic Regression and Even-3
Parity none of the techniques was significantly different from the others. The
evolution curves indicate that convergence to good solutions was not a problem.

6 Conclusions and Future Work

The dynamic maximum tree depth technique was able to effectively control code
growth in both Symbolic Regression and Even-3 Parity problems. In spite of a
noticeable decrease in population diversity, the ability to find individuals with
good fitness values was not compromised in these two problems. Dynamic maxi-
mum tree depth was clearly superior to lexicographic parsimony pressure in the
Symbolic Regression problem. In the Even-3 Parity problem, where the differ-
ences between both techniques were not always significant, the combination of
both outperformed the use of either one separately.
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There seems to be no disadvantage in using the lower, and most limitative,
value for the initial depth limit. The size of the trees was kept low without
losing convergence into good solutions. However, the persistent lower population
diversity observed when using the dynamic level, particularly with the more
limitative setting, may become an impediment to good convergence in smaller
populations, which may require a higher value for the initial depth limit in order
to maintain the convergence ability. Further work must be carried out in order
to confirm or reject this hypothesis. The performance of the dynamic maximum
tree depth technique must also be checked in harder problems.
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