
Resource Usage of Windows Computer Laboratories

Patricio Domingues Paulo Marques Luis Silva
ESTG – Leiria – Portugal Univ. Coimbra – Portugal Univ. Coimbra – Portugal
patricio@estg.ipleiria.pt pmarques@dei.uc.pt luis@dei.uc.pt

Abstract

Studies focusing on Unix have shown that the vast
majority of workstations and desktop computers
remain idle for most of the time. In this paper we
quantify the usage of main resources (CPU, main
memory, disk space and network bandwidth) of
Windows 2000 machines from classroom laboratories.
For that purpose, 169 machines of 11 classroom
laboratories were monitored over 77 consecutive days.
Samples were collected from all machines every 15
minutes for a total of 583653 samples.

Besides evaluating availability of machines (uptime
and downtime) and usage habits of users, the paper
assesses usage of main resources, focusing on the
impact of interactive login sessions over resource
consumptions. Also, resorting to Self Monitoring
Analysis and Reporting Technology (SMART)
parameters of hard disks, the study estimates the
average uptime per hard drive power cycle for the
whole life of monitored computers.

Our results show that resources idleness in
classroom computers is very high, with an average
CPU idleness of 97.9%, unused memory averaging
42.1% and unused disk space of the order of gigabytes
per machine. Moreover, this study confirms the 2:1
equivalence rule found out by similar works, with N
non-dedicated resources delivering an average CPU
computing power roughly similar to N/2 dedicated
machines. These results confirm the potentiality of
these systems for resource harvesting, especially for
grid desktop computing schemes.

1. Introduction

Today, academic institutions frequently have large
dozens of personal computers (PCs) in their
classrooms and laboratories, with a large percentage of
these PCs devoted mostly to teaching activities.
However, it is known that much of this computing
power simply goes unused. In fact, considering that
these PCs are only used during extended office work,
say from 8.00 am to 8.00 pm on weekday, this means
that more than half of the time these machines are

simply unused. If we sum up the unexploited idle CPU
cycles we could count a considerable computing
power, available to the companies, academia and
institutions at free-costs. In fact, numerous
environments exist to harness idle resources. Examples
range from academic projects such as Bayanihan [1],
BOINC [2], Condor [3] and XtremWeb [4] to
commercial solutions like Entropia [5] and United
Devices [6]. Recently some desktop grid schemes have
emerged relying on virtual machines [7]. Examples
include Virtual Cluster [8] and Non-Dedicated
Distributed Environment (NDDE) [9].

PCs of classrooms have an attractive characteristic
for resource harvesting: no individual user owns the
machines. On the contrary, an office computer is
generally assigned to an individual user who controls
it, being very suspicious about possible invasion of the
machine by foreign programs. Thus, stealing schemes
need to deal with social issues beside engineering and
technology [10]. Since classroom computers have no
individual owner social issues involving their use in
resource harvesting are weaker. In fact, Gupta et al.
[11] analyze the relation between resource borrowing
and interactive usage comfort concluding that resource
stealing schemes can be quite aggressive without
disturbing user comfort, particularly in the case of
memory and disk.

Our main motivation for this study was to
characterize the availability and pattern usage of
academic classroom computers, quantifying the portion
of important resources such as CPU, RAM, disk space
and network bandwidth that is left unused. In
particular, we were interested in differentiating
resource usage according to the existence of interactive
login sessions, and their impact on resource usage.

The remainder of this paper is organized as follows.
Section 2 describes related work, while section 3
describes our monitoring methodology. Section 4
presents the monitoring experiment, with results being
discussed in section 5. Finally, section 6 concludes the
paper.

2. Motivation
Evaluation of computer resources usage has been a

research topic since the emergence of networked
computers in the late 80’s. In fact, soon it was noticed
that computer resources, noticeably CPU, were
frequently underused, especially in machines primarily
used for tasks dependent on human interaction, such as
text processing or spreadsheet computations. Several
studies have assessed the high level of resources
idleness in networked computers, not only about CPU
[12] [13] but also memory [14] and disk storage [15].

Through simulation Arpaci et al. [12] study the
interaction of sequential and parallel workloads. They
conclude that a 2:1 rule applies, meaning that N
non-dedicated machines are roughly equivalent to N/2
dedicated machines. Interestingly, a 2:1 equivalence
ratio was also observed in our set of machines.

The study presented in [13] focuses on the
potentiality of using non-dedicated Solaris machines to
execute parallel tasks in otherwise idle times,
evaluating the machines availability and stability based
upon a 14–day trace of computers primarily assigned
to undergraduate students. The authors conclude that
reasonably large idle clusters are available half the
time noting, however, that such set of machines are not
particularly stable, exhibiting frequent reboots.

Acharya and Setia [14] analyze main memory
idleness and assesses its potential utility resorting to a
two-week memory usage trace from two sets of Solaris
workstations. One set includes machines fitted with a
high amount of main memory (total of 5.2 GB for 29
machines), while the other set is more modest (total of
1.4 GB for 23 machines). The study shows that, on
average, idle machines present around 50% of unused
main memory.

Ryu et al. in [16] aims to harvest idle resources
from what they define as non-idle machines, that is,
machines that are lightly loaded by interactive usage.
They conclude that a vast set of idle resources can be
harvested without interfering on interactive users.
However, their methodology requires modification at
the kernel level and thus seems impractical for closed
operating systems like Windows.

All of the aforementioned cited studies focus on
UNIX environments and rely on somewhat reduced
traces to draw their conclusions. Our work targets
Windows machines, monitoring a medium-sized set of
machines over a relatively long period of time (11
consecutive weeks).

Bolosky et al. [15] study a vast set of Windows
machines, reporting availability, CPU load and file
system usage in a corporate desktop environment. The
study is oriented toward the demonstration of the
viability of a serveless distributed file system. Thus

issues such as main memory load, network usage and
interactive sessions and its impact over resource usage
are not reported. In contrast, our work focuses on
categorizing all main resources usage.

Heap [17] studied resource usage of Unix and
Windows servers, through 15-minute periodic
gathering of monitoring data. The study found out that
Windows servers had a CPU idleness average near
95%, while Unix servers averaged 85% CPU idleness.

The study of Kondo et al. [18] evaluates CPU
availability from the perspective of grid desktop
computing, running a benchmark probe as a regular
task in the grid desktop computing system Entropia.
Since the task only gets scheduled at Entropia clients
when required idleness threshold conditions are met,
this methodology measures effective resources
availability from the perspective of a grid desktop
system. A drawback of this approach is that the
analysis is dependent on the used grid desktop system.

Our approach is distinct from previous works by
focusing on academic classrooms fitted with Windows
desktop machines. The workload traces were collected
for 11 weeks over a medium-sized set of 169 Pentium
III and Pentium 4 desktop machines. An analysis of
main resource usage is conducted with emphasis in
differentiating resource usage between machines
occupied with interactive users and free machines.

We also present a novel approach to assess
machines availability, combining collected samples
with data extracted from the SMART counters of
machines’ hard disks, namely the power on hour
counts and power on cycle [19] counters. Coupled with
the collected traces, these SMART values permit to
infer about machines power on pattern allowing a
rough estimation of machines availability.
3. Overview

Our monitoring methodology resorts on periodically
probing the remote machines. Every 15 minutes an
attempt is made to perform a remote execution of a
software probe (W32Probe) sequentially over the
whole set of machines. W32Probe is a simple win32
console application that outputs, via standard output
(stdout), several metrics such machine’s uptime, CPU
time consumed by the idle thread of the operating
system since machine boot-up, existence of an
interactive user session, amongst other metrics (see
section 3.1).

To automate the periodic data collection over the
surveyed machines we developed a framework, named
Distributed Data Collector (DDC) [20], to support
remote data collection in local area networked
Windows machines. The framework aims to cover the
needs that arise in distributed data collection at the
scale of local area networks.

The remote probing solution was chosen because it
avoided the installation of software in remote nodes,
thus eliminating administrative and maintenance
burdens that remote daemons and alike normally
provoke. Another motivation for the remote probe
approach was the possibility of tailoring the probe to
our monitoring needs, capturing only the wanted
metrics. Windows built-in remote monitoring
capabilities like perfmon and Windows Management
Interface (WMI) were discarded for several reasons.
First, both mechanisms have high timeout values
(order of seconds) when the remote machine to be
monitored is not available. Also, both impose a high
overhead on the network and on the remote machine.

DDC schedules the periodic execution of software
probes in a given set of machines. The execution of
probes is carried out remotely, that is, the probe binary
is executed at the remote machine. For that purpose,
DDC uses Sysinternal’s psexec utility [21] that
executes application in remote windows machines if
appropriate access credentials are given. All executions
of probes are orchestrated by DDC’s central
coordinator host, which is a normal PC.

As stated above, a probe is a win32 console
application that uses its output channels to
communicate its results. One of DDC’s tasks is
precisely to capture the output of the probe and to store
it at the coordinator machine. Additionally, DDC
allows the probe output to be processed by so-called
post-collecting code (written in the Python language)
which is supplied by DDC’s user and specific to a
probe. If defined, post-collecting code is executed at
the coordinator site, immediately after a successful
remote execution. This code receives as input
arguments the content of both standard output and
standard error channels, besides other context
information such as the name of the remote machine.
The purpose of the post-collecting code is to permit the
analysis of the probe’s output immediately after its
execution, so that relevant data can be extracted and, if
deemed necessary, saved in an appropriate format for
future use. Figure 1 schematizes DDC execution. In
step (1), the probe W32Probe is executed in a remote
machine. Next (2), output results are returned to the
coordinator machines. These results are post-processed
at the coordinator’s (3) and stored.

Figure 1: Overview of DDC architecture

The overhead induced by DDC is mostly dependent
on the probe, since the remote execution mechanism
requires minimal resources from the remote machine.
Since W32Probe gathers its monitoring data mostly
through win32 API calls, the probe requires practically
no CPU and minimal memory for its execution.

For a more complete description of DDC interested
readers are referred to [20].
3.1. Monitored metrics

W32Probe collects static and dynamic metrics
characterizing the current state of the machine that is
being monitored. Static metrics describe fixed
characteristics that typically remain constant over time,
while dynamic metrics measure runtime usage of main
resources.
3.1.1 Static metrics

Static metrics comprise the following elements:
− Processor name, type and frequency: identifies the

processor name and its operating frequency.
− Operating system: name and version.
− Main memory: size of installed main memory.
− Virtual memory: size of configured virtual

memory.
− Hard disks: for every installed hard disk returns the

serial number and the drive’s size.
− Network interfaces: display MAC addresses for

every installed network interface.
3.1.1 Dynamic metrics

Dynamic metrics include the following items:
− Boot time and uptime: system’s boot time and

respective uptime.
− CPU idle time: time consumed by the operating

system idle thread since the computer was booted.
This metric is further used to compute the average
CPU idleness between two consecutive samples.

− Main memory load: main memory load (as returned
by the field dwMemoryLoad filled by
GetMemoryStatus() win32 API function).

− Swap memory load: analogue to main memory load
metric but for the swap area.

− Free disk space: returns free disk space.
− Hard disk power cycle count: SMART’s parameter

that counts the number of disk’s power cycles, i.e.,
the number of times the disk has been powered
on/off since it was built.

− Hard disk power on hour counts: SMART
parameter that counts the number of hours that a
hard disk has been powered on since it was built.

− Network usage: this metric comprises “total
received bytes” and “total sent bytes”.

− Interactive user-login session: username and the
session init time are returned if any user is
interactively logged at the monitored machine.

4. Experiment
Using DDC and W32Probe, we conducted a 77-day

(11 weeks) monitoring experiment using 169
computers of 11 classrooms of an academic institution.
4.1 Computing environment

The monitored classrooms are used for computer
classes for several subjects, ranging from economics to
computer sciences. When no classes are being taught,
students can use the machines to perform their
practical assignments and homework, as well as
communication activities (e-mail, etc.). To avoid any
changes of behavior that could false results, only
system managers were aware of the monitoring.

All classrooms have 16 machines, except L09
which only has 9 machines. All machines run
Windows 2000 professional edition (SP3) and are
connected via a 100 Mbps Fast-Ethernet link. The main
characteristics of the computers are summarized in
Table 1 grouped by classrooms (from L01 to L11). The
columns INT and FP refer respectively to NBench
benchmark integer and floating-point performance
indexes [22]. NBench, which is derived from the
well-know Bytemark benchmark, was ported from
Linux with its C source code compiled under Visual
Studio .NET in release mode. NBench indexes can be
used to assess relative performance among the
monitored machines since the same benchmark binary
was used to compute the indexes over the machines.
NBench performance indexes were gathered with DDC
using the corresponding benchmark probe.

Table 1: Main characteristics of machines
Lab CPU (GHz) RAM MB Disk (GB) INT / FP
L01 P4 (2.4) 512 74.5 30.5 / 33.1
L02 P4 (2.4) 512 74.5 30.5 / 33.1
L03 P4 (2.6) 512 55.8 39.3 / 36.7
L04 P4 (2.4) 512 59.5 30.6 / 33.2
L05 PIII (1.1) 512 14.5 23.2 / 19.9
L06 P4 (2.6) 256 55.9 39.2 / 36.7
L07 P4 (1.5) 256 37.3 23.5/ 22.1
L08 PIII (1.1) 256 18.6 22.3 / 18.6
L09 PIII (0.65) 128 14.5 13.7 / 12.1
L10 PIII (0.65) 128 14.5 13.7 / 12.2
L11 PIII (0.65) 128 14.5 13.7 / 12.2
Avg. – 340.8 MB 40.3 GB 25.5 / 24.6

Combined together, the resources of the 169

machines are impressive: 56.62 GB of memory,
6.66 TB of disk and more than 98.6 GFlops of
floating-point performance.
4.2 Settings and limitations

For the purpose of the monitoring experiment, the
period for W32probe execution attempt over the set of
machines was set to 15 minutes. This value was a
compromise between the benefits of gathering frequent
samples and the negative impact this strategy might
cause on resources, especially on machines and on the

network. A 15-minute interval between samples means
that captured dynamic metrics are coarse-grained, with
quick fluctuations of values escaping the monitoring
system. For instance, a 5-minute memory activity burst
using nearly 100% of main memory is
undistinguishable from 10-minute 50% memory usage,
since samples comprising both memory usage bursts
will report the same average memory space usage.
However, this is seldom a problem, since all metrics
are relatively stable, and thus not prone to fluctuate
widely in a 15-minute interval. The only exception is
the CPU idleness percentage, which is prone to quick
changes. But, precisely to avoid misleading
instantaneous values, CPU usage is returned as the
average CPU idleness percentage observed since
machine was booted. Therefore, given the CPU
idleness values for two consecutive samples it is
straightforward to compute the average CPU idleness
between these two samples, given that no reboot
occurred in the meantime.

A subtle and unexpected limitation of our
methodology was triggered by user habits, particularly
with users who forget to logout. In fact, over the
original 277513 samples captured on machines with an
interactive session, we found out 87830 samples
corresponding to user interactive session lasting 10
hours or more. Since classrooms remain open 20 hours
per day, closing from 4 am to 8 am, these abnormal
lengthy sessions have to do, most certainly, with users
who had left their login session opened. To assert our
hypothesis, we grouped the samples of interactive
sessions upon their relative duration since the start of
the corresponding interactive session. For instance,
samples collected during the first hour of any
interactive session were counted together and so on.
Data are plotted in Figure 2 and permit to observe that
the time interval [10-11[hour (samples collected
during the 10th and 11th hour of any interactive
session) is the first interval that presents an average
CPU idleness above 99%, a very high value that
indicates that no interactive activity existed when the
samples were collected. Therefore, in order to avoid
results biased by abnormally long interactive user
sessions, we consider samples reporting an interactive
user-session equal or above than 10 hours as being
captured on non-occupied machines. Note that this
threshold is a conservative approach, which means that
real interactive usage is probably lower than reported.

An obvious conclusion of forgotten session is that
very high level of CPU idleness (99% or above) is a
good indicator of non-interactive usage on a machine,
even if an interactive session is opened.

Figure 2: Samples of interactive sessions grouped by their

relative time occurrence.
5. Results

During the experiment 6883 iterations were run
over the whole machines with a total of 583653
samples collected. Main results of the monitoring are
summarized in Table 2. The column “No Login” shows
results captured when no interactive user-session
existed, while column “With login” expresses samples
gathered at user-occupied machines. Both results are
combined in the final column “Both”.

Table 2: Main results
Metric No login With login Both

Samples 393970 189683 583653
Avg. uptime (%) 33.9 16.3 50.2
Avg. CPU idle (%) 99.7 94.2 97.9
Avg. RAM load (%) 54.8 67.6 58.9
Avg. SWAP load (%) 25.7 32.8 28.0
Avg. disk used (GB) 13.6 13.6 13.6
Avg. sent bytes (bps) 255.3 2601.8 1071.9
Avg. recv. Bytes (bps) 359.2 8662.1 3057.9

Machines responded to 50.2% of the sample
attempts over the 77 days and in 393970 samples
(33.9%) queried machine did not have any interactive
login session. This means that for slightly more than
one third of the time, machines were completely
available and free for resources harvesting. In fact,
unoccupied machines presented a high 99.7% CPU idle
time, expressing almost full idleness. The presence of
interactive session reduces CPU idleness to an average
of 94.2%, meaning that an interactive session roughly
requires 5.5% of CPU usage. This CPU idleness
confirms other studies performed in academic
classrooms running Unix environments [13], but with
higher than values found by Bolosky et al. [15], who
reported an average CPU usage rounding 15% for
corporate machines. In fact, Bolosky stated that some
of the machines presented a continuous 100% CPU
usage, a fact that obviously raised mean CPU usage.

As expected, main memory demands increases
roughly 12% when interactive usage occurs at a
machine. This is a natural behavior, since an
interactive session obviously means that interactive
applications will be opened and thus consuming

memory. Similarly, swap memory load rises by 5%
when an interactive user is logged on the machine.

Used disk space is independent of the presence of
interactive login sessions: average of 13.6 GB for both
situations. The low variability respecting used disk
space is a consequence of system usage policy: an
interactive user is restricted to 100 MB to 300 MB of
temporary local hard disk drive (the actual size
depends on the capacity of the machine hard drive),
meaning that it can be cleaned after an interactive
session has terminated. In fact, users are fostered to
keep their files in a central server with the benefit of
being able to access their files independently of the
desktop machine being used.

Relatively to network usage, occupied machines
present average usages (sent and received) roughly 10
times superior to user-free machines. Also, confirming
the client role of machines, received rates are nearly 4
times bigger than sent rates.
5.1 Machines availability

Figure 3 plots machines availability during the
11-week monitoring experiment. Figure 3a) (left)
shows the number of powered on machines; Figure 3b)
(right) traces the count of user-free machines, that is,
machines powered on without interactive logged on
user at sample time. In each plot, the black horizontal
line displays average of samples, which are 84.87 for
powered on machines, and 57.29 for session-free
machines. This means that roughly, on average, 70% of
the powered on machines are free of users, and thus
fully available for foreign computation. Also, on
average, slightly more than half of the set of 169
machines is powered on.

All plots exhibit a similar sharp pattern with
high-frequency variations showing that machine counts
fluctuate widely, except on weekends (note that the
x-axis labels of the plots denote Mondays). Since
classrooms are open on Saturdays, weekend
slowdowns are more noticeable on Sundays. The
high-frequency variations exhibited on weekdays mean
that resources are volatile and thus harvesting such
resources require highly tolerant and adaptable
mechanisms.

Figure 3: Number of machines powered on (left) and user-free (right)
over the 77-day experiment

Left plot of Figure 4 shows two metrics related to
uptime. The double cross curve, which appears almost
as a straight line, represents machine availability
measured in units of “nines” [34]. Nines are defined as
log10 of the fraction of time a host is not available.
The name of the unit comes from the number of nines
in its availability ratio. For example, one nines means a
0.9 availability ratio, that is, –log10(1-0.9)= 1 nine.
The simple cross curve displays the fraction of time
each machine is up. In both curves, machines are
sorted in descending order by their cumulated uptimes.

Figure 4: uptime ratio and availability in nines (left) and

distribution of machines’ uptime (right).

The ratio availability curve shows that only 30
machines have cumulated uptimes bigger than half the
experiment period, that is, 37.5 days. Also, less than 10
machines have cumulated uptimes ratio higher than 0.8
and none was above 0.9. Comparatively to the
Windows corporate environment depicted in [23]
where more than 60% of machines presented an
uptimes bigger than one nine, analyzed classroom
machines present much lower uptime ratios. This is a
consequence of the machines having no real owner and
thus subject to the possibility of being powered off at
the end of a class, contrary to corporate machines that
split in two patterns: daytime and 24 hours. Daytime
machines are powered on during office hours, while 24
hours machines remain powered on for long periods.
5.2. Machines stability

In this section we analyze machines’ sessions,
focusing on uptime length and reboot count. We define
a machine session as the activity comprised between a
boot and its corresponding shutdown.
5.2.1 Uptime

During the whole experiment 10688 sessions of
machines were captured by our sampling methodology.
It is important to note that due to the 15-minute period
between consecutive samples, some short machine
sessions might have not been captured. In fact,
between two samples, DDC can only detect one reboot,
since its reboot detection is based upon machine’s
uptime.

The average duration of the length of sessions was
15 hours and 55 minutes. This value exhibits a high
standard deviation of 26.65 hours indicating that
session length fluctuates widely. Since multiple
reboots occurred between two samples escape DDC
(only one is detected), the above given average

duration exceeds the real value. The right plot of
Figure 4 displays the distribution of machines’ uptime
length for sessions that lasted less or equal than 96
hours (4 days). These sessions accounted for 98.7% of
all machine sessions and 87.93% of cumulated uptime.
These data permit to conclude that most machine
sessions are short, lasting few hours, another indication
of the high volatility of machines.
5.2.2 Power on cycles

As stated before, due to the coarse-grained
granularity of the sample methodology, some of the
short machine sessions may go unnoticed. Thus, in
order to have a detailed view respecting reboots, we
recurred to SMART parameters [19]. By resorting to
the “power cycle count” metric, it is possible to spot
undetected machine sessions. For instance, if the
“power cycle count” values of two consecutive
samples of a machine differ by more than one unit, this
means that at least one short machine session with its
corresponding boot and shutdown sequence, occurred.

The cumulated count of hard disk power on cycles
was 13871, with an average of 82.57 power cycles per
machine and a standard deviation of 37.05 over the 77
days. This represents 1.07 power on cycle per day, a
value 30% higher than the number of machine sessions
counted by our monitoring analysis. This means that a
significant percentage of power cycles are of very short
duration (less than 15 minutes) escaping our sampling
mechanism.

Resorting to the parameters “power on hour count”
and “power cycles” it is possible to compute the
average power on hours per power on cycle, henceforth
referred as “uptime per power cycle”. For the 77-day
monitoring, uptime per power cycle was 13 hours and
54 minutes with a standard deviation of nearly 8 hours.
The difference between the average uptime per power
cycle and the average machine session length (see
section 5.2.1) can be explained by the short-lived
sessions that are not caught by our sampling
methodology. Given the absolute count of power
cycles and power on hours, it is possible to compute
the uptime per power cycle for the whole disk life.
Since machines are relatively new (all machines are
less than 3 years old) the probability of machines
conserving their original disk is high and thus average
uptime per power cycle serves as a measure of average
uptime. For our monitored system, the average power
on hours per power on cycle was 6.46 hours with a
standard deviation of 4.78 hours. This value is
surprisingly lower than the one we found during our
monitoring study.
5.3. Weekly analysis

Figure 6 aggregates two plots related to the weekly
distribution of samples. Left plot displays weekly
distribution of average percentage of CPU idleness (top

curve), RAM occupation (middle curve) and SWAP
load (bottom curve). Right plot shows average network
rates for received (top curve) and sent traffic (bottom
curve). Besides following the night and weekend
pattern, the weekly distribution of average CPU
idleness presents a significant negative spike on
Tuesdays afternoons, dropping below 91%. This CPU
usage spike was due to a practical class which
consumed an average of 50% of CPU, although we
could not find the reasons behind this abnormal CPU
usage. Confirming high CPU availability, average CPU
idleness never drops below 90% and mostly ranges
from 95% to 100%. The phases of near 100% average
CPU idleness correspond to the periods when
classrooms are closed: 4 am to 8 am during weekdays
and from Saturday 9 pm to Monday 8 am for
weekends.

Figure 5: Weekly distribution of average CPU idleness and
memory usage (left) and network traffic (right).

Both RAM and swap load curves exhibit the weekly
pattern, although in a smoothed way. Note that RAM
load never falls below 50%, meaning that a significant
amount of RAM is required by operating system usage.
Comparing RAM and swap usage, it can be observed
that the swap curve roughly follows memory usage,
although strongly attenuating high frequencies.

Network rates weekly distributions also exhibit the
weekend and night pattern. Since we are plotting a rate,
the drops originated by night periods and weekends
appear as smoothed lines. Network client role of
machines appears clearly visible, with received rates
several times higher than sent rates.

Weekly distribution of resource usage permits to
conclude that apart from weekends and the night
interval between 4 am and 8 am, absolute system
idleness is limited. However, even on working hours,
idleness levels are quite high, permitting successful
yields in resource scavenging schemes.
5.4 Equivalence ratio

Arpaci et al. [12] defines the equivalent parallel
machine as a metric to gauge the usable performance
of non-dedicated machines relatively to a parallel
machine. Kondo et al. [18] adopt an analogue metric,
calling it cluster equivalence metric. This metric aims
to measure the fraction of a dedicated cluster CPU that
a non-dedicated machine CPU is worth to an
application. We apply this definition, computing the

CPU availability of a machine for a given period
accordingly to its measured CPU idleness over this
period. For instance, a machine with 90% CPU
idleness is viewed as a dedicated machine with 90% of
its computing power. This methodology assumes that
all idle CPU can be harvested. Thus, obtained results
should be regarded as an upper limit of CPU resources
that can be harvested. To cope with heterogeneity,
machines’ performances were normalized accordingly
to their respective INT and FP indexes (a 50% weight
was given to each index to compute a machine index).

Figure 6 plots the weekly distribution of the cluster
equivalence ratio. The average cluster ratio is 0.26 for
occupied machines and 0.25 for user-free machines,
totaling a 0.51 cluster equivalence ratio. This means
that the set of non-dedicated machines is roughly
equivalent to a dedicated cluster with half the size,
following the 1:2 rule found out by [12].

Figure 6: Weekly distribution of equivalence cluster

A more complete discussion of results is available
in [24].
6. Conclusions

This paper presents the main results of a 77-day
monitoring usage study of 169 Windows 2000
machines. The results show that resources idleness in
academic classrooms comprised of Windows machines
is very high, confirming previous works carried out in
classrooms with Unix machines.

The average CPU idleness observed was
impressive: 97.9%. Also, the 94.2% average CPU
idleness measured in user occupied machines indicates
that CPU harvest schemes should be profitable even
when interactive usage of the machine exists. This is
confirmed by the 0.26 cluster equivalence ratio
potentially available from exploiting CPU idleness of
interactively used machines and 0.51 when user-free
machines are also considered.

Memory idleness is also noticeable especially in
machines fitted with 512 MB of main memory.
Coupled with a fast network technology such resources
might be put to good use for network RAM schemes.

Due to the fact that every machine only contains the
operating system installation plus specific software
needed for classes, free space storage among
monitored machines is impressive. A possible
application for such disk space relates to distributed
backups or to the implementation of local data grids.

Classrooms comprised of Windows machines seem
appropriate for desktop grid computing not only
limited to CPU, but also to main memory and free hard
disk space. Beside wide resources availability,
attractiveness of such environments for resources
harvesting is strengthened by the fact that machines
have no real personal owner.

A major concern in classroom environments relates
to volatility, since a resource available at a given time
might become unavailable few seconds later. Thus,
efficient usage of idle resources requires survival
techniques such as checkpointing, oversubscription and
multiple executions.

We believe our results can be generalized to other
academic classrooms which use Windows operating
systems and which follow a similar classroom usage
policy: shared machines for classes, with students
accessing computers for work assignment and
communication use.

In conclusions, this study confirms that resource
idleness observed in classrooms with Windows
computers is quite considerable, and carefully
channeled could yield good opportunities for grid
desktop computing.
Acknowledgements

This work was partially supported by PRODEP
III/5.3 and by the Portuguese FCT through the R&D
Unit 326/94 (CISUC).

References
[1] L. Sarmenta, "Bayanihan: Web-Based Volunteer

Computing Using Java.," presented at 2nd
International Conference on World-Wide
Computing and its Applications (WWCA'98),
Tsukuba, Japan, 1998.

[2] BOINC Project (http://boinc.berkeley.edu/)," 2005.
[3] Condor, "Condor Project Homepage

(http://www.cs.wisc.edu/condor/)," 2005.
[4] G. Fedak, C. Germain, V. Neri, and F. Cappello,

"XtremWeb: A Generic Global Computing
System," CCGRID'01, Brisbane, 2001.

[5] A. Chien, B. Calder, S. Elbert, and K. Bhatia,
"Entropia: architecture and performance of an
enterprise desktop grid system," Journal of
Parallel and Distributed Computing, vol. 63, 2003.

[6] UD, "United Devices, Inc. (http://www.ud.com)."
[7] R. Figueiredo, P. Dinda, and J. Fortes, "A Case For

Grid Computing On Virtual Machines," ICDCS’03,
Providence, Rhode Island, 2003.

[8] C. d. Rose, F. Blanco, N. Maillard, K. Saikoski, R.
Novaes, O. Richard, and B. Richard, "The Virtual
Cluster: A Dynamic Environment for Exploitation
of Idle Network Resources," 14th Symposium on
Computer Architecture and High Performance
Computing, Brazil, 2002.

[9] R. Novaes, P. Roisenberg, R. Scheer, C. Northfleet,
J. H. Jornada, and W. Cirne, "Non-Dedicated
Distributed Environment: A Solution for Safe and

Continuous Exploitation of Idle Cycles," AGridM
2003, Workshop on Adaptive Grid Middleware,
2003.

[10] T. E. Anderson, D. E. Culler, and D. Patterson, "A
case for NOW (Networks of Workstations),"
Micro, IEEE, vol. 15, pp. 54-64, 1995.

[11] A. Gupta, B. Lin, and P. A. Dinda, "Measuring and
understanding user comfort with resource
borrowing," 13th HPDC, Honolulu, USA, 2004.

[12] R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T.
Anderson, and D. Patterson, "The interaction of
parallel and sequential workloads on a network of
workstations," presented at ACM SIGMETRICS,
Ottawa, Ontario, Canada, 1995.

[13] A. Acharya, G. Edjlali, and J. Saltz, "The utility of
exploiting idle workstations for parallel
computation," ACM SIGMETRICS Seattle,
Washington, USA, 1997.

[14] A. Acharya and S. Setia, "Availability and utility of
idle memory in workstation clusters," ACM
SIGMETRICS - Measurement and modeling of
computer systems, Atlanta, Georgia, USA, 1999.

[15] W. Bolosky, J. Douceur, D. Ely, and M. Theimer,
"Feasibility of a serverless distributed file system
deployed on an existing set of desktop PCs,"
SIGMETRICS - Measurement and modeling of
computer systems, Santa Clara, USA, 2000.

[16] K. D. Ryu and J. K. Hollingsworth,
"Unobtrusiveness and efficiency in idle cycle
stealing for PC grids," 18th IPDPS, 2004.

[17] D. G. Heap, "Taurus - A Taxonomy of Actual
Utilization of Real UNIX and Windows Servers,"
IBM White Paper GM12-0191, 2003.

[18] D. Kondo, M. Taufer, C. Brooks, H. Casanova, and
A. Chien, "Characterizing and evaluating desktop
grids: an empirical study," 18th IPDPS, 2004.

[19] G. Hughes, J. Murray, K. Kreutz-Delgado, and C.
Elkan, "Improved Disk Drive Failure Warnings,"
IEEE Transaction on Reliability, 2002.

[20] P. Domingues, P. Marques, and L. Silva,
"Distributed Data Collection through Remote
Probing in Windows Environments," 13th
Euromicro PDP, Lugano, Switzerland, 2005.

[21] M. Russinovich and B. Cogswell, "Sysinternals -
PsTools (http://www.sysinternals.com/)," 2004.

[22] U. Mayer, "Linux/Unix nbench project page
(http://www.tux.org/~mayer/linux/)," 2003.

[23] J. Douceur, "Is remote host availability governed
by a universal law?" SIGMETRICS Perform. Eval.
Rev., vol. 31, pp. 25-29, 2003.

[24] P. Domingues, P. Marques, and L. Silva,
"Resources Usage of Windows Computer
Laboratories," CISUC, Portugal. Technical Report.
www.cisuc.uc.pt/view_member.php?id_m=207,
January 2005.

