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Abstract 

Studies focusing on Unix have shown that the vast 
majority of workstations and desktop computers 
remain idle for most of the time. In this paper we 
quantify the usage of main resources (CPU, main 
memory, disk space and network bandwidth) of 
Windows 2000 machines from classroom laboratories. 
For that purpose, 169 machines of 11 classroom 
laboratories were monitored over 77 consecutive days. 
Samples were collected from all machines every 15 
minutes for a total of 583653 samples. 

Besides evaluating availability of machines (uptime 
and downtime) and usage habits of users, the paper 
assesses usage of main resources, focusing on the 
impact of interactive login sessions over resource 
consumptions. Also, resorting to Self Monitoring 
Analysis and Reporting Technology (SMART) 
parameters of hard disks, the study estimates the 
average uptime per hard drive power cycle for the 
whole life of monitored computers.  

Our results show that resources idleness in 
classroom computers is very high, with an average 
CPU idleness of 97.9%, unused memory averaging 
42.1% and unused disk space of the order of gigabytes 
per machine. Moreover, this study confirms the 2:1 
equivalence rule found out by similar works, with N 
non-dedicated resources delivering an average CPU 
computing power roughly similar to N/2 dedicated 
machines. These results confirm the potentiality of 
these systems for resource harvesting, especially for 
grid desktop computing schemes. 
 
1. Introduction 

Today, academic institutions frequently have large 
dozens of personal computers (PCs) in their 
classrooms and laboratories, with a large percentage of 
these PCs devoted mostly to teaching activities. 
However, it is known that much of this computing 
power simply goes unused. In fact, considering that 
these PCs are only used during extended office work, 
say from 8.00 am to 8.00 pm on weekday, this means 
that more than half of the time these machines are 

simply unused. If we sum up the unexploited idle CPU 
cycles we could count a considerable computing 
power, available to the companies, academia and 
institutions at free-costs. In fact, numerous 
environments exist to harness idle resources. Examples 
range from academic projects such as Bayanihan [1], 
BOINC [2], Condor [3] and XtremWeb [4] to 
commercial solutions like Entropia [5] and United 
Devices [6]. Recently some desktop grid schemes have 
emerged relying on virtual machines [7]. Examples 
include Virtual Cluster [8] and Non-Dedicated 
Distributed Environment (NDDE) [9]. 

PCs of classrooms have an attractive characteristic 
for resource harvesting: no individual user owns the 
machines. On the contrary, an office computer is 
generally assigned to an individual user who controls 
it, being very suspicious about possible invasion of the 
machine by foreign programs. Thus, stealing schemes 
need to deal with social issues beside engineering and 
technology [10]. Since classroom computers have no 
individual owner social issues involving their use in 
resource harvesting are weaker. In fact, Gupta et al. 
[11] analyze the relation between resource borrowing 
and interactive usage comfort concluding that resource 
stealing schemes can be quite aggressive without 
disturbing user comfort, particularly in the case of 
memory and disk.  

Our main motivation for this study was to 
characterize the availability and pattern usage of 
academic classroom computers, quantifying the portion 
of important resources such as CPU, RAM, disk space 
and network bandwidth that is left unused. In 
particular, we were interested in differentiating 
resource usage according to the existence of interactive 
login sessions, and their impact on resource usage.  

The remainder of this paper is organized as follows. 
Section 2 describes related work, while section 3 
describes our monitoring methodology. Section 4 
presents the monitoring experiment, with results being 
discussed in section 5. Finally, section 6 concludes the 
paper. 



2. Motivation 
Evaluation of computer resources usage has been a 

research topic since the emergence of networked 
computers in the late 80’s. In fact, soon it was noticed 
that computer resources, noticeably CPU, were 
frequently underused, especially in machines primarily 
used for tasks dependent on human interaction, such as 
text processing or spreadsheet computations. Several 
studies have assessed the high level of resources 
idleness in networked computers, not only about CPU 
[12] [13] but also memory [14] and disk storage [15]. 

Through simulation Arpaci et al. [12] study the 
interaction of sequential and parallel workloads. They 
conclude that a 2:1 rule applies, meaning that N 
non-dedicated machines are roughly equivalent to N/2 
dedicated machines. Interestingly, a 2:1 equivalence 
ratio was also observed in our set of machines. 

The study presented in [13] focuses on the 
potentiality of using non-dedicated Solaris machines to 
execute parallel tasks in otherwise idle times, 
evaluating the machines availability and stability based 
upon a 14–day trace of computers primarily assigned 
to undergraduate students. The authors conclude that 
reasonably large idle clusters are available half the 
time noting, however, that such set of machines are not 
particularly stable, exhibiting frequent reboots. 

Acharya and Setia [14] analyze main memory 
idleness and assesses its potential utility resorting to a 
two-week memory usage trace from two sets of Solaris 
workstations. One set includes machines fitted with a 
high amount of main memory (total of 5.2 GB for 29 
machines), while the other set is more modest (total of 
1.4 GB for 23 machines). The study shows that, on 
average, idle machines present around 50% of unused 
main memory. 

Ryu et al. in [16] aims to harvest idle resources 
from what they define as non-idle machines, that is, 
machines that are lightly loaded by interactive usage. 
They conclude that a vast set of idle resources can be 
harvested without interfering on interactive users. 
However, their methodology requires modification at 
the kernel level and thus seems impractical for closed 
operating systems like Windows. 

All of the aforementioned cited studies focus on 
UNIX environments and rely on somewhat reduced 
traces to draw their conclusions. Our work targets 
Windows machines, monitoring a medium-sized set of 
machines over a relatively long period of time (11 
consecutive weeks). 

Bolosky et al. [15] study a vast set of Windows 
machines, reporting availability, CPU load and file 
system usage in a corporate desktop environment. The 
study is oriented toward the demonstration of the 
viability of a serveless distributed file system. Thus 

issues such as main memory load, network usage and 
interactive sessions and its impact over resource usage 
are not reported. In contrast, our work focuses on 
categorizing all main resources usage. 

Heap [17] studied resource usage of Unix and 
Windows servers, through 15-minute periodic 
gathering of monitoring data. The study found out that 
Windows servers had a CPU idleness average near 
95%, while Unix servers averaged 85% CPU idleness. 

The study of Kondo et al. [18] evaluates CPU 
availability from the perspective of grid desktop 
computing, running a benchmark probe as a regular 
task in the grid desktop computing system Entropia. 
Since the task only gets scheduled at Entropia clients 
when required idleness threshold conditions are met, 
this methodology measures effective resources 
availability from the perspective of a grid desktop 
system. A drawback of this approach is that the 
analysis is dependent on the used grid desktop system. 

Our approach is distinct from previous works by 
focusing on academic classrooms fitted with Windows 
desktop machines. The workload traces were collected 
for 11 weeks over a medium-sized set of 169 Pentium 
III and Pentium 4 desktop machines. An analysis of 
main resource usage is conducted with emphasis in 
differentiating resource usage between machines 
occupied with interactive users and free machines.  

We also present a novel approach to assess 
machines availability, combining collected samples 
with data extracted from the SMART counters of 
machines’ hard disks, namely the power on hour 
counts and power on cycle [19] counters. Coupled with 
the collected traces, these SMART values permit to 
infer about machines power on pattern allowing a 
rough estimation of machines availability. 
3. Overview 

Our monitoring methodology resorts on periodically 
probing the remote machines. Every 15 minutes an 
attempt is made to perform a remote execution of a 
software probe (W32Probe) sequentially over the 
whole set of machines. W32Probe is a simple win32 
console application that outputs, via standard output 
(stdout), several metrics such machine’s uptime, CPU 
time consumed by the idle thread of the operating 
system since machine boot-up, existence of an 
interactive user session, amongst other metrics (see 
section 3.1). 

To automate the periodic data collection over the 
surveyed machines we developed a framework, named 
Distributed Data Collector (DDC) [20], to support 
remote data collection in local area networked 
Windows machines. The framework aims to cover the 
needs that arise in distributed data collection at the 
scale of local area networks. 



The remote probing solution was chosen because it 
avoided the installation of software in remote nodes, 
thus eliminating administrative and maintenance 
burdens that remote daemons and alike normally 
provoke. Another motivation for the remote probe 
approach was the possibility of tailoring the probe to 
our monitoring needs, capturing only the wanted 
metrics. Windows built-in remote monitoring 
capabilities like perfmon and Windows Management 
Interface (WMI) were discarded for several reasons. 
First, both mechanisms have high timeout values 
(order of seconds) when the remote machine to be 
monitored is not available. Also, both impose a high 
overhead on the network and on the remote machine.  

DDC schedules the periodic execution of software 
probes in a given set of machines. The execution of 
probes is carried out remotely, that is, the probe binary 
is executed at the remote machine. For that purpose, 
DDC uses Sysinternal’s psexec utility [21] that 
executes application in remote windows machines if 
appropriate access credentials are given. All executions 
of probes are orchestrated by DDC’s central 
coordinator host, which is a normal PC.  

As stated above, a probe is a win32 console 
application that uses its output channels to 
communicate its results. One of DDC’s tasks is 
precisely to capture the output of the probe and to store 
it at the coordinator machine. Additionally, DDC 
allows the probe output to be processed by so-called 
post-collecting code (written in the Python language) 
which is supplied by DDC’s user and specific to a 
probe. If defined, post-collecting code is executed at 
the coordinator site, immediately after a successful 
remote execution. This code receives as input 
arguments the content of both standard output and 
standard error channels, besides other context 
information such as the name of the remote machine. 
The purpose of the post-collecting code is to permit the 
analysis of the probe’s output immediately after its 
execution, so that relevant data can be extracted and, if 
deemed necessary, saved in an appropriate format for 
future use. Figure 1 schematizes DDC execution. In 
step (1), the probe W32Probe is executed in a remote 
machine. Next (2), output results are returned to the 
coordinator machines. These results are post-processed 
at the coordinator’s (3) and stored. 

 

 
Figure 1: Overview of DDC architecture 

The overhead induced by DDC is mostly dependent 
on the probe, since the remote execution mechanism 
requires minimal resources from the remote machine. 
Since W32Probe gathers its monitoring data mostly 
through win32 API calls, the probe requires practically 
no CPU and minimal memory for its execution. 

For a more complete description of DDC interested 
readers are referred to [20]. 
3.1. Monitored metrics 

W32Probe collects static and dynamic metrics 
characterizing the current state of the machine that is 
being monitored. Static metrics describe fixed 
characteristics that typically remain constant over time, 
while dynamic metrics measure runtime usage of main 
resources. 
3.1.1 Static metrics 

Static metrics comprise the following elements: 
− Processor name, type and frequency: identifies the 

processor name and its operating frequency. 
− Operating system: name and version. 
− Main memory: size of installed main memory. 
− Virtual memory: size of configured virtual 

memory. 
− Hard disks: for every installed hard disk returns the 

serial number and the drive’s size. 
− Network interfaces: display MAC addresses for 

every installed network interface. 
3.1.1 Dynamic metrics 

Dynamic metrics include the following items: 
− Boot time and uptime: system’s boot time and 

respective uptime. 
− CPU idle time: time consumed by the operating 

system idle thread since the computer was booted. 
This metric is further used to compute the average 
CPU idleness between two consecutive samples.  

− Main memory load: main memory load (as returned 
by the field dwMemoryLoad filled by 
GetMemoryStatus() win32 API function).  

− Swap memory load: analogue to main memory load 
metric but for the swap area. 

− Free disk space: returns free disk space. 
− Hard disk power cycle count: SMART’s parameter 

that counts the number of disk’s power cycles, i.e., 
the number of times the disk has been powered 
on/off since it was built. 

− Hard disk power on hour counts: SMART 
parameter that counts the number of hours that a 
hard disk has been powered on since it was built.  

− Network usage: this metric comprises “total 
received bytes” and “total sent bytes”.  

− Interactive user-login session: username and the 
session init time are returned if any user is 
interactively logged at the monitored machine.  



4. Experiment 
Using DDC and W32Probe, we conducted a 77-day 

(11 weeks) monitoring experiment using 169 
computers of 11 classrooms of an academic institution.  
4.1 Computing environment 

The monitored classrooms are used for computer 
classes for several subjects, ranging from economics to 
computer sciences. When no classes are being taught, 
students can use the machines to perform their 
practical assignments and homework, as well as 
communication activities (e-mail, etc.). To avoid any 
changes of behavior that could false results, only 
system managers were aware of the monitoring. 

All classrooms have 16 machines, except L09 
which only has 9 machines. All machines run 
Windows 2000 professional edition (SP3) and are 
connected via a 100 Mbps Fast-Ethernet link. The main 
characteristics of the computers are summarized in 
Table 1 grouped by classrooms (from L01 to L11). The 
columns INT and FP refer respectively to NBench 
benchmark integer and floating-point performance 
indexes [22]. NBench, which is derived from the 
well-know Bytemark benchmark, was ported from 
Linux with its C source code compiled under Visual 
Studio .NET in release mode. NBench indexes can be 
used to assess relative performance among the 
monitored machines since the same benchmark binary 
was used to compute the indexes over the machines. 
NBench performance indexes were gathered with DDC 
using the corresponding benchmark probe. 

 

Table 1: Main characteristics of machines 
Lab CPU (GHz) RAM MB Disk (GB) INT / FP 
L01 P4 (2.4) 512 74.5 30.5 / 33.1 
L02 P4 (2.4) 512 74.5 30.5 / 33.1 
L03 P4 (2.6) 512 55.8 39.3 / 36.7 
L04 P4 (2.4) 512 59.5 30.6 / 33.2 
L05 PIII (1.1) 512 14.5 23.2 / 19.9 
L06 P4 (2.6) 256 55.9 39.2 / 36.7 
L07 P4 (1.5) 256 37.3 23.5/ 22.1 
L08 PIII (1.1) 256 18.6 22.3 / 18.6 
L09 PIII (0.65) 128 14.5 13.7 / 12.1 
L10 PIII (0.65) 128 14.5 13.7 / 12.2 
L11 PIII (0.65) 128 14.5 13.7 / 12.2 
Avg. – 340.8 MB 40.3 GB 25.5 / 24.6 

 
Combined together, the resources of the 169 

machines are impressive: 56.62 GB of memory, 
6.66 TB of disk and more than 98.6 GFlops of 
floating-point performance.  
4.2 Settings and limitations 

For the purpose of the monitoring experiment, the 
period for W32probe execution attempt over the set of 
machines was set to 15 minutes. This value was a 
compromise between the benefits of gathering frequent 
samples and the negative impact this strategy might 
cause on resources, especially on machines and on the 

network. A 15-minute interval between samples means 
that captured dynamic metrics are coarse-grained, with 
quick fluctuations of values escaping the monitoring 
system. For instance, a 5-minute memory activity burst 
using nearly 100% of main memory is 
undistinguishable from 10-minute 50% memory usage, 
since samples comprising both memory usage bursts 
will report the same average memory space usage. 
However, this is seldom a problem, since all metrics 
are relatively stable, and thus not prone to fluctuate 
widely in a 15-minute interval. The only exception is 
the CPU idleness percentage, which is prone to quick 
changes. But, precisely to avoid misleading 
instantaneous values, CPU usage is returned as the 
average CPU idleness percentage observed since 
machine was booted. Therefore, given the CPU 
idleness values for two consecutive samples it is 
straightforward to compute the average CPU idleness 
between these two samples, given that no reboot 
occurred in the meantime. 

A subtle and unexpected limitation of our 
methodology was triggered by user habits, particularly 
with users who forget to logout. In fact, over the 
original 277513 samples captured on machines with an 
interactive session, we found out 87830 samples 
corresponding to user interactive session lasting 10 
hours or more. Since classrooms remain open 20 hours 
per day, closing from 4 am to 8 am, these abnormal 
lengthy sessions have to do, most certainly, with users 
who had left their login session opened. To assert our 
hypothesis, we grouped the samples of interactive 
sessions upon their relative duration since the start of 
the corresponding interactive session. For instance, 
samples collected during the first hour of any 
interactive session were counted together and so on. 
Data are plotted in Figure 2 and permit to observe that 
the time interval [10-11[ hour (samples collected 
during the 10th and 11th hour of any interactive 
session) is the first interval that presents an average 
CPU idleness above 99%, a very high value that 
indicates that no interactive activity existed when the 
samples were collected. Therefore, in order to avoid 
results biased by abnormally long interactive user 
sessions, we consider samples reporting an interactive 
user-session equal or above than 10 hours as being 
captured on non-occupied machines. Note that this 
threshold is a conservative approach, which means that 
real interactive usage is probably lower than reported. 

An obvious conclusion of forgotten session is that 
very high level of CPU idleness (99% or above) is a 
good indicator of non-interactive usage on a machine, 
even if an interactive session is opened.  

 



 
Figure 2: Samples of interactive sessions grouped by their 

relative time occurrence. 
5. Results 

During the experiment 6883 iterations were run 
over the whole machines with a total of 583653 
samples collected. Main results of the monitoring are 
summarized in Table 2. The column “No Login” shows 
results captured when no interactive user-session 
existed, while column “With login” expresses samples 
gathered at user-occupied machines. Both results are 
combined in the final column “Both”.  

 

Table 2: Main results 
Metric No login With login Both 

Samples 393970 189683 583653 
Avg. uptime (%) 33.9 16.3 50.2 
Avg. CPU idle (%) 99.7 94.2 97.9 
Avg. RAM load (%) 54.8 67.6 58.9 
Avg. SWAP load (%) 25.7 32.8 28.0 
Avg. disk used (GB) 13.6 13.6 13.6 
Avg. sent bytes (bps) 255.3 2601.8 1071.9 
Avg. recv. Bytes (bps) 359.2 8662.1 3057.9 

 

Machines responded to 50.2% of the sample 
attempts over the 77 days and in 393970 samples 
(33.9%) queried machine did not have any interactive 
login session. This means that for slightly more than 
one third of the time, machines were completely 
available and free for resources harvesting. In fact, 
unoccupied machines presented a high 99.7% CPU idle 
time, expressing almost full idleness. The presence of 
interactive session reduces CPU idleness to an average 
of 94.2%, meaning that an interactive session roughly 
requires 5.5% of CPU usage. This CPU idleness 
confirms other studies performed in academic 
classrooms running Unix environments [13], but with 
higher than values found by Bolosky et al. [15], who 
reported an average CPU usage rounding 15% for 
corporate machines. In fact, Bolosky stated that some 
of the machines presented a continuous 100% CPU 
usage, a fact that obviously raised mean CPU usage. 

As expected, main memory demands increases 
roughly 12% when interactive usage occurs at a 
machine. This is a natural behavior, since an 
interactive session obviously means that interactive 
applications will be opened and thus consuming 

memory. Similarly, swap memory load rises by 5% 
when an interactive user is logged on the machine. 

Used disk space is independent of the presence of 
interactive login sessions: average of 13.6 GB for both 
situations. The low variability respecting used disk 
space is a consequence of system usage policy: an 
interactive user is restricted to 100 MB to 300 MB of 
temporary local hard disk drive (the actual size 
depends on the capacity of the machine hard drive), 
meaning that it can be cleaned after an interactive 
session has terminated. In fact, users are fostered to 
keep their files in a central server with the benefit of 
being able to access their files independently of the 
desktop machine being used. 

Relatively to network usage, occupied machines 
present average usages (sent and received) roughly 10 
times superior to user-free machines. Also, confirming 
the client role of machines, received rates are nearly 4 
times bigger than sent rates. 
5.1 Machines availability 

Figure 3 plots machines availability during the 
11-week monitoring experiment. Figure 3a) (left) 
shows the number of powered on machines; Figure 3b) 
(right) traces the count of user-free machines, that is, 
machines powered on without interactive logged on 
user at sample time. In each plot, the black horizontal 
line displays average of samples, which are 84.87 for 
powered on machines, and 57.29 for session-free 
machines. This means that roughly, on average, 70% of 
the powered on machines are free of users, and thus 
fully available for foreign computation. Also, on 
average, slightly more than half of the set of 169 
machines is powered on.  

All plots exhibit a similar sharp pattern with 
high-frequency variations showing that machine counts 
fluctuate widely, except on weekends (note that the 
x-axis labels of the plots denote Mondays). Since 
classrooms are open on Saturdays, weekend 
slowdowns are more noticeable on Sundays. The 
high-frequency variations exhibited on weekdays mean 
that resources are volatile and thus harvesting such 
resources require highly tolerant and adaptable 
mechanisms. 
 

Figure 3: Number of machines powered on (left) and user-free (right) 
over the 77-day experiment 
 



Left plot of Figure 4 shows two metrics related to 
uptime. The double cross curve, which appears almost 
as a straight line, represents machine availability 
measured in units of “nines” [34]. Nines are defined as 
log10 of the fraction of time a host is not available. 
The name of the unit comes from the number of nines 
in its availability ratio. For example, one nines means a 
0.9 availability ratio, that is, –log10(1-0.9)= 1 nine. 
The simple cross curve displays the fraction of time 
each machine is up. In both curves, machines are 
sorted in descending order by their cumulated uptimes. 

 

  
Figure 4: uptime ratio and availability in nines (left) and 

distribution of machines’ uptime (right). 
 

The ratio availability curve shows that only 30 
machines have cumulated uptimes bigger than half the 
experiment period, that is, 37.5 days. Also, less than 10 
machines have cumulated uptimes ratio higher than 0.8 
and none was above 0.9. Comparatively to the 
Windows corporate environment depicted in [23] 
where more than 60% of machines presented an 
uptimes bigger than one nine, analyzed classroom 
machines present much lower uptime ratios. This is a 
consequence of the machines having no real owner and 
thus subject to the possibility of being powered off at 
the end of a class, contrary to corporate machines that 
split in two patterns: daytime and 24 hours. Daytime 
machines are powered on during office hours, while 24 
hours machines remain powered on for long periods. 
5.2. Machines stability 

In this section we analyze machines’ sessions, 
focusing on uptime length and reboot count. We define 
a machine session as the activity comprised between a 
boot and its corresponding shutdown. 
5.2.1 Uptime 

During the whole experiment 10688 sessions of 
machines were captured by our sampling methodology. 
It is important to note that due to the 15-minute period 
between consecutive samples, some short machine 
sessions might have not been captured. In fact, 
between two samples, DDC can only detect one reboot, 
since its reboot detection is based upon machine’s 
uptime.  

The average duration of the length of sessions was 
15 hours and 55 minutes. This value exhibits a high 
standard deviation of 26.65 hours indicating that 
session length fluctuates widely. Since multiple 
reboots occurred between two samples escape DDC 
(only one is detected), the above given average 

duration exceeds the real value. The right plot of 
Figure 4 displays the distribution of machines’ uptime 
length for sessions that lasted less or equal than 96 
hours (4 days). These sessions accounted for 98.7% of 
all machine sessions and 87.93% of cumulated uptime. 
These data permit to conclude that most machine 
sessions are short, lasting few hours, another indication 
of the high volatility of machines. 
5.2.2 Power on cycles 

As stated before, due to the coarse-grained 
granularity of the sample methodology, some of the 
short machine sessions may go unnoticed. Thus, in 
order to have a detailed view respecting reboots, we 
recurred to SMART parameters [19]. By resorting to 
the “power cycle count” metric, it is possible to spot 
undetected machine sessions. For instance, if the 
“power cycle count” values of two consecutive 
samples of a machine differ by more than one unit, this 
means that at least one short machine session with its 
corresponding boot and shutdown sequence, occurred.  

The cumulated count of hard disk power on cycles 
was 13871, with an average of 82.57 power cycles per 
machine and a standard deviation of 37.05 over the 77 
days. This represents 1.07 power on cycle per day, a 
value 30% higher than the number of machine sessions 
counted by our monitoring analysis. This means that a 
significant percentage of power cycles are of very short 
duration (less than 15 minutes) escaping our sampling 
mechanism. 

Resorting to the parameters “power on hour count” 
and “power cycles” it is possible to compute the 
average power on hours per power on cycle, henceforth 
referred as “uptime per power cycle”. For the 77-day 
monitoring, uptime per power cycle was 13 hours and 
54 minutes with a standard deviation of nearly 8 hours. 
The difference between the average uptime per power 
cycle and the average machine session length (see 
section 5.2.1) can be explained by the short-lived 
sessions that are not caught by our sampling 
methodology. Given the absolute count of power 
cycles and power on hours, it is possible to compute 
the uptime per power cycle for the whole disk life. 
Since machines are relatively new (all machines are 
less than 3 years old) the probability of machines 
conserving their original disk is high and thus average 
uptime per power cycle serves as a measure of average 
uptime. For our monitored system, the average power 
on hours per power on cycle was 6.46 hours with a 
standard deviation of 4.78 hours. This value is 
surprisingly lower than the one we found during our 
monitoring study. 
5.3. Weekly analysis 

Figure 6 aggregates two plots related to the weekly 
distribution of samples. Left plot displays weekly 
distribution of average percentage of CPU idleness (top 



curve), RAM occupation (middle curve) and SWAP 
load (bottom curve). Right plot shows average network 
rates for received (top curve) and sent traffic (bottom 
curve). Besides following the night and weekend 
pattern, the weekly distribution of average CPU 
idleness presents a significant negative spike on 
Tuesdays afternoons, dropping below 91%. This CPU 
usage spike was due to a practical class which 
consumed an average of 50% of CPU, although we 
could not find the reasons behind this abnormal CPU 
usage. Confirming high CPU availability, average CPU 
idleness never drops below 90% and mostly ranges 
from 95% to 100%. The phases of near 100% average 
CPU idleness correspond to the periods when 
classrooms are closed: 4 am to 8 am during weekdays 
and from Saturday 9 pm to Monday 8 am for 
weekends.  

Figure 5: Weekly distribution of average CPU idleness and 
memory usage (left) and network traffic (right). 

 

Both RAM and swap load curves exhibit the weekly 
pattern, although in a smoothed way. Note that RAM 
load never falls below 50%, meaning that a significant 
amount of RAM is required by operating system usage. 
Comparing RAM and swap usage, it can be observed 
that the swap curve roughly follows memory usage, 
although strongly attenuating high frequencies.  

Network rates weekly distributions also exhibit the 
weekend and night pattern. Since we are plotting a rate, 
the drops originated by night periods and weekends 
appear as smoothed lines. Network client role of 
machines appears clearly visible, with received rates 
several times higher than sent rates. 

Weekly distribution of resource usage permits to 
conclude that apart from weekends and the night 
interval between 4 am and 8 am, absolute system 
idleness is limited. However, even on working hours, 
idleness levels are quite high, permitting successful 
yields in resource scavenging schemes. 
5.4 Equivalence ratio 

Arpaci et al. [12] defines the equivalent parallel 
machine as a metric to gauge the usable performance 
of non-dedicated machines relatively to a parallel 
machine. Kondo et al. [18] adopt an analogue metric, 
calling it cluster equivalence metric. This metric aims 
to measure the fraction of a dedicated cluster CPU that 
a non-dedicated machine CPU is worth to an 
application. We apply this definition, computing the 

CPU availability of a machine for a given period 
accordingly to its measured CPU idleness over this 
period. For instance, a machine with 90% CPU 
idleness is viewed as a dedicated machine with 90% of 
its computing power. This methodology assumes that 
all idle CPU can be harvested. Thus, obtained results 
should be regarded as an upper limit of CPU resources 
that can be harvested. To cope with heterogeneity, 
machines’ performances were normalized accordingly 
to their respective INT and FP indexes (a 50% weight 
was given to each index to compute a machine index).  

Figure 6 plots the weekly distribution of the cluster 
equivalence ratio. The average cluster ratio is 0.26 for 
occupied machines and 0.25 for user-free machines, 
totaling a 0.51 cluster equivalence ratio. This means 
that the set of non-dedicated machines is roughly 
equivalent to a dedicated cluster with half the size, 
following the 1:2 rule found out by [12]. 

 

 
Figure 6: Weekly distribution of equivalence cluster 

A more complete discussion of results is available 
in [24]. 
6. Conclusions 

This paper presents the main results of a 77-day 
monitoring usage study of 169 Windows 2000 
machines. The results show that resources idleness in 
academic classrooms comprised of Windows machines 
is very high, confirming previous works carried out in 
classrooms with Unix machines. 

The average CPU idleness observed was 
impressive: 97.9%. Also, the 94.2% average CPU 
idleness measured in user occupied machines indicates 
that CPU harvest schemes should be profitable even 
when interactive usage of the machine exists. This is 
confirmed by the 0.26 cluster equivalence ratio 
potentially available from exploiting CPU idleness of 
interactively used machines and 0.51 when user-free 
machines are also considered. 

Memory idleness is also noticeable especially in 
machines fitted with 512 MB of main memory. 
Coupled with a fast network technology such resources 
might be put to good use for network RAM schemes.  

Due to the fact that every machine only contains the 
operating system installation plus specific software 
needed for classes, free space storage among 
monitored machines is impressive. A possible 
application for such disk space relates to distributed 
backups or to the implementation of local data grids.  



Classrooms comprised of Windows machines seem 
appropriate for desktop grid computing not only 
limited to CPU, but also to main memory and free hard 
disk space. Beside wide resources availability, 
attractiveness of such environments for resources 
harvesting is strengthened by the fact that machines 
have no real personal owner.  

A major concern in classroom environments relates 
to volatility, since a resource available at a given time 
might become unavailable few seconds later. Thus, 
efficient usage of idle resources requires survival 
techniques such as checkpointing, oversubscription and 
multiple executions. 

We believe our results can be generalized to other 
academic classrooms which use Windows operating 
systems and which follow a similar classroom usage 
policy: shared machines for classes, with students 
accessing computers for work assignment and 
communication use.  

In conclusions, this study confirms that resource 
idleness observed in classrooms with Windows 
computers is quite considerable, and carefully 
channeled could yield good opportunities for grid 
desktop computing. 
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