
 
 

1

The role of Surprise, Curiosity and Hunger on 
Exploration of Unknown Environments 

Populated with Entities 
Luís Macedo, Amílcar Cardoso 

  
Abstract— This paper describes an approach based on affect 

to the problem of exploring unknown environments populated 
with entities by agents. To this end, a multi-agent system based 
on the notion of affect as well as on the Belief-Desire-Intention 
(BDI) model was used. The affective component of the agents is 
confined to the motivations that are usually associated to 
exploratory behavior: surprise, curiosity and hunger. An 
experiment that evaluates the role of these motivations in 
exploration performance is presented. 
 

Index Terms—Exploration of unknown environments, 
Curiosity, Hunger, Surprise. 
 

I. INTRODUCTION 
XPLORATION gathers information about the unknown. 
Exploration of unknown environments by artificial agents 

(usually mobile robots) has actually been an active research 
field. The exploration domains include planetary exploration 
(e.g., Mars or lunar exploration), search for meteorites in 
Antarctica, volcano exploration, map-building of interiors, etc. 
The main advantage of using artificial agents in those domains 
instead of humans is that most of them are extreme 
environments making exploration a dangerous task for human 
agents. However, there is still much to be done especially in 
dynamic environments as those real environments mentioned 
above. Those real environments consist of objects. For 
example, office environments possess chairs, doors, garbage 
cans, etc., cities comprise several kinds of buildings (houses, 
offices, hospitals, churches, etc.), cars, etc. Many of these 
objects are non-stationary, that is, their locations may change 
over time. This observation motivates research on a new 
generation of mapping algorithms, which represent 
environments as collections of objects. Moreover, the 
autonomy of agents still needs to be improved, as happens for 
instance in planetary exploration which is still too human 

dependent. Several exploration techniques have been 
proposed and tested either in simulated and real, indoor and 
outdoor environments, using single or multiple agents (for an 
overview see e.g., [1-3]). In human beings, exploration has 
been closely connected with motivation (including emotion 
and drives). This relationship between exploration and 
motivation has been defended for a long time in the realms of 
psychology and ethology. James’ concept of selective 
attention [4], Freud’s term cathexis [5], and McDougall’s 
notion of curiosity instinct [6] are foundation thoughts for the 
relationship between motivation and exploratory behaviour. 
Therefore, a reasonable approach is to model artificial agent’s 
exploration according to humans, i.e., in a human-like fashion 
by assigning artificial agents mentalistic qualities such as 
emotion and motivation, beliefs, intentions, and desires. 
Actually, there is one primary reason for taking the way 
humans explore the environment as a reference: the problem 
of modelling exploration in humans has already been 
successfully solved by millions of years of evolution. Yet, in 
general, a lot of barriers have been found to incorporate 
models of emotion in artificial agents. Research in AI has 
almost ignored this significant role of emotions on reasoning, 
and only recently this issue was taken seriously (e.g., [7-18]) 
mainly because of the recent advances in neuroscience, which 
have given evidence that cognitive tasks of humans, and 
particularly planning and decision-making, are influenced by 
emotion [19]. 

 
This work was supported in part by the PRODEP. 
L. Macedo is with the Instituto Superior de Engenharia de Coimbra, Quinta 

da Nora, 3030 Coimbra Portugal (e-mail: lmacedo@isec.pt) and with the 
Centre for Informatics and Systems of the University of Coimbra, Department 
of Informatics Engineering, Polo II, 3000 Coimbra Portugal (e-mail: 
macedo@dei.uc.pt).  

A. Cardoso is with the Centre for Informatics and Systems of the 
University of Coimbra, Department of Informatics Engineering, Polo II, 3000 
Coimbra Portugal (e-mail: amilcar@dei.uc.pt). 

In this paper we describe an approach based on affect to the 
problem of exploring unknown environments by agents. We 
developed a multi-agent system based on the notion of affect 
as well as on the BDI model, which was used as a platform to 
develop the application to exploration of unknown 
environments with affective agents. Primary relevance is 
given to the architecture of an affective agent and especially to 
its affective module and its influence on exploratory behavior. 
We confined the set of motivations to those that are more 
related with exploratory behavior in humans [20]. 

The next section describes the approach for exploring 
unknown environments with affective agents. Section 3 
presents an experiment that was conducted to evaluate that 
approach. Finally, we present conclusions. 
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II. EXPLORING UNKNOWN ENVIRONMENTS WITH AFFECTIVE 
AGENTS 

We study the problem of exploring unknown environments 
using a multi-agent system based on the notion of affect as 
well as on the BDI model. This multi-agent system is suitable 
to applications in which the entities (agents) are distributed in 
a physical environment. This is the case of the domain of 
exploration of unknown environments. The simulation 
environment considered as a test bed to our approach to 
exploration comprises therefore a variety of entities located at 
specific positions. In this case, the objects are confined to 
buildings. The structure of the buildings comprises the shape 
(triangular, rectangular, etc.) of the roof, facade, door and 
windows. The possible functions may be: house, church, hotel, 
hospital, etc. 

The architecture that we adopted for an agent (Figure 1) is 
based on the BDI approach [21]. As in many other agents’ 
architectures, the architecture followed in our work includes 
the following modules: sensors/perception; 
effectors/actuators; memory/beliefs; emotions, drives and 
other motivations (or simply motivation); intentions/goals; 
desires; and, deliberative reasoning/decision-making. The 
deliberative reasoning/decision-making module is in the core 
of the architecture. It receives internal information (from 
memory) and environment information (through the sensors) 
and outputs an action that has been selected for execution. The 
process of action selection takes into account the states of the 
environment the agent would like to happen (desires), i.e., it 
selects an action that leads to those states of the environment 
the agent prefers. This preference is implicitly represented in a 
mathematical function that evaluates states of the world in 
terms of the positive and negative feelings they elicit in the 
agent. Thus, this function obeys to the Maximum Expected 
Utility principle [22]. In this case, the utility is in positive 
feelings. The intensities of these feelings (motivations) are 
computed by the motivation module taking into account both 
the past experience (the information stored in memory) and 
the present environment description provided by the sensors. 

To explore the environment, each agent is continuously 
performing the deliberative reasoning/decision-making 
algorithm. Thus, each agent at a given time senses the 
environment to look for entities and compute the current 
world state (location, structure and function of those entities) 
based on the sensorial information and on the generation of 
expectations for the missing information. Then, a goal of kind 
visitEntity is generated for each unvisited entity (including 
those within the visual range and also those out of this range 
that were previously percepted but not yet visited). In 
addition, a goal of the kind visitLoc is generated for all the 
frontier cells [3]. Then, these goals are then inserted in the 
ranked list of goals which might already contain previous 
goals generated in the past but not yet accomplished. This list 
of goals is ranked according to the Expected Utility (EU) of 
the goals, which is computed based on the intensities of 
motivations predicted as explained below. 

The next three subsections describe in more detail the main 

modules of the architecture. 

A. Agent’s Memory 
The memory of an agent stores information about the 

world. This information includes the configuration of the 
surrounding world such as the position of the entities (objects 
and other animated agents) that inhabit it, the description of 
these entities themselves, descriptions of the sequences of 
actions (plans) executed by those entities and resulting from 
their interaction, and, in generally, beliefs about the world. 
This information is stored in several memory components. 
Thus, there is a (grid-based) metric map [23] to spatially 
model the surrounding physical environment of the agent. 
Descriptions of entities (physical structure and function) 
(Figures 2 and 3) and plans are stored both in the episodic 
memory and in the semantic memory [24]. The physical 
structure of an entity may be described analogically or 
propositionally [25]. The function is simply a description of 
the role or category of the entity in the environment. For 
instance, a house, a car, a tree, etc. Like the description of the 
physical structure, this may be probabilistic because of the 
incompleteness of perception. Concrete entities (i.e., entities 
represented in the episodic memory) with similar features may 
be generalized or abstracted into a single one, an abstract 
entity, which is stored in the semantic memory for entities. 
Figure 3 presents a semantic memory obtained from the 
episodic memory of entities shown in Figure 2. 
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Fig. 1.  Agent’s architecture. 
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Fig. 2.  Episodic memory of entities. 
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Fig. 3.  Semantic  memory of entities. 

 

B. Motivations 
The module of Motivations receives information from the 

current state of the environment and outputs the intensities of 
emotions, drives, and other motivations. In this paper, this 
module is confined to the motivations that are related with 
variables that directly instigate exploration: surprise (elicited 
by unexpectedness), curiosity (elicited by novelty and 
uncertainty), and hunger (the drive that reflects the need of an 
energy source). 

1) Surprise 
A reasonable approach to model the agent’s surprise 

function is according to that of humans. Experimental 
evidence from human participants summarized in [26] 
suggests that the intensity of felt surprise increases 
monotonically, and is closely correlated with the degree of 
unexpectedness (see [27] for more details). This means that 
unexpectedness is the proximate cognitive appraisal cause of 
the surprise experience. On the basis of this evidence, it is 

event X is proportional to the degree of unexpectedness of X. 
The intensity of surprise elicited by X should therefore be an 
(at least weakly) monotonically increasing function of 1-P(X) 
[27]. However, an additional empirical and theoretical study 
[28] conducted in the domains of political elections and sport 
games with several surprise functions suggests that the 
surprise felt by an agent elicited by an event Eg, g ∈ {1, 2, …, 
m}, among a set of m mutually exclusive events E={E1, E2, 
…, Em} is given by: 

 

reasonable that the surprise “felt” by an agent elicited by an 
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ghest probability of the set E. It implies that, within each set 
of mutually exclusive events, there is always at least one (Eh) 
whose occurrence is entirely unsurprising, namely the event 
with the maximum probability in the set (P(Eh)). For the other 
events X in the set, the surprise intensity caused by their 
occurrence is the logarithm of the difference between P(Eh) 
and their probability P(Eg) plus 1. This difference can be 
interpreted as the amount by which P(Eg) has to be increased 
for Eg to become unsurprising. This equation predicts that that 
maximum surprise, i.e., SURPRISE(Eg) = 1, occurs only if 
P(Eh) = 1 and hence, by implication, P(Eg) = 0. (In the Ortony 
and Partridge model [29], this corresponds to those situations 
where the disconfirmed event Eh is immutable, i.e., its 
probability is 1). Therefore, this formula seems to correctly 
describe surprise in the election example. Confirming this 
impression, this formula also acknowledges the intuition that 
if there are only two alternative events Eg and Eh (= not Eg), it 
predicts that Eg should be unsurprising for P(Eg) ≥ 0.5, for in 
this case Eg is also the event with the highest probability in the 
set. By contrast, for P(Eg) < 0.5, it predicts that Eg should be 
surprising and increasingly so the more P(Eg) approaches 0, 
with maximum possible surprise (SURPRISE(Eg) = 1) being 
experienced for P(Eg) = 0. In addition, however, it also 
captures the nonlinearity of the surprise function suggested by 
the experiments with humans reported in [26]. 

The above equation just gives the surprise o
 occurrence. However, it is possible to compute beforehand 

the surprise the agent expects to feel from a scenario S whose 
outcome is one the events of the set of mutually exclusive 
events E={E1, E2, …, Em}. This is given by the following 
equation that resembles the equation of EU [22] as well as the 
equation of entropy [30], where the logarithmic factor plays 
the role of utility and surprisal1, respectively: 
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1 Notice that the notion of surprisal that belongs to information theory 
differs from our notion of surprise because the former does not capture 
correctly the human surprise 
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The computation of the intensity of surprise elicited by an 
ob

e contribution of 
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To compute the surprise for the pieces with no uncertainty, 

th

ject relies on considering the object as consisting of pieces: 
the cells of the analogical description, the propositions of the 
propositional description, and the function. Surprise is 
computed based on all those pieces of an object. Each piece of 
an object is considered as a scenario. For some of those 
scenarios there is already an outcome event and for others 
don’t, but rather a set of possible events associated with a 
probability of occurrence. This means for the former scenarios 
the probability distribution contains a single pair <event, 
probability> – the certain event, while for the latter scenarios 
the probability distribution contains multiple pairs. In this 
case, these pairs constitute the active expectations [29] of the 
agent which may conflict with the information further 
acquired for these uncertain scenarios. Although, the 
probability distribution of the scenarios with no uncertainty 
contains a single pair, it is possible to compute the probability 
distribution as if there were no certainty by computing the 
probability for the already known events as well as for the 
other events that could have happen. The pairs of such 
probability distributions correspond to passive expectations as 
they are computed only after the outcome of a scenario is 
known. Whatever the scenario contains uncertainty or not, the 
probabilities of the probability distributions are computed in 
three manners, depending on the category of knowledge to 
which the piece of information belongs: (a) for the scenarios 
corresponding to pieces of the propositional description the 
Bayes’ equation is used taking as evidence the rest of the 
pieces of the propositional description that are already known; 
(b) for the scenario corresponding to the function of the 
object, the Bayes’ equation is used taking as evidence the 
pieces of information of the propositional description that are 
already known; (c) for the scenarios corresponding to the cells 
of the analogical description, the probabilistic analogical 
description is used which is obtained based on the probability 
distribution for the function of the object. 

The intensity of surprise results from th
th the pieces with no uncertainty (XC) and the pieces with 

uncertainty (XU): 
 

[ ]

∑ ∑

∑

∈ =

∈

−+×+

+−+=

=+=

U

S

Cg

XS

m

i
ihi

XE
gh

UC

EPEPEP

EPEP

XSURPRISEEXSURPRISEXSURPRISE

1
2

2

))()(1(log)(

))()(1(log

)()()(

e probabilities of the event with the highest probability of 
the set and of the event that really occurred are retrieved from 
the probability distributions and used in equation 1. Then all 
the surprise values computed for all the pieces of the object 
that are known are summed. For the uncertain pieces of an 
object the process is similar except that all the probabilities 
are taken from the probability distributions and not only those 
of the event with the highest probability of the set and of the 

event that really occurred. Equation 2 is used to compute the 
expected surprise values of all the uncertain pieces and then 
they are summed. 

2) Curiosity 
We define curiosity/interest (following McDougall [6], 

Berlyne [20] and Shand [31]) as the desire to know or learn an 
object that arouses interest by being novel or uncertain, which 
means that novel and uncertain objects, i.e., objects with at 
least some parts that are not yet known, stimulate actions 
intended to acquire knowledge about those objects. While 
novelty means new information, uncertainty means that new 
information is probably to be acquired. Information is a 
decrease in uncertainty which, according to information 
theory, is measured by entropy [30]. An object may comprise 
a known part and an uncertain part. Thus, if we accept the 
above definition, the curiosity/interest induced in an agent by 
an object X depends both on the novelty or difference of X 
relatively to the set of objects present in the memory of the 
agent AgtMem, and on the entropy of the object: 
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Like in surprise, the computation of the curiosity elicited by 

an object is based on considering the object as consisting of 
pieces. Curiosity is thus computed based on all those pieces of 
an object. Like surprise, curiosity results from the curiosity 
elicited by the certain parts and the uncertain parts of the 
object. The pieces of the object that contain no uncertainty, 
i.e., which are already known, are used to compute the novelty 
of the object, while the uncertainty pieces2 are used to 
compute the entropy of the object. 

Let us consider first the certain pieces. In order to compute 
its novelty, the object is compared with every object in 
memory. This comparison may involve the comparison of the 
propositional and analogical descriptions, and the functions. 
Since the propositional description is represented in a graph-
based way, the measure of difference relies heavily on error 
correcting code theory [32]: the function computes the 
distance between two objects represented by graphs, counting 
the minimal number of changes (insertions and deletions of 
nodes and edges) required to transform one graph into 
another. A similar procedure is applied to compute the 
difference between the analogical descriptions: the analogical 
descriptions of two objects are superimposed and then the 
cells that don’t match are counted. The difference between 
two objects in what respect to the function is either 1 or 0, 
depending on they match or don’t match. To compute the 
difference of a given object relatively to a set of objects, we 
apply the above procedure to each pair of objects formed by 
the given object and an object from the set of objects. The 
minimum of those differences is the difference of the given 
 

2 These could be all the pieces because the certain pieces have a null 
contribute to the overall entropy of the object. 



 
 

5

object relatively to the given set of objects. 
The entropy is computed based on all parts of an object that 

contain uncertainty. This includes the analogical (XA) and 
propositional (XP) descriptions of the physical structure, and 
the function (XF): 
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3) Hunger 

The drive hunger is defined as the need of a source of 
energy. Given the capacity C of the storage of that source 
(C=1, i.e., C=100%), and L the amount of energy left (0 ≤ L ≤ 
C), the hunger elicited in an agent is computed as follows: 

 
LCHUNGER −=  (6) 

 

C. Motivations and Deliberative Reasoning/Decision-
making 
The motivational system plays an important role in the 

generation and ranking of goals/intentions which is performed 
by the deliberative/decision-making module. Actually, 
according to psychologists, motivations are the source of 
goals in several manners: these goals may be included in 
emotions (e.g., when an agent feels anger about something, a 
possible triggered goal might be fisting the entity that is on the 
origin of the anger), or emotions may be themselves the goals 
(e.g., an agent looks for states of the world that elicit certain 
positive emotions such as happiness or surprise). We take 
seriously this principle. Therefore, an agent selects actions or 
sequences of actions that lead to those states of the world that 
maximize positive feelings and minimize negative ones. For 
instance, an agent establishes the goal of visiting an object 
that seems beforehand interesting (novel, surprising) because 
visiting it will probably make it feel happy for acquiring 
information. After a set of goal tasks are generated, their EUs 
are computed. This is performed predicting the motivations 
(surprise, curiosity and hunger) that could be elicited when the 
effect  of a goal task T takes place [17, 33]: k
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The functions , , and  

are replaced by the functions of surprise, curiosity, and hunger 
defined above and applied to the resulting state of the world 
when the effect  takes place. To what parts of the state of 
the world they are applied is determined in the definition of 
each action. For instance for the case of task of visiting an 
entity/cell they are applied to the entity or to the cell visited. 
In the first case, it is restricted to surprise and curiosity, while 
in the second case only the function hunger is used. 
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III. EXPERIMENTAL EVALUATION 
The main goal of this experiment is to assess the influence 

of surprise, curiosity and hunger on the performance of the 
exploration of environments populated with entities. We let an 
agent explore exhaustively the environment several times, 
each time with a different exploration strategy (eight of the 
strategies result from different combination of the parameters 
of equation 7 – see table below – while another is based on a 
classical exploration strategy that takes into account the 
distance to traverse and the amount of information expected to 
be acquired). We collected the number of different entities 
visited along the time. 

A. Materials and Method 
In order to compare the performance of the different 

strategies we consider an agent exploring 3 simulated 
environments, each time with a different strategy for 
exploration. One of those strategies, A8, is based on the 
distance to be traveled by the agent and the expected 
information gain which is defined by the entropy [34]. Eight 
of these strategies result from considering the combinations of 
the parameters of Equation 7. The possible combinations of 
these parameters and the correspondent strategies are 
presented in Table I. With strategy A0, the agent performs 
undirected exploration (random) [35]. With strategy A1, the 
agent performs directed exploration based solely on hunger. 
With strategy A2 it performs directed exploration based solely 
on curiosity. With strategy A3, the agent performs directed 
exploration based on curiosity/interest and hunger. With 
strategy A4, the agent performs directed exploration based 
only on surprise. With strategy A5, it performs directed 
exploration based surprise and hunger. With strategy A6, it 
performs directed exploration based on surprise and curiosity. 
With strategy A7, it performs directed exploration based on 
surprise, curiosity, and hunger. 

 
TABLE I 

UNITS FOR MAGNETIC PROPERTIES 
Strategy α1 - Surprise α2 - Curiosity α3 - Hunger 

A0 0 0 0 
A1 0 0 -1 
A2 0 1 0 
A3 0 1 -1 
A4 1 0 0 
A5 1 0 -1 
A6 1 1 0 
A7 1 1 -1 

 
The 3 simulated environments in which the agent was ran 
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contain an average of 60% of entities that are each other 
similar. Environments that contain some entities that are equal 
seem to be appropriate to test this matter because the agent has 
to select the entities to maximize the number of different 
entity models acquired. This is harder and clearly seen in 
environments with a considerable amount of equal entities 
than in environments in which all or almost all the entities are 
equal or different. 

The procedure of this experiment consists simply in running 
the agent nine times in all the environments each time with a 
different strategy, starting from the same location. The visual 
range of the agent was also constant (10 cells). The value of 
the number of different entities visited was collected. This is 
then the dependent variable, while the strategy and the 
environment are the independent variables. This enables us to 
take conclusions about how the influence of the strategy on 
the value of “the different entities visited” evolves during the 
exploration of an environment. This means that it is possible 
with this experiment to see the influence at any time during 
exploration. The main motivation for this study is that 
sometimes there is a time limit to explore an environment that 
is too short to explore it completely. Hence, with this 
experiment we may take conclusions about which strategy or 
strategies are better for these situations. 

B. Results 
The results of this experiment are presented in Figure 4. It 

plots the time series of the variable “number of different 
entities visited” for the strategies A1, A2, A3, A4 and A8. For 
the sake of simplicity we avoid plotting the other strategies 
(A7 is very similar to A3, A6 to A2, A5 to A4, and A0 was 
clearly the worst strategy). It can be seen that the strategy A1 
outperforms the others clearly after the complete exploration 
of the environment, although A3 and A2 are very close 
contenders. It is worth of notice that A3, A2 and A8 produced 
better results than A1 in a quite large time interval. We verify 
that the number of entities visited using these strategies are 
higher than those of using the other strategies from time 34 to 
time 51. Another result is that the classical strategy is 
outperformed by most of the strategies when there is complete 
exploration of the environment. 
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C. Discussion 
This experiment shows that the agent explores faster all the 

different entities of the environment when it uses a strategy 
that takes into account hunger either alone or combined with 
surprise and/or curiosity. Actually, an agent that uses those 
strategies visits faster all the different entities than if it uses 
the other strategies. In this case an agent that uses these 
strategies that take into account surprise or curiosity, jointly or 
independently, together with hunger the erratic paths that are 
achieved when using surprise or curiosity alone gives rise to 
ordered exploration paths and hence to a significative increase 
on efficiency. Actually, the motivation to visit entities or 
frontier cells that are expected to elicit curiosity and/or 
surprise but that are far away from the location of the agent is 
restrained by the hunger that is expected to be felt on those 
destination locations. Curiosity and to some extent surprise 
lead the agent to visit entities that are expected to be different. 
So, it could be expected that when they are taken alone or 
combined the agent would visit more different entities. 
However, this does not happen because the agent looses most 
of the time traversing long distance, although this depends on 
the configuration of the environment. So, the role of hunger is 
essential to restrain this impetus to visit far and expected new 
entities. The classical exploration strategy performs worse 
mainly because it does not take into account the novelty of the 
entities. 

When there is a short time limit to explore the environment 
(between 34 and 51), the experiment shows that the strategies 
A3 or A8 outperform the others. The worse results of strategy 
A1 seem to show that it is too sensitive to the distribution of 
the entities in the environment. Actually, it does not provide 
the agent with capability of looking for maximal knowledge. 
Instead, it enables the agent to avoid spending energy. 

 

IV. CONCLUSION 
We have presented an approach for directed exploration of 

unknown environments based on surprise, curiosity and 
hunger. The strategy that takes into account hunger seems to 
be the best strategy after exploring exhaustively an 
environment. However, when there is a shorter time limit to 
explore an environment, the strategy that takes into account 
curiosity and hunger seems to be better. Surprise seems to be 
unnecessary for exploration. However, it proved to be useful 
when exploration is performed in the context of creativity, i.e., 
when the primary goal of the agent is not to gain knowledge 
but instead to admire entities that are considered artistically or 
scientifically creative. Therefore, surprise seems to be useful 
in exploration tasks performed in environments such as 
museums. 

In the future we expect to extend this experiment so that the 
approach could be tested in much more environments in order 
to achieve statistically significative results. Strategy A1 seems 
to be too sensitive to the distribution of the entities in the 
environment. Therefore, additional tests are required to take 



 
 

7

definitive conclusions. Besides, in addition to the variable 
“number of different entities visited” there other variables that 
are important to measure and compare. One of those variables 
is the number of measurements performed [34]. Another 
future work is about the computation of novelty or difference 
which gives equal relevance to all the features of the objects. 
This approach based on old notions of similarity in 
psychology has long since been discredited by data. 
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