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Foreword

This report is based on my M.Sc. thesis on predicting protein secondary structure using artificial
neural networks. It was completed more than five years ago at FCUL1, Portugal, under the
supervision of J. Felix Costa and Pedro J.N. Silva. No publication ever came out of this thesis,
mainly because of lack of computational power to perform the numerous additional validations that
would have been needed to ensure reliable and publishable results. A few years ago, this thesis
was given new life and began serving as an application example to the bioinformatics students
of the FCUL-IGC post-graduate programme2, in the ’Biologically Inspired Algorithms’ course
coordinated by Carlos Lourenço.

The prediction system described here was inspired in the best system available then, and the
results presented appear to be slightly better. This was probably due to the general increasing
quality of the publicly available data, or to the specific removal of any dubious elements from our
data, resulting in high quality data sets.

However, this report is not about results. Those are outdated, as may be other information
herein contained. This work should not be regarded as anything more than a mere example of the
application of artificial neural networks to the secondary structure prediction task. This prediction
system could have been developed in many different ways, of which only a few are mentioned along
the text. Many details were left out, and many options left unjustified. Still, after completing this
condensed translation of my thesis to serve as additional course material, I hope you will find it
useful, too.

I would like to thank the Fundação para a Ciência e a Tecnologia, Portugal, for my M.Sc.
grant (PRAXIS XXI BM/15046/98), as well as both my M.Sc. advisors in the University of Lis-
boa, especially Pedro for once again reviewing my writing. Great thanks also go to Ernesto Costa,
currently my Ph.D. advisor in the University of Coimbra, for his interest and suggestions regarding
this work. Last but not least, I thank Carlos Lourenço for taking my thesis out of the shelf and
making it see the light of day again.

Sara Silva

May 10th, 2005

1http://www.fc.ul.pt/
2http://bioinformatics.fc.ul.pt/
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Chapter 1

Introduction

The idea of using neural networks in the prediction of protein secondary structure originated on
a curious episode. The NETtalk system, developed by Sejnowski and Rosenberg [1], consists of a
neural network that learns how to pronounce English written text. A 7-letter window moves along
the text while the network is trained to pronounce the phoneme corresponding to the central letter.
Following a presentation about NETtalk, someone in the audience suggested Sejnowski that, using
amino acids instead of letters, the system could learn how to predict protein secondary structure
[2]. The work then published by Qian and Sejnowski [3] proved that neural networks could achieve
better results than any other existing secondary structure prediction method.

A long series of similar prediction methods followed, leading to the PHD system [4], the first
method to reach the 70% accuracy barrier, and certainly the most successful for many years
afterwards. Our prediction system was inspired in PHD.

The next chapter of this report describes proteins: the constitution of the several levels of their
structure, the structural classes in which they can be divided, and some notions about homology
and alignments. Chapter 3 addresses the reasons for predicting secondary structure, and briefly
describes some important prediction methods, including the PHD. Chapter 4 explains the workings
of our system: how data was obtained and pre-processed, how the different components of the
system interact with each other, and how to interpret the output provided. Chapter 5 describes
how the results can be presented, and how to make them more informative and reliable. Finally,
Chapter 6 contains some considerations regarding the difficulties of predicting protein secondary
structure.
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Chapter 2

Proteins

Proteins are macromolecules coded by DNA, such as enzymes, antibodies, and many hormones.
They are built from several molecules called amino acids, connected to each other in a linear
sequence called polypeptide chain. Each protein is made from one or more of these chains.

Amino acids are formed by a central carbon bonded to an hydrogen, a carboxyl group (COOH),
an amino group (NH2), and a side chain whose structure determines the distinctive physical and
chemical properties of each amino acid. Figure 2.1 shows a generic amino acid, and table 2.1
lists the names of the 20 standard amino acids found in proteins, along with the three-letter and
one-letter symbols used to designate them.

 
 

  

 
carbon 

 
oxygen 

 
nitrogen 

   
General structural 

formula 

 

Structural formula 
at pH 7 

 

Graphical representation 
without hydrogens 

 
Figure 2.1: Generic amino acid.

Table 2.1: The 20 standard amino acids found in proteins.

Name
3-letter
symbol

1-letter
symbol

Alanine Ala A
Cysteine Cys C
Aspartic acid Asp D
Glutamic acid Glu E
Phenylalanine Phe F
Glycine Gly G
Histidine His H
Isoleucine Ile I
Lysine Lys K
Leucine Leu L

Name
3-letter
symbol

1-letter
symbol

Methionine Met M
Asparagine Asn N
Proline Pro P
Glutamine Gln Q
Arginine Arg R
Serine Ser S
Threonine Thr T
Valine Val V
Tryptophan Trp W
Tyrosine Tyr Y
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2.1 Structure

When two amino acids connect to each other, they release a water molecule, forming a peptide bond.
What is left of each amino acid is then called residue, although both terms are used interchangeably.
Each polypeptide chain may contain from a few dozen to several hundred residues. The primary

structure of a protein is the sequence of residues of its polypeptide chain(s). Figure 2.2 shows the
primary structure of a protein designated as ‘protein G’. The highlighted residues constitute what
is called the ‘B1 domain’ (see figures 2.5 and 2.6 for other structural levels).

 10 20 30 40 50 

  1 MEKEKKVKYF LRKSAFGLAS VSAAFLVGST VFAVDSPIED TPIIRNGGEL 
 51 TNLLGNSETT LALRNEESAT ADLTAAAVAD TVAAAAAENA GAAAWEAAAA 
101 ADALAKAKAD ALKEFNKYGV SDYYKNLINN AKTVEGIKDL QAQVVESAKK 
151 ARISEATDGL SDFLKSQTPA EDTVKSIELA EAKVLANREL DKYGVSDYHK 
201 NLINNAKTVE GVKELIDEIL AALPKTDTYK LILNGKTLKG ETTTEAVDAA 
251 TAEKVFKQYA NDNGVDGEWT YDDATKTFTV TEKPEVIDAS ELTPAVTTYK 
301 LVINGKTLKG ETTTKAVDAE TAEKAFKQYA NDNGVDGVWT YDDATKTFTV 
351 TEMVTEVPGD APTEPEKPEA SIPLVPLTPA TPIAKDDAKK DDTKKEDAKK 
401 PEAKKDDAKK AETLPTTGEG SNPFFTAAAL AVMAGAGALA VASKRKED 

 
Figure 2.2: Primary structure of ‘protein G’, with the residues of the ‘B1 domain’ highlighted.

Polypeptide chains are not unidirectional structures. Several chemical interactions among
residues and between residues and the solvent fold the chain in different directions. The hy-
drophobic properties of some amino acids also play a part in its final conformation. Several motifs
repeatedly occur along the polypeptide chain(s). Their identification is called the secondary struc-

ture of the protein.
Two of the most common structural motifs are the α-helix and the β-sheet. In a α-helix the

backbone of the polypeptide chain forms a helicoidal structure with 3.6 residues per turn, stabilized
by hydrogen bonds between every 4 residues, with all side chains turned outwards. Figure 2.3 shows
three different representations of a α-helix1. Other types of helix occur less frequently, like the
π-helix and the 310-helix.

In a β-sheet different segments of the polypeptide chain, or even of different chains, are con-
nected by hydrogen bonds between all the residues, forming a planar structure with the side chains
turned upwards and downwards, never interacting with each other. β-sheets can be parallel (all
the segments oriented in the same direction), antiparallel (adjacent segments oriented in opposite
directions), or mixed. Figure 2.4 shows two different representations of a mixed β-sheet.

The tertiary structure of a protein is the arrangement of all its atoms in tridimensional space.
Figure 2.5 shows the tertiary structure of the B1 domain of protein G (see figure 2.2 for primary
structure), in a stereoscopic pair2. It is often useful to visualize both secondary and tertiary
structures at the same time, in which case the representation of the side chains is omitted and the
most common structural motifs are represented pictorially (see figures 2.3 and 2.4). Figure 2.6
shows both secondary and tertiary structures of the B1 domain of protein G.

Quaternary structure exists only when the protein is formed by more than one polypeptide
chain, and it describes their relative positions and interactions. Figure 2.7 (page 11) shows the
quaternary structure of a human hemoglobin, with each of its four chains represented pictorially
in a different color.

1These illustrations were produced by one of the molecular visualization programs available at
http://www.umass.edu/microbio/rasmol/

2Stereoscopic pairs should be visualized using the cross-viewing method.
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Figure 2.3: Different representations of a α-helix.
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Figure 2.4: Different representations of a β-sheet.
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 Figure 2.5: Tertiary structure of ‘protein G’, ‘B1 domain’, in stereoscopy.

 
 

Figure 2.6: Secondary and tertiary structure of ‘protein G’, ‘B1 domain’, in stereoscopy.
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2.2 Structural class

Depending on their spatial structure, proteins can be grouped in one of four classes, represented
by α/α, β/β, α/β, and α + β. α/α proteins are formed almost exclusively by α-helices, with any
β-sheets located in the periphery. Human hemoglobin (figure 2.7, page 11) is an example of a α/α
protein. β/β proteins are formed almost exclusively by β-sheets, mostly antiparallel, with any
α-helices located in the periphery. Figure 2.8 (left) represents a β/β protein. In proteins belonging
to the α/β structural class, α-helices and β-sheets alternate in such a way that the sheets (typically
parallel) form a central agglomerate surrounded by helices. Figure 2.8 (right) represents a α/β
protein. The α + β class includes the proteins that are not dominated by any of the secondary
structure motifs, nor show the alternateness typical of the α/β class. The B1 domain of protein G
(figure 2.6, page 9) belongs to the α + β class.

Different domains of the same protein frequently belong to different structural classes. Some
proteins cannot be classified in any class, either because its sequence is too short or because it
shows practically no secondary structure motifs. Knowing the structural class to which a protein
belongs may be helpful in predicting its entire secondary structure because it allows the usage of
methods specialized in each class [5]. However, achieving a reliable prediction of the structural
class based on the primary structure alone may prove too hard to be advantageous [4].

2.3 Homology

When genes suffer mutations, the proteins they code may be affected, most commonly by sub-
stitutions, insertions, and deletions of single amino acids of the sequence. Some proteins contain
a group of amino acids essential to its structure and function, called functional center (or active

site, in enzymes). When a mutation affects the functional center of a protein, it usually impairs
or even disables its function, so the mutation is rapidly lost. On the other hand, substitutions
between similar amino acids rarely affect the conformation of the protein, and are very common.
Conformation is generally more important than sequence, therefore more evolutionarily conserved.

Two proteins are said to be homologous when they share a common ancestor. In practical terms,
homology is considered when the primary sequences are at least n% identical, with n usually 20,
25, or 30. It is indeed highly improbable for two sequences evolving independently to arrive at
such high similarity.

An alignment of proteins is an arrangement of their sequences such that the aligned residues
correspond to the same residue in a common ancestor. Although an alignment may use only two
sequences, a multiple alignment is more reliable from the biological point of view, and may contain
more than evolutionary information. Namely, it can reveal the functional centers of homologous
proteins, identified by one or more groups of extremely conserved consecutive residues.
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Figure 2.7: Quaternary structure of a human hemoglobin.

 

 

Figure 2.8: β/β protein (left) and α/β protein (right).

11



Chapter 3

Predicting secondary structure

Experimental methods, like X-ray crystallography and multidimensional Nuclear Magnetic Reso-
nance (NMR) spectroscopy can be used to determine protein structure. However, for more than a
decade they have not been able to keep pace with the rapidly growing number of known sequences,
and the last few years have dramatically increased that difference. Figure 3.1 plots the growth of
the number of annotated sequences available in Swiss-Prot1 and the number of structures available
in PDB (Protein Data Bank)2, between 1986 and now. On May 10th of 2005, the number of struc-
tures was 31237 and the number of sequences was 168297, plus more than 1.5 million (precisely
1589670) sequences stored in the auxiliary TrEMBL database, awaiting annotation before being
also admitted in Swiss-Prot.

0

20000

40000

60000

80000

100000

120000

140000

160000

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004

Year

N
u

m
b

er
 a

va
ila

b
le

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Swiss-Prot release

structures
(PDB)

sequences
(Swiss-Prot)

Figure 3.1: Growth of the number of sequences and structures available.

Given the difficulty in experimentally determining protein structure, several attempts have been
made to predict it, based on the fundamental assumption that sequence determines conformation.
Many of the methods developed are aimed at what seems to be an easier task: predicting secondary
structure3 (see [6, sect. 6.3]). The importance of this strategy should not be underestimated.
Besides providing invaluable information about a protein, a sufficiently reliable secondary structure
prediction may be used as a stepping stone for attempting the far more difficult task of predicting
its complete tridimensional conformation.

1http://www.expasy.org/sprot/
2http://www.rcsb.org/pdb/
3For a collection of protein secondary structure analysis and information sites, see

http://www.hgmp.mrc.ac.uk/GenomeWeb/prot-2-struct.html
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Table 3.1: Three generations of secondary structure prediction methods.
Name Year Type Accuracy

Chou-Fasman 1974
1st generation:
� local interactions
� alignments

50%

GOR III 1987
2nd generation:
⊠ local interactions
� alignments

60%

PHD 1993
3rd generation:
⊠ local interactions
⊠ alignments

70%

Table 3.1 summarizes three different secondary structure prediction methods: Chou-Fasman
[7, 8], GOR III (Garnier-Osguthorpe-Robson) [9], and PHD (Profile network from HeiDelberg)
[4, 10]. These methods are important because they have introduced what is usually considered
to be three different generations of secondary structure prediction methods. Each generation is
characterized by the usage - or not - of information regarding local interactions between amino
acids, and alignments (see section 2.3).

3.1 Chou-Fasman

The Chou-Fasman method was developed in 1974, and the first one to be widely used in the
prediction of protein secondary structure. Based solely on the probability of each amino acid to
belong to a helix or sheet, its accuracy did not reach more than 50% of correctly classified residues.

3.2 GOR III

GOR III, developed in 1987 as an improvement to GOR [11], was the first method to use information
about local interactions between amino acids. This means that, to predict the secondary structure
of a given amino acid, GOR III also uses the information about which amino acids are following
and preceding it in the sequence. This method reports an accuracy of 60%.

3.3 PHD

Possibly still the best and most used secondary structure prediction method, PHD was the first to
use the evolutionary information contained in alignments. When receiving a sequence to classify,
the first priority of PHD is to obtain a multiple alignment from homologous sequences stored in
Swiss-Prot, a task performed by the auxiliary program MaxHom [12].

Based on artificial neural networks (ANNs), PHD contains four processing levels, the first two
being multilayer perceptrons previously trained with proteins of known structure. The first level
receives vectors concerning sequences of 13 consecutive amino acids in the alignment, and returns
the likelihood of the central residue being in a helix, sheet, or other motif. The second level
receives the values from the first level, along with some global information about the protein (like
its length), and returns new likelihood values with the same meaning as the ones returned by the
first level. The highest value determines the classification of the central residue, and the difference
between the two highest values is used as a reliability index indicating the confidence the program
has in the prediction made. Several neural networks, trained independently from each other,
perform the classification of all the residues of the sequence, and the third computational level of
PHD consists in choosing the classifications with the highest reliability indices. The fourth and
last computational level consists in submitting the classification obtained to a filter that removes
obvious mistakes (like helices less than three residues long, an impossible occurrence).

The PHD method was the first to surpass the 70% accuracy barrier. If only the half of residues
with higher reliability index are considered, this accuracy rises above 80%. PHD can be freely used
online through the server PredictProtein4 [13].

4http://www.embl-heidelberg.de/predictprotein/
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Chapter 4

ANN-based prediction system

Although inspired in PHD, the prediction system described here is considerably simpler, containing
only two processing levels, both implemented as multilayer perceptrons. Figure 4.1 shows a diagram
of this system.

4.1 Outline

As in the PHD system, inputs to the first processing level consist of windows of 13 consecutive
positions1 in the alignment, and the values returned represent the likelihood of the central position
being in a helix, sheet, or other motif. The second level receives these likelihood values and, using
17 × 3-value wide windows, returns updated likelihood values for the central position. Although
implemented in a different manner, this second processing level is similar to the forth processing
level of PHD, filtering out the most obvious prediction errors. The prediction for each residue is the
motif with highest likelihood value, accompanied by a reliability index somewhat less optimistic
than the PHD index.

 
 

Alignment 
(of 6 sequences)   Prediction Reliability 

 ↓      ↓ ↓  

. . . 
. . . 

. . . 
 GGGGAN 

NNNNNS 
QQQQQQ 
PTTVNP 
FFFFFF 
AAACCM 
PPPPPR 
LLLLMW 
RKKKER 
DEEKVD 
TTTVVR 
IIILIF 
ARRPPL 

- 
E 
E 
- 
- 
E 
E 
H 
H 
H 
H 
H 
H 

7 
6 
5 
8 
5 
8 
7 
7 
8 
9 
9 
9 
8 

. . . 

→→→→ 

 

Multilayer 
perceptron 

↓ 
 
 →→→→ 

 

Multilayer 
perceptron 

↓ 
 
 →→→→ 

. . . 
. . . 

 

 

Filter Classifier 

Figure 4.1: ANN-based prediction system. H → helix, E → sheet, – → other motifs.

1Any other odd number is acceptable. The higher the number, the larger amount of information is available
to the neural network, but the longer computational time is needed for learning. Some authors have used larger
windows, of size 17 [14] or even 51 [15].
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4.2 Data

All the data used to train our prediction system was obtained in the HSSP (Homology-derived
Secondary Structure of Proteins) [12] public database2. Frequently updated, on November 23rd of
2004 this database contained 26213 files referring to proteins whose structure is available in PDB
and for which the secondary structure was determined using the DSSP (Database of Secondary
Structure in Proteins) [16] program3. The names of the HSSP files are identical to the names of
the corresponding PDB files, and their internal format is exemplified in figure 4.2, abbreviated for
better visualization.

HSSP files

The file header contains information about the protein, like its origin (not shown in the figure) and
identification, sequence length, number of chains, and number of sequences used in the alignment.
The file shown in figure 4.2 concerns a protein identified as 2fiv in PDB. It is made of four chains,
of which only two are used in this file, with total length 118. As much as 16 sequences are used in
the alignment.

Next follows a section initiated by the string “## ALIGNMENTS”, containing the sequence, sec-
ondary structure, and alignments. The position of each residue in the sequence is identified by a
number in columns 2-6; columns 7-11 identify the corresponding positions in the PDB file.

The residues of the sequence are then identified by their one-letter symbols (see table 2.1,
page 6) in column 15, preceded by an identifier of the chain to which they belong, in column 13.
When there are doubts concerning the true identity of the residues, symbols different from the
ones presented in the table are used. The symbol “!” generally indicates the end of a chain and
beginning of another, but it may also indicate a gap inside the same chain, caused by an error or
omission in the corresponding PDB file.

The secondary structure of the protein, as determined by the program DSSP, is then specified
in column 18. Seven symbols are used to identify different motifs (only some appear in the figure),
listed in table 4.1. The isolated β-sheet is a β-sheet only one residue long, therefore usually not
considered to be a regular β-sheet; the loop with hydrogen bond usually consists of a fraction of a
310-helix or a π-helix, too small to be considered a true helix; the absence of any symbol indicates
that the residue is not in any recognizable structural motif, nor in a zone of sufficient curvature
to be considered a loop. When there is superposition of motifs, priority is given by the order of
appearance in the table.

Table 4.1: Symbols used to identify secondary structure motifs.

Symbol Motif

H α-helix
G 310-helix
I π-helix
E β-sheet
B isolated β-sheet
S loop
T loop with hydrogen bond
– other

After additional information regarding structure and alignment, all the sequences participating
in the alignment (including the sequence targeted by this file) are then presented, from column 52
onwards. Dots indicate deletions; pairs of lowercase symbols indicate insertions that took place
between the two residues (not shown in the figure).

A new section follows in the HSSP file, identified by the string “## SEQUENCE PROFILE AND

ENTROPY”. It contains a matrix where each row indicates the percentages of each residue in that
position in the sequence, calculated from the alignment. Because of the possible existence of
unidentified residues, some rows may have all percentages null. This section also contains addi-
tional information, like the number of insertions and deletions that occurred in each position of
the sequence.

2http://www.sander.ebi.ac.uk/hssp/
3http://www.sander.ebi.ac.uk/dssp/
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HSSP       HOMOLOGY DERIVED SECONDARY STRUCTURE OF PROTEINS , VERSION 1.0 1991 
PDBID      2fiv 
DATE       file generated on 14-Aug-98 
SEQBASE    RELEASE 36.0 OF EMBL/SWISS-PROT WITH  74019 SEQUENCES 
... 
SEQLENGTH   118 
NCHAIN        4 chain(s) in 2fiv data set 
KCHAIN        2 chain(s) used here ; chain(s) :  A,I 
NALIGN       16 
... 
## ALIGNMENTS    1 -   16 
 SeqNo  PDBNo AA STRUCTURE BP1 BP2  ACC NOCC  VAR  
....:....1....:....2....:....3....:....4....:....5....:....6....:....7 
     1    4 A V              0   0  117    7    4  VVI       VVV 
     2    5 A G        +     0   0   75    7    0  GGG       GGG 
     3    6 A T        -     0   0   32    7   46  TTT       VVV 
     4    7 A T  E     -A  226   0A  79   10   29  TTT     E TTTE E 
     5    8 A T  E     -A  225   0A  25   10   53  TTT     Y YYYL L 
... 
    96   99 A Q  S    S-     0   0   27    4    0  QQQ............. 
    97  100 A P        -     0   0   18   11   39  PPPEEEEEDE...... 
    98  101 A L  E     -fH  25  34B   0   17   17  LLLVVVVVIVIIIIII 
    99  102 A L  E     -f   26   0B   0   17   12  LLLLLLLLILLLLIII 
   100  103 A G    >>  -     0   0    0   17    0  GGGGGGGGGGGGGGGG 
... 
   113  116 A M              0   0   17   17    7  MMMMMMMMLMLLLMFM 
   114        !  !           0   0    0    0    0 
   115  202 I X              0   0   51    0    0 
   116  203 I V  E     -KO  30 238C   0    1    0 
   117  204 I X  E     - O   0 237C   0    0    0 
... 
## SEQUENCE PROFILE AND ENTROPY 
 SeqNo PDBNo   V   L   I   M   F  ...  A   P   D  NOCC NDEL NINS  ... WEIGHT 
    1    4 A  86   0  14   0   0  ...  0   0   0     7    0    0  ...  1.46 
    2    5 A   0   0   0   0   0  ...  0   0   0     7    0    0  ...  1.54 
    3    6 A  43   0   0   0   0  ...  0   0   0     7    0    0  ...  0.66 
    4    7 A   0   0   0   0   0  ... 30   0   0    10    0    0  ...  1.44 
    5    8 A   0  20   0   0   0  ...  0   0   0    10    0    0  ...  0.67 
...    
   96   99 A   0   0   0   0   0  ...  0   0   0     4   13    0  ...  0.67 
   97  100 A   0   0   0   0   0  ...  5   0   9    11    6    0  ...  0.71 
   98  101 A  35  24  41   0   0  ...  0   0   0    17    0    0  ...  1.11 
   99  102 A   0  76  24   0   0  ...  0   0   0    17    0    0  ...  1.36 
  100  103 A   0   0   0   0   0  ...  0   0   0    17    0    0  ...  1.57 
... 
  113  116 A   0  24   0  71   6  ...  0   0   0    17    0    0  ...  1.41 
  114          0   0   0   0   0  ...  0   0   0     0    0    0  ...  1.00 
  115  202 I   0   0   0   0   0  ...  0   0   0     0    0    0  ...  1.00 
  116  203 I 100   0   0   0   0  ...  0   0   0     1    0    0  ...  1.00 
  117  204 I   0   0   0   0   0  ...  0   0   0     0    0    0  ...  1.00 
... 

 
Figure 4.2: HSSP file (partial view).
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From sequence profiles to input vectors

The input vectors to our prediction system are based on the matrix of sequence profiles of the
HSSP files4. A sliding window of odd size n transforms each segment of n consecutive residues
into a vector of n × 20 elements, containing the n matrix rows one after another. Every time the
window moves, a new input vector is generated. Although both PHD and our system use windows
of size 13, figure 4.3 illustrates this process with a window of size 3, for easy visualization. Because
each vector refers only to the central residue of the window, the first (n−1)/2 vectors - referring to
the first (n− 1)/2 residues of the sequence - contain a high amount of null values that correspond
to the window areas outside of the sequence (red in the figure). In the PHD system, vectors have
n × 21 elements, where the 21st element indicates the areas outside the sequence.

Normalizing the input vectors is a normal practice that usually improves the learning ability of
the multilayer perceptron. In our prediction system, normalization is a two-step process. Although
each input vector has n × 20 elements, it can also be treated as n vectors of 20 elements each. As
a first step, each of these vectors is normalized independently, and only on a second step the entire
vector is normalized as a whole. This ensures that each residue has the same weight as the others
in the final vector. Figure 4.4 illustrates this process.

From structural motifs to output vectors

The output vectors used to train our prediction system are obtained from the seven-symbol clas-
sification found in the HSSP files (see table 4.1, page 15). In secondary structure prediction it is
common practice to reduce the number of motifs to only three: helix, sheet, and other. The three
types of helix are reduced to simply helix ; the β-sheet becomes simply sheet ; the remaining motifs
become other5. So the seven symbols are reduced to only two: H (helix) and E (sheet), with the
absence of symbol indicating other. Each of these three cases is identified by a different binary6

output vector, as specified in table 4.2.

Table 4.2: From structural motifs to output vectors.

Structural motif
in HSSP files

Structural motif
in prediction system

Output vector

H, G, I helix (H) [1,0,0]

E, B sheet (E) [0,1,0]

S, T, – other (–) [0,0,1]

Data quality and usage

Several prediction systems contemporary with PHD claimed to achieve accuracy rates much higher
than PHD, in spite of it being considered the best secondary structure prediction tool ever de-
veloped. The contradiction arises from the fact that many authors test their systems in proteins
homologous to the ones used for training. Because homologous proteins have highly similar se-
quences, the generalization ability of the system appears to be (misleadingly) high.

Our system was trained and tested with two non-homologous protein data sets. One of them was
obtained from the PDB SELECT7 [19, 20], a regularly updated list of polypeptide chains available
in PDB, with less than 25% similarity between them. On November 23rd of 2004 PDB SELECT
listed 2485 chains. The other data set contained most of the 240 chains used by Michie et al. [21].

In spite of all the care taken, errors and omissions are usually found in PDB files, inevitably
propagated to HSSP files and others. New releases of these databases usually contain many new
entries, along with some entries that substitute previous faulty or incomplete ones. To train and
test our prediction system, we have discarded all the chains containing discontinuities or omissions,
and in some cases also the ones with few sequences in the alignment8, thus obtaining relatively

4In this context, whenever we mention a residue, we are no longer referring to a residue in a single sequence, but
to a position in the alignment of several sequences.

5Some authors classify the isolated β-sheet as sheet [4] while others regard it as other [17]. We have chosen the
second option.

6Bipolar vectors could be used instead.
7http://homepages.fh-giessen.de/∼hg12640/pdbselect/
8The prediction accuracy seems to be dependent on the number of sequences used in the alignment [4].
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Sequence profile from HSSP file:

   ## SEQUENCE PROFILE AND ENTROPY 
     V   L   I   M   F   W   Y   G   A   P   S   T   C   H   R   K   Q   E   N   D 
    86   0  14   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 
     0   0   0   0   0   0   0 100   0   0   0   0   0   0   0   0   0   0   0   0 
 ↓   43   0   0   0   0   0   0   0   0   0   0  57   0   0   0   0   0   0   0   0 

     0   0   0   0   0   0   0   0   0   0   0  70   0   0   0   0   0  30   0   0 
     0  20   0   0   0   0  40   0   0   0   0  40   0   0   0   0   0   0   0   0 

S
li

d
in

g
 

w
in

d
o

w
 

    ... 

 

↓
Input vectors generated (3 × 20 elements each):

[ 0, 0, 0, 0,0,0,0, 0, 0,0,0, 0, 0,0,0,0,0, 0, 0,0|86, 0, 14,0,0,0, 0, 0, 0,0,0, 0, 0,0,0,0,0, 0, 0,0| 0, 0, 0,0,0,0, 0, 100,0,0,0, 0, 0,0,0,0,0, 0, 0,0]

[86,0,14,0,0,0,0, 0, 0,0,0, 0, 0,0,0,0,0, 0, 0,0| 0, 0, 0, 0,0,0, 0, 100,0,0,0, 0, 0,0,0,0,0, 0, 0,0|43, 0, 0,0,0,0, 0, 0, 0,0,0,57,0,0,0,0,0, 0, 0,0]

[ 0, 0, 0, 0,0,0,0,100,0,0,0, 0, 0,0,0,0,0, 0, 0,0|43, 0, 0, 0,0,0, 0, 0, 0,0,0,57,0,0,0,0,0, 0, 0,0| 0, 0, 0,0,0,0, 0, 0, 0,0,0,70,0,0,0,0,0,30,0,0]

[43,0, 0, 0,0,0,0, 0, 0,0,0,57,0,0,0,0,0, 0, 0,0| 0, 0, 0, 0,0,0, 0, 0, 0,0,0,70,0,0,0,0,0,30,0,0| 0, 20,0,0,0,0,40, 0, 0,0,0,40,0,0,0,0,0, 0, 0,0]

[ 0, 0, 0, 0,0,0,0, 0, 0,0,0,70,0,0,0,0,0,30,0,0| 0, 20, 0, 0,0,0,40, 0, 0,0,0,40,0,0,0,0,0, 0, 0,0|. . .

Figure 4.3: From sequence profiles to input vectors. Red indicates areas outside of the sequence.

Original
input
vectors

A = [ A1 | A2 | A3 ]

B = [ B1 | B2 | B3 ]

C = [ C1 | C2 | C3 ]

D = [ D1 | D2 | D3 ]

↓ ↓ ↓

Partially
normalized
input
vectors

A’ = [ normalized A1 | normalized A2 | normalized A3 ]

B’ = [ normalized B1 | normalized B2 | normalized B3 ]

C’ = [ normalized C1 | normalized C2 | normalized C3 ]

D’ = [ normalized D1 | normalized D2 | normalized D3 ]

↓

Normalized
input
vectors

A” = normalized A’

B” = normalized B’

C” = normalized C’

D” = normalized D’

Figure 4.4: Two-step normalization of the input vectors.
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high quality data sets. In most of the experiments performed, the data set used was divided in
three parts: 10% for validation, 20% of the remaining for testing, and the remaining for training.
In some cases with fewer data the division was only in two parts: 80% for training and 20% for
testing.

4.3 Classifier

The classifier - the first processing level of our prediction system - is a multilayer perceptron with
13×20 = 260 input neurons, 35 hidden neurons, and 3 output neurons. During training, it receives
the input vectors along with the expected output vectors, described in section 4.2. When making
predictions, it returns output vectors representing the likelihood of each residue being in a helix,
sheet, or other motif. Figure 4.5 illustrates a classifier receiving several input vectors and returning
the predicted output vectors, comparing it with what could be the correct (expected) classification.

The classifier alone is able to perform a valid prediction, by choosing the motif with higher
likelihood value. Figure 4.7 (top) shows what could be the prediction made by this classifier in a
short sequence. But, most likely, this prediction can be easily improved by removing several obvious
mistakes (signaled with arrows in the figure), like broken helices or helices that are impossibly short.
Because of this, the output vectors returned by the classifier are not used for prediction, but instead
given to the second processing level of the system, described next.

Input vectors 
(size 13 x 20) 

      

↓ ↓ ↓       

. 

. . 
. 
. . 

. 

. .       

   

Predicted  Expected 

↓ ↓ ↓  ↓ ↓ ↓ 

       

.9 .2 .1  1 0 0 

.1 .6 .5  0 1 0 

.2 .3 .4  0 0 1 

       

↓ ↓ ↓  ↓ ↓ ↓ 
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.03 
0 
.01 

→→→→ 

 

 →→→→ 

H E E  H E - 

. . 

. 
. . 
. 

. . 

.       

 

Classifier 

Figure 4.5: Classifier. Example of prediction of three input vectors.
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4.4 Filter

The filter - the second and last processing level of our prediction system - is also a multilayer
perceptron. The input vectors it receives are built from 17-residue windows over the prediction
returned by the classifier. Because this prediction consists of a triplet of likelihood values for each
residue, each input vector has size 17 × 3 = 51, containing the 17 triplets positioned size by side.
The filter has 51 input neurons, 17 hidden neurons, and 3 output neurons. The output vectors
used for training it are the same used for the classifier. Figure 4.6 exemplifies a filter receiving
several input vectors and returning the predicted output vectors, once again comparing it with
what could be the correct (expected) classification. Figure 4.7 (middle) shows what could be the
prediction made by the filter, an improvement over the classifier prediction by the removal of
several noticeable errors (see top of figure).

Input vectors 
(size 17 x 3) 

      

↓ ↓ ↓       

. 

. . 
. 
. . 

. 

. .       

   

Predicted  Expected 

↓ ↓ ↓  ↓ ↓ ↓ 

       

.9 .1 .1  1 0 0 

.1 .7 .5  0 1 0 

.1 .4 .6  0 0 1 

       

↓ ↓ ↓  ↓ ↓ ↓ 
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 →→→→ 
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. 
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. 
. . 

. 
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Filter 

Figure 4.6: Filter. Example of prediction of three (consecutive) input vectors made from the
output vectors of the classifier.
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Prediction made by the classifier:

-HHH-HH-H-HHHH-EEEE--EEEHEE--HHHHH----H---EEEE--

↑ ↑ ↑ ↑ ↑

Prediction with obvious errors removed by the filter:

-HHHHHHHHHHHHH-EEEE--EEEEEE--HHHHH--------EEEE--

Prediction with reliability index:

-HHHHHHHHHHHHH-EEEE--EEEEEE--HHHHH--------EEEE--

788997678999987567776545666233788976312244675662

Figure 4.7: Improvement of prediction quality by the filter and reliability index (example). Top:
prediction made by the classifier alone, with several obvious errors identified with arrows; Middle:
prediction after being filtered, with the obvious errors removed; Bottom: prediction along with
reliability index.

4.5 Reliability index

Along with the secondary structure prediction for each residue, the PHD system returns a value
between 0 and 9 indicating the confidence the system has in the prediction made (9 represents the
highest confidence). This reliability index is based on the difference between the highest and the
lowest value of the output vector giving the prediction.

Given the extreme usefulness of this extra output (see chapter 5), our prediction system also
provides a reliability index, based on the PHD index multiplied by the highest likelihood value.
While the PHD system only uses the difference between the highest and lowest likelihood values
returned, our system also considers the magnitude of the highest value. This results in lower values
of the reliability index, making our system a bit less optimistic than PHD.

Table 4.3 illustrates the calculation of the reliability index used in our system for two different
residue predictions. Note the low values achieved for such apparently reliable predictions. Fig-
ure 4.7 (bottom) shows what could be the reliability index values accompanying the prediction
made by the filter.

A linear correlation between reliability and accuracy is a desirable property of any reliability
index, shared by both the PHD and our index (although slightly higher with our index). Figure 4.8
shows, for a given data set, the percentage of residues receiving each reliability value, along with
their prediction accuracy, for the PHD index (left) and our index (right). As expected, our system
returns lower reliability values than PHD (for example, 47% of residues are classified with reliability
higher than 5 with our index, against 59% with the PHD index).
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Table 4.3: Calculation of the reliability index.

Output vector [0.9,0.5,0.2] [0.5,0.1,0.1]

Reliability index

difference between the
two strongest outputs...

0.9 − 0.5 = 0.4 0.5 − 0.1 = 0.4

...multiplied by
the strongest...

0.4 × 0.9 = 0.36 0.4 × 0.5 = 0.2

...scaled between
0 and 9...

0.36 × 9 = 3.24 0.2 × 9 = 1.8

...and rounded 3 2
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Figure 4.8: Reliability versus residues versus accuracy (both indices).
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Chapter 5

Results

The results presented next are only an example of what can be achieved with a system like the one
described, and a good quality data set. More than that, they exemplify how secondary structure
prediction results can be presented, how much more information is gained by using the reliability
index, and finally how accuracy measures alone can represent a dangerous pitfall.

5.1 Without reliability index

The most common way to present accuracy measures for a given classification is by giving the per-
centage of correctly classified elements, along with the omission and commission errors obtained
for each class. The omission error represents the percentage of elements that should have been
classified as belonging to a certain class, and were not; the commission error represents the per-
centage of elements that should not have been classified as belonging to a certain class, and were.
Figure 5.1 (bottom left) shows the omission and commission errors obtained with our prediction
system in one of the data sets used, for all the elements (residues) of all the proteins in the set.
Errors in the classification of sheets are typically higher than in the other classes; helices are the
easiest motif to predict.

However, when presenting accuracy measures regarding a set of proteins, it is much more useful
to consider each protein separately. For each protein, the percentage of correctly classified residues
is calculated. The results are then given as the mean and standard deviation of these percentages,
as shown also in figure 5.1 (top left). Along with it, an histogram of the accuracy values is also
very useful (same figure, right). Users of such a prediction system know that most of the proteins
are classified with accuracy between 70% and 80%, that some are classified with less than 50%
accuracy, that very few are classified with accuracy higher than 90%, and so on. Still, these results
do not hint whether new proteins will be classified with as low as 40% or as high as 100% accuracy -
users cannot rely on the predictions made by this system, unless they get a little more information.
Hence the importance of the reliability index.

5.2 With reliability index

Figure 4.8 (page 22) shows a clear correlation between the values of the reliability index and the
accuracy of classification. Knowing that, it is safe to trust predictions with high reliability, while
disregarding the ones with low reliability. Even along the same polypeptide chain reliability is
variable, so the user can obtain a partial but highly accurate prediction by retaining only the
residues classified with high confidence.

Figure 5.2 illustrates another way of presenting the information contained in figure 4.8 (our
index, right, page 22). The plot shows the percentage of residues classified with a certain minimum
reliability (equal or higher than a certain value), and the accuracy obtained in their classification.
This tells us, for example, that almost half of the residues were classified with reliability 6 or
higher, and the accuracy obtained on these residues was higher than 85% - certainly much more
informative than the results provided without the reliability index .
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Accuracy (%):   

Mean 74  
Std Dev 9  

 

Errors (%): helix sheet other 

Omission 24 31 25 
Commission 19 36 26 
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Figure 5.1: Results without reliability index: mean and standard deviation accuracy for all proteins
(top left); omission and commission errors for all residues (bottom left); histogram of accuracy for
all proteins (right).
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Figure 5.2: Results with reliability index: minimum reliability versus residues versus accuracy.
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5.3 A note of caution on accuracy

Presenting accuracy as the percentage of correctly classified residues may be misleading in the
context of protein secondary structure. Figure 5.3 shows an example. C is the true (correct)
secondary structure of a small sequence; P1 and P2 are two different predictions for the same
sequence. P1 correctly identifies the three motifs, although not with the right length or placement
- its accuracy is 57%. P2 provides a truly messy prediction, where helices and sheets are impossibly
short and interleaved - its accuracy is 79%!

It is much more important to provide a realistic prediction, where motifs are clearly identified,
even if slightly misplaced, than a prediction which is clearly impossible, even if most of the residues
are matched with the right motifs. P2 is useless, and still its accuracy is very high. Therefore,
the accuracy measures presented here should be regarded with caution. The performance of a
prediction system should also be assessed with other techniques, more appropriate in secondary
structure prediction (see [6, sect. 6.7]).

C: --HHHHHH---EEEE----HHHHHH---

P1: -HHHHH---EEEEEEEE-----HHHHH- → 57% accuracy
P2: --HEHEHH--HEEHE----HEHH-H--- → 79% accuracy!

Figure 5.3: A note of caution on accuracy measures. C: the correct secondary structure; P1 and
P2: two different predictions, and respective accuracy values. The unrealistic prediction (P2) is
the one with highest accuracy!
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Chapter 6

Final considerations

Predicting protein secondary structure, based only on its sequence, is an apparently simple task
that has been challenging several generations of prediction methods for already 30 years.

Using the evolutionary information contained in sequence alignments has allowed third gener-
ation methods to improve the prediction accuracy dramatically. However, if there are no available
homologues to the protein whose structure we want to predict, the absence of the alignments re-
sults in impaired performance. Fortunately, this limitation tends to gradually disappear as the
number of known sequences continues to rise.

Using a limited size window for the prediction of the central residue also poses a difficulty, as
the exact same segment may fold differently when found in different proteins. In fact, even an
entire sequence may adopt different conformations, depending on the properties of the solvent, so
increasing the window size cannot guarantee success. Another problem is that the conformation of
homologous proteins can vary more than 10% (although mostly in the extremities of the sequence),
immediately imposing an upper limit of less than 90% accuracy for any third generation prediction
method [18].

Predicting protein secondary structure with total accuracy is now accepted to be an impos-
sible task. The best prediction methods have instead managed to achieve another difficult task:
providing reliable and useful predictions, in spite of their limitations.
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