Cross-Domain Analogy in Automated Text Generation

Raquel Hervas' and Francisco C. Pereira? and Pablo Gervis

Abstract. Appropriate use of analogy in computer generated texts
would constitute a great advantage in contexts where complex in-
formation needs to be communicated. This paper presents research
aimed at improving the stylistic quality of the texts generated by
a natural language generation system with the use of analogy. A
generic architecture and a specific implementation for solving this
problem are described. This implementation takes the form of a mul-
tiagent architecture in which several independent modules are con-
nected, each one dealing with a subtask of the process - enriching
domain information, finding structure alignment between domains,
inserting analogies in a text generation pipeline. Initial results are
presented, and several issues arising from the observed behaviour
are discussed, with special attention to possible refinements of the
proposal.

1 Introduction

Analogy is used frequently by humans when comunicating between
them. Provided that our listeners have adequate knowledge of the tar-
get domain, using an apt analogy can be a more economical way of
communicating information than actually explaining a whole set of
facts about a given concept. If computers were to be capable of using
analogies, this would constitute a great advantage in contexts such
as pedagogical applications - where complex issues may need to be
explained to a user -, or simply as an additional tool for communicat-
ing complex information in any kind of interactive setting. The task
of identifying apt analogies is difficult even for human beings, and it
is often considered to have a complex ingredient of creativity. How-
ever, the actual process of introducing an analogy into a given text
is well within the possibilities of current natural language generation
technology.

PRINCE (Prototipo Reutilizable Inteligente para Narracion de
Cuentos con Emociones) is a natural language generation application
designed to build texts for simple fairy tales. The goal of PRINCE is
to be able to tell a story received as input in a way that is as close as
possible to the expressive way in which human storytellers present
stories. To achieve this, PRINCE operates on the conceptual repre-
sentation of the story, determining what is to be told, how it is or-
ganised, how it is phrased, and which emotions correspond to each
sentence in the final output. Emotional content is added in the form
of tags, to be realized as synthezised emotional voice [6]. PRINCE
has been used as natural language generation front end of ProtoPropp
[9], a system for automatic story generation.

1 Departamento de Sistemas

Universidad Complutense de
{raquelhb@fdi,pgervas@sip } .ucm.es

2 Centro de Informitica e Sistemas (CISUC), Universidade de Coim-
bra, Polo II, Pinhal de Marrocos, 3030 Coimbra, Portugal, email:
{camara,amilcar } @dei.uc.pt

Informdticos 'y
Madrid,

Programacion,
Spain, email:

1 and Amilcar Cardoso?

The research presented in this paper is aimed at improving the
stylistic quality of the texts generated by the PRINCE system, by
extending its capabilities to include the use of analogy. This is done
by exploiting the potential of a lexical resource - such as WordNet -
and structure mapping algorithms to enhance the output texts.

PRINCE is implemented using the cFROGS architecture [7], a
framework-like library of architectural classes intended to facilitate
the development of NLG applications. It is designed to provide the
necessary infrastructure for the development, minimising the im-
plementation effort by means of schemas and generic architectural
structures commonly used in this kind of systems. cFROGS identi-
fies three basic design decisions when designing the architecture of
any NLG system: (1) what set of modules or tasks compound the
system, (2) how control should flow between them, deciding the way
they are connected and how the data are transferred from one to an-
other, and (3) what data structures are used to communicate between
the modules.

The flow of control information among the modules of PRINCE
acts as a simple pipeline, with all the modules in a sequence in such a
way that the output of each one is the input for the next. From a given
plot plan provided as input to PRINCE, the text generator carries out
the tasks of Content Determination, Discourse Planning, Referring
Expression Generation, Lexicalization and Surface Realization, each
one of them in an independent module.

Section 2 describes the lexical resources to be employed in this pa-
per and previous work on analogy and structural alignment. Section
3 describes the basic architecture used for modelling the process of
analogy generationg. The current multiagent implementation is pre-
sented in section 4. The experiments that have been carried out are
described in section 5, and discussed in section 6. Section 7 outlines
the conclusions.

2 Increasing lexical diversity

In PRINCE, the stage of lexical realization is done in a very simple
way. Each concept in the tale has an unique associated tag, and for
each appearance of a concept the corresponding word is used in the
final text. This produces repetitive and poor texts from the point of
view of the vocabulary.

To overcome this limitation, we have included a number of inde-
pendent modules for expanding the number of lexical alternatives,
thus allowing the enrichment of the realization process with lexical
choice. Several strategies were envisaged and explored to provide
those alternatives, from the more simple synonym substitution or the
combination of this with the use of other kinds of semantic relations
like hyponymy/ hypernymy, up to resorting to rethorical figures.

A requirement for these modules was the availability of adequate
lexical sources. If synonym substitution could be carried on by means
of a simple dictionary, more elaborated substitutions required richer

knowledge sources with adequate indexing mechanisms. WordNet
[11] was found to be particularly well suited for this task as it is by
far the richest and largest database among all resources that provide
a mapping between concepts and words. Other relatively large and
concept-based resources such as PENMAN ontology [1] usually in-
clude only hyponymy relations compared to the rich types of lexical
relations presented in WordNet. For this reason, WordNet has been
chosen as initial lexical resource for the development of the lexical
choice task.

WordNet is an on-line lexical reference system whose design is
inspired by current psycholinguistic theories of human lexical mem-
ory. The most ambitious feature of WordNet is its attempt to orga-
nize lexical information in terms of word meanings, rather than word
forms. English nouns, verbs and adjectives are organized into syn-
onyms sets, each of them representing one underlying lexical con-
cept. These synonyms sets - or synsets - are linked by semantic rela-
tions like synonymy or hyponymy.

Its organization by concepts rather than word forms allows
WordNet to be used also like a knowledge source. The hy-
ponymy/hypernymy relation can be considered equivalent to the
“isa” one, and the gloss of the concepts contains extra information
that in particular cases can be extracted automatically.

Using WordNet, lexical choice has been accomplished in a first
phase by exploring synonymy and hyponymy relations. The method
adopted is as follows. In the first appearance of a concept in a para-
graph, the word from the system vocabulary is used. This is the word
that has been chosen by the developer as the most descriptive one for
the concept and explicitly written in the vocabulary. In the second
appearance of a concept in a paragraph, its first hypernym is used.
This hypernym is just a generalization of the concept, but the most
specific one. In the rest of appearances of the concept, synonyms are
used, one after the other, repeating them when the synonym list gets
exhausted.

In a second phase, which is the focus of this paper, some rethorical
mechanisms have been explored, namely Analogy, again with the
help of WordNet.

2.1 Analogy, Metaphor and Structure Alignment

Metaphor and analogy are two cognitive mechanisms that have been
recognized as underlying the reasoning across different domains®.
Because of this, they play an indomitable role in creativity, thus call-
ing our attention as a potential resource for the PRINCE project. Al-
though no consensus has been reached in the current literature re-
garding a clear distinction between metaphor and analogy, it is clear
that their mechanics share many commonalities. It is widely accepted
in analogy research that many of the problems of metaphor interpre-
tation can be handled using established analogical models, such as
the structure alignment approach [8] *. The general idea behind this
approach is that Metaphor (and Analogy) fundamentally result from
an interaction between two domains (the vehicle and the tenor, in
Metaphor literature). This interaction can be simplified as an isomor-
phic alignment (or mapping) between the concept graphs that repre-
sent the two domains. Thus, we see here a domain as being a seman-
tic network (nodes are concepts; arcs are relations), and a mapping
between two concepts (of two domains) results from the application

3 This claim is nowadays widely agreed, as metaphor is seen as a cognitive
rather than a linguistic device. For an extensive figurative versus literalist
analysis, we redirect the reader to [16]

4 As semminal works in this area, we can name SME [4] and Sapper [16]

of rules that rely on graph structure: if two nodes share the same con-
nection to the same node, they form a potential mapping (triangula-
tion rule [16]); if two nodes share the same connection to other two
nodes that are forming a mapping, they form a potential mapping
(squaring rule [16]). Since the domain mappings must be isomor-
phic (1-to-1), there may be many possibilities. In fact, the problem
of identifying isomorphic graphs seems to fall in a crack between P
and NP-complete complexity classes, if such a crack exists ([15], p.
181), and as a result, the problem is sometimes assigned to a special
graph isomorphism complete complexity class. Given such perspec-
tive, the problem is clearly resource demanding, and getting the op-
timal solution seldom unrealistic. Therefore, our own approach fol-
lows a floodfill probabilistic algorithm (see [14] for further details),
such that no optimal result is guaranteed, but always takes acceptable
time to retrieve a possibility.

For the PRINCE project, we are exploring the structure mappings
with one particular realization template in mind: “X is the Y of Z”
sentences [5].

XistheYofZ

A mapping (say, from a concept X to a concept Y) produced by
a structure alignment should emphasize some particular correspon-
dence between two concepts, namely that, according to some per-
spective, the role that one concept has on one domain (say, the con-
cept Y in the domain T) can be projected to its counterpart in the
other domain (say, the concept X in Z). This is the rationale behind
the “X is the Y of Z” expression, where Z is the domain in which X
is integrated (from [5]). For example, “Freud is the father of Psycho-
analysis” results from the the mappings Freud « father applied to
the domains Psychoanalysis and family structure, respectively. One
can find this template present in many more examples (e.g. “Brugges
is the Venice of Belgium”, “the Lion is the king of the jungle”, “the
eyes are the mirror of the soul”, etc.). Our goal is therefore to apply
this template (using a structure alignment algorithm) in order to get
potentially creative text realizations. Thus, we always need two do-
main concept maps, one for the context at hand (i.e. partially describ-
ing the story that is being generated), another for the vehicle domain
(the one from which to draw the analogical perspective). This in it-
self raises challenges (which domains to use? when? how to select a
good mapping?) for which we have some ideas that we will sumarize
in the discussion section.

The generation of “X is the Y of Z” expressions was tentatively
approached in [13], where a knowledge base with Greek deities data
was extracted from WordNet [11] and tested with PRINCE. This
knowledge base was obtained by isolating the subgraph represent-
ing the Greek deity taxonomy, enriched with a simple (algorithmical)
extraction of relations from their glosses (to get knowledge such as
“Aphrodite is the goddess of beauty”, “Zeus is father of Aphrodite”,
“Aeolus is the god of wind”, etc.). Whenever needed, our algorithm
showed to be able to map a part of the story under construction to
this vehicle domain (thus providing expressions like “The princess
was the Aphrodite of Royalty” or referencing king as the “The Zeus
of Royalty”). This proved to be a very powerful mechanism, but also
presented strong limitations due to the fact that it contitutes a knowl-
edge greedy algorithm. The next step would be to inspect further
with other examples and with domains constructed by others (namely
Tony Veale’s Star Wars and King Arthur’s saga analogy [16]) so as
to validate the same methods for identifying and realizing analogy
over different domains, rich enough for mappings to appear, but not
hand-crafted for this system.

3 A High Level Architecture for Generating
Analogy in Text

The task of generating texts where analogies are used graciously in-
volves a number of challenges that need to be tackled in separate
modules. Let us assume that the task is addressed from the point of
view of enriching a given text - represented in some kind of concep-
tual form that a generator is capable of rendering as text - with at
least one analogy between a concept occuring in the text and some
concept in another domain.

On one hand, there is the basic task of identifying the additional
domain, the structural mapping that licenses the analogy, and the cor-
responding concept in the other domain. On the other hand there is
the task of inserting the appropriate linguistic structure for the anal-
ogy in the original text, including both the task of building its lin-
guistic rendering and selecting the actual location in the original text
in which it is to be inserted.

3.1 Identifying the Target Domain and the
Mapping

The task of identifying an appropriate additional domain as target
domain for the analogy is quite complex. Given that the analogy is
required to contribute to an act of communication, it is reasonable to
say that in order to be appropriate as target domain in an analogy,
a domain must be sufficiently well known to the intended readers of
the text so as to require no additional explanation. This narrows down
the set of possible domains. It also makes the solution to the problem
depend on the particular reader for which the text is intended. Since
this requires some means of representing the intended reader as part
of the process of generation, for the time being, we consider the target
domain as given. Further work must focus on exploring the role of
reader representation on the choice of target domains.

Having established a particular target domain, the next challenge
is to identify the relevant mapping. This involves an elementary oper-
ation of comparing two given domains to identify valuable mappings.
This is a process of searching for structural analogies between two
domains. In the context of looking for analogies for a given text, this
requires additional preprocessing.

The conceptual representation provided for generating a text is not
usually rich enough to constitute a domain with significant structure.
Whereas a full representation of the complete domain that partici-
pates in a text may correspond to a complex taxonomical tree, the
sort of input that a generator receives usually corresponds more to a
set of facts - which may have been the leaves of the taxonomical tree.
From this conceptual representation, the context in which the anal-
ogy is going to be set can be extracted. Let us assume that the context
corresponds to some subset of the set of facts received as input to the
generator. Before this can be checked for mappings against a full do-
main, it must be enriched to ensure that at least a significant part of
its taxonomical structure is explicitly represented. This is achieved
by expanding the context with the use of an onfology. Once this has
been carried out, it can be compared with a different domain - the
target domain - in search of structural analogies. The process should
render a partial mapping between the enriched context and the target
domain, where certain concepts in the enriched context are associated
with certain concepts in the target domain. Each of the associations
in this partial mapping is a candidate for establishing the analogy.

The basic architecture for this process is described in Fig. 1.

Some heuristic must be provided to select acceptable candidates
for the analogy out of the complete set of (partial) mappings. One

o—0
o—0
c—0O

Figure 1. Finding partial mappings

possible way to do this is to check how many actual relations de-
termine the association - relations mirrored in both domains which
provide the basis for the structural analogy. We are assuming that
concept associations based on a higher number of relations are bet-
ter candidates for analogy. Another help for this task could involve
some kind of preliminary filter (e.g. if there are no mappable rela-
tions, then no mapping will be found) that would reduce the number
of candidate target domains.

3.2 Realizing the Analogy in the Text

The second task can be carried out in at least two different ways.
One way is to respect the original text in its given form, and simply
to build an additional sentence for conveying the analogy and insert-
ing it at a chosen location. A more complex and richer solution is to
add the corresponding message - represented in the same conceptual
notation used for the original content of the text - to the input pro-
vided for the generator, and to let the generator convert the whole to
a coherent text. This solution has the advantage of allowing the gen-
erator to reformulate the text surrounding the analogy so as to make
the final resulting text linguistically and stylistically coherent.

For instance, take a simple text such as:

A princess lived in a castle. The princess loved a knight. She was
the daughter of a king.

The first option described would correspond to inserting a sen-
tence describing the analogy somewhere in the text:

A princess lived in a castle. The princess was the Aphrodite of
royalty. The princess loved a knight. The princess was the daughter of

a king.

For very simple generation processes the second option would
present no difference. However, if the text generator has the capabil-
ity of substituting certain repeated occurrences of the same concepts
- as PRINCE does -, the text obtained for a conceptual representation
of the first example might become something like:

A princess lived in a castle. She loved a knight. The princess was
the daughter of a king.

In such a case, simple insertion of an additional sentence without
touching the context would result in something like:

A princess lived in a castle. The princess was the Aphrodite of
royalty. She loved a knight. The princess was the daughter of a king.
whereas adding the analogy at the conceptual level and then gen-

erating might result in:

A princess lived in a castle. She was the Aphrodite of royalty. The
princess loved a knight. She was the daughter of a king.

For our current purposes, we have opted for inserting a represen-
tation of the analogy at a conceptual level, and then generating a text
for the resulting content.

When there is not enough information available, it is impossible
to find the Z of the “X is the Y of Z”. In those cases the relations that
have produced the mapping can be used. If in the example shown
there is no information about “the princess” belonging to “royalty”,
we can use the relation of “being daughter of” to produce an analogy
like “The princess was the Aphrodite of the king”.

4 A MultiAgent Implementation

The design of PRINCE is widely modular. In the same way, the
roles that different parts take correspond to different processes and
techniques. In order to allow an open perspective to the future as
well as integrate multiple modules coming from different contribu-
tors, it became clear that a multi-agent platform would properly suit
our needs. In this way, we can distribute different roles for different
agents, each other being responsible for a special purpose task, acting
autonomously and interacting only through clearly defined commu-
nication channels. This description coincides fairly with the Open
Agent Architecture [2]. Such architecture is sufficiently open and
modular to allow us implement and test the work presented in this
paper as well as to make it easy to plug-in further functionalities.
More precisely, we have a TextGenerator Agent, a WordNet Agent
(for handling those queries to the database), a candidate reference
agent (which gives sets of candidate references for a concept to who-
ever asks for them), a proxy agent - the OAA Facilitator agent that
deals with requests/communications between different agents -, and
two Analogy related agents. This agent society is shown in Fig. 2

EJ oA Monitor
File Eventlog Profile Options Help

wsonel | <[| -]%] ©[0]
Mame:

Solvables:

I = S

sri_wordnet_agent
¥
naa_textGenerator
Language:
CAA Versian: mapper
Host:

#Agent sent:
Agertt received: Failitator g
Tokal # msgs: skartit
Total bytss: 0
analogy_agent
ol
iy
oaa_rnonitor
refset_wordnet_agent

Agent added: oaa_textGenerator (8)

Figure 2. The agent society as seen in the OAA monitor

4.1 WordNet Agent

This agent was implemented by Chris Culy [3] and is essentially a
server for all the queries associated with WordNet database.

4.2 RefSet Agent

We developed this agent to provide the lexicalization module a set
of candidate alternative lexicalizations. It receives the lexical item

from the vocabulary (let us call it VBWord) for a concept, as well
as its grammatical category (for example, for the concept “dragon”,
VBWord would be the noun dragon). The VBWord will be the seed
for searching for the corresponding WordNet synset.

WordNet is not organized according to individual words, it is or-
ganized according to concepts. Due to linguistic phenomena such as
polysemy and synonymy, there is potentially a many-to-many map-
ping in which relates to concepts and words. This raises the important
problem of Word Sense Disambiguation [10] (WSD), which has by
itself deserved the attention of many researchers. At this point, Word-
Net provides some help: the tag count field for synsets. This field
allows us to order, within a synset, which of the nouns is more usual
in a generic corpus (in this case, the Brown Corpus[12]). Although
this may not be the best corpus for our present purpose, the results
showed it as a good choice for our first approach to this problem,
since we avoided the much larger complexity involved in other WSD
methods. In further explorations to this issue, we expect to build our
own statistics out of story tale corpora.

After selecting the synset to explore, the RefSet agent gathers the
set of synonym words (ordered by their individual tag counts) and the
set of its hypernyms (ordered by their hierarchical distance - first fa-
ther, then grandfather, then grand-grandfather, etc.). It then creates
what we call a context: the set of relations from WordNet that are
connected to the synonyms and hypernyms detected. In order to find
a third list (the analogy list), it sends the words, as well as the con-
text, to the analogy agent. This in turn delivers back (to the RefSet)
the analogy proposals. The RefSet agent thus sends the set of those
sets to whoever has called it (in this case, the lexicalization module).

4.3 Analogy and Mapper Agents

The analogy agent is a proxy for the structure alignment agent (Map-
per). It can optionally enrich the concept map of the VBWord (e.g.
looking for relations in WordNet that are not considered in the knowl-
edge base used by PRINCE), it loads the vehicle concept map for the
Mapper agent. The Mapper agent looks for a structure mapping be-
tween the two domains and returns it to the Analogy agent, which
fills the slots according to the “X is the Y of Z” template. As said
above, the Mapper relies on a flood filling algorithm, which starts
with a first mapping seed (a pair of randomly chosen counterparts),
spreads the liguid throughout the connected nodes, strengthening the
intensity of the flood whenever a cross-domain bridge is encountered.
After the floodfilling stage, there is a phase of bridge awakening,
which will select the 1-to-1 isomorphism. There are many possible
choices at this stage, so Mapper selects randomly favouring bridges
with stronger evidence (highest activation of intervening nodes). The
complexity involved is exponentially dependent on the number of
candidate paralells (the nodes that potentially counterpart each other
because they share the same kinds of relations), so with large do-
mains with many shared relations the agent can be very greedy in
terms of time and processor. To learn extensively about this subject,
please read [14].

4.4 TextGenerator Agent

The TextGenerator agent is the one that deals with the NLG gener-
ation process, and can be considered as a wrapper for the original
PRINCE module. This is the agent that sets off the flow of control
information of the whole process. In a first step it initializes the map-
per agent with the whole context of the tale that is rendering into
text, producing the mapping between the domains involved. After

that, the TextGenerator agent follows the usual pipeline control flow
of PRINCE, interacting with the RefSet agent when needing the in-
formation of the different concepts in the tale.For more details on the
internal architecture of the text generator, see [7]. A detailed example
of an application of the architecture working on a literary domain is
presented in [9].

5 Experiments

In order to test the analogical capabilities of PRINCE we have re-
sorted to the use of domain data generated in the past for previous
research on Metaphor and Analogy [16]. These data have two dis-
tinct advantages. On one hand they constitute a set of coherent do-
main data already tested for the existence of structural analogies. On
the other hand, they were generated independently of the current re-
search effort so they are less likely to be biased towards obtaining
interesting results with the proposed method.

Out of the complete data set used in Veale’s thesis, two well
known domains have been used to test the analogy capabilities of
PRINCE: Star Wars and King Arthur saga. The former has been
chosen to represent a very simple story to be rendered by our gen-
eration system, including the most typical relations of the charac-
ters and elements of the domain. The latter is the domain used
by the Analogy agent to find analogies with the first one. A con-
version to Mapper representation was necessary, and in that pro-
cess some amount of knowledge (from Tony Veale’s Sapper) was
left behind, namely relation weights, and some specific kinds of
concepts (compound narrative relations, e.g. become_arthur_king,
conceive_morgana_mordred). Thus, for the moment, we are fo-
cussing on the properties of caracters, objects and their first or-
der relations within the story (e.g. have, friend_of, teach, loves,
etc.). The KingArthur domain ended up with 79 basic facts (such
as attr(king_arthur, brave) or isa(king_arthur, king)) and the
Star Wars domain with 77 (such as attr(obi_wan_kenobi, wise) or
isa(obi-wan_kenobi, jedi_knight).). After WordNet enrichment,
the King Arthur domain would get more 83 facts (such as
part_of (king, royalty)), and the Star Wars more 23 facts (such
smaller number is not surprising since WordNet has clearly less
knowledge of space and jedis than of royalty).

The first step of the text generation in PRINCE is to obtain the
possible analogies for the tale domain. The whole context of the story
is sent to the RefSet agent so it can find out the analogies between
the two domains used, and it is enriched by the Analogy agent using
WordNet. For our simple Star Wars story part of the context is the
following:

attr(obi_wan_kenobi, good)
have(luke_skywalker, light_saber)
teach(obi_wan_kenobi, luke_skywalker)
friend_of(luke_skywalker, han_solo)
loves(han_solo, princess_leia)
member_of(luke_skywalker, jedi_knights)
member_of(obi_wan_kenobi, jedi_knights)
gender(luke_skywalker,male)
gender(princess_leia,female)

The enriched graph of relations obtained from the initial context
is mapped against the King Arthur saga relations. An extract of the
domain information is the following:

Some of the associations returned as part of a mapping are solely
based on very simple general relations such as gender or isa. Such
analogies are considered to be uninteresting and they are discarded

isa(excalibur, weapon)
attr(excalibur, powerful)
have(king_arthur, excalibur)
gender(king_arthur, male)
gender(guinnevere, female)
friend_of(king_arthur, lancelot)
gender(lancelot, male)
loves(lancelot, guinnevere)
gender(merlin, male)
attr(merlin, good)
teach(merlin, king_arthur)

by the generator. In this example the obtained mapping is shown in
Table 1. For each association the list of relations that have produced
the mapping is shown. This mapping can be said to have appeared in
all of the runs. Although in preliminary experiments, the Mapper has
generated other quite smaller mappings, these were algorithmically
ruled out, since they would present very shallow analogies (such as
the gender based correspondences).

Cross domain association Supporting Relations

good «— good [attr]

obi_wan_kenobi < merlin [attr,teach,gender]
luke_skywalker < king_arthur [have,friend-of teach,gender]
light_saber < excalibur [attr,have]

power ful < hand_held [attr]

han_solo < lancelot [loves,friend-of,gender]
princess_leia < guinnevere [loves,gender]

Table 1. Resulting mapping between StarWars and King Arthur domains

When using a concept during the generation process, PRINCE has
the possibility of asking the RefSet agent for the analogy information
of this concept.

For the time being, the complete set of analogies found is used,
and each one is inserted in the original text after the first appearance
of the corresponding concept. An extract of the resulting text in the
Star Wars domain, using the analogies achieved, is the following:

Luke Skywalker was the King Arthur of the Jedi Knights. He had

a light saber. The light saber was powerful. The light saber was the

Excalibur of Luke Skywalker. Luke Skywalker was friend of Han Solo.

Luke Skywalker was member of the Jedi Knights.

Han Solo loved Princess Leia. He was the Lancelot of Luke Sky-
walker. She was the Guinnevere of Han Solo.
Obi Wan Kenobi taught Luke Skywalker. Obi Wan Kenobi was the

Merlin of the Jedi Knights. He was member of the Jedi Knights. He
was good.

6 Discussion

An analogy is based on a particular subset of relations that hold be-
tween elements in the context. If one is to say about someone “This
man is the David Beckham of Java programmers”, it must be true
that this man is a Java programmer and that he is conspicuous for
his success in comparison with other programmers. But in general,
if one is to use the analogy, the actual relations that it is based on
are usually left implicit. To spell them out weakens the stylistic ef-
fect of the analogy. This is one of the reasons why the target domain
must be presumed to be well known to the intended recipients. From
the point of view of text generation, this implies that the introduc-
tion of the analogy may involve the suppresion from the final text
of the explicit mention of at least some of the most obvious of the
relations that support it. The decision of how many of the supporting

relations to suppress must also be based on some kind of model of
the knowledge that the reader has. The minimum amount of relations
required to make the analogy understandable must be retained. This
issue is postponed until adequate means of modelling the reader can
be introduced.

An important question to take into account is that, if any of the
supporting relations have been considered necessary for understand-
ing the analogy, the linguistic realization of the analogy should not
be placed in the text before those relations have been explicitly men-
tioned. An alternative approach would be to present the analogy first
and then provide as an explanation the relations that actually support
it.

In the examples presented in section 5, it became apparent that,
given two domains which are structurally analogous, the process de-
scribed returns a number of associations between concepts in both
domain. From a stylistic point of view, it is clear that a text in which
all possible associations between the domains are included is over-
loaded with analogy. This suggests that the heuristics being consid-
ered for the selection and location of analogies must be revised in
search for more natural results. Several issues must be addressed
here.

The heuristics currently in use for this purpose were designed to
select only one analogy for insertion in the text, and they are oriented
to ensuring that no analogy is introduced unless it is supported by
a minimal number of relations mirrored between the two domains.
When several associations are possible, this restriction is not enough
to reduce significantly the number of candidates.

Another important aspect is that the set of all analogies found as
result of a mapping between two structurally analogous domains is
itself so rich to constitute almost a parallel text in itself. In such cases,
instead of inserting individual sentences describing each of the pos-
sible associations, it may be worthwhile to introduce a full sub-text
describing the view of the original domain that corresponds to the
target domain. Or to insert the analogy-related messages as groups
of associations rather than as individual messages. This would cor-
respond to considering the set of associations returned in a mapping
as and addition to the conceptual content to be converted into text,
susceptible of undergoing - as described above - stages of content
determination - where some of the less interesting associations may
be discarded - and discourse planning - where the remaining associ-
ations are regrouped, possible taking into account the target domain
relations that may bind together concepts that appear in different as-
sociations. For instance, in the example presented above, it is clear
that the messages describing King Arthur and Excalibur as analo-
gous to Luke Skywalker and his light saber might be better presented
if they are grouped together:

Luke Skywalker had a light saber. The light saber was powerful.

He was the King Arthur of the Jedi Knights and the light saber was his
Excalibur. ...

However, this sort of arrangement may not be so good if it re-
sults in two completely different parallel texts. Some sort of interme-
diate clustering should take place during discourse planning, where
elements bound together by some relation - like Luke and his light
saber and/or Arthur and Excalibur - are grouped prior to establishing
the analogy. This has happened by coincidence in the example text
for Han Solo/Lancelot and Princess Leia/Guinnevere - and also for
Merlin/Obi Wan Kenobi- due to the fact that they share a reciprocal
relation. The heuristic should be refined to ensure that such effects
are the result of explicit decisions rather than chance.

A final aspect to regard is about the construction of the data for
such a system. It became clear throughout this and the former exper-

iment (Greek deities [13]) that gathering domain data is a very re-
source consuming task, particularly if wanting to avoid biasing. The
use of WordNet is a method used to overcome these problems, but
other ontologies should be inspected.

7 Conclusions and Further Work

The extension of the PRINCE system to include use of analogy
shows acceptable results for instances where analogies are sought for
a single concept. The multiagent architecture has proved to be a good
solution for interconnecting the various resources and techniques that
are required to solve the problem.

Further work is necessary to explore the extension of the function-
ality to instances where analogical equivalents are identified for more
than one concept. The classic pipeline architecture of simple natural
language generators provides a promising organization for the suc-
cessive processes that would be involved in this task.

Acknowledgements

We would like to thank Tony Veale both for the extensive data and
for the inspiration provided by his thesis and papers. We would like
to thank the reviewers for the valuable comments to improve the pa-
per. This work was partially funded by an Acgdo/Accion Integrada
of Spain-Portugal, Portuguese ref. 2004-05 N. E-1/04, Spanish ref.
HP2003-0068.

REFERENCES

[1] J. A. Bateman, R. T. Kasper, J. D. Moore, and R. A. Whitney. A Gen-
eral Organization of Knowledge for Natural Language Processing: the
PENMAN upper model, 1990.

[2] A. Cheyer and D. Martin, ‘The Open Agent Architecture’, Journal of
Autonomous Agents and Multi-Agent Systems, 4(1), 143—148, (2001).

[3] Chris Culy. WordNet Agent. http://www.ai.sri.com/oaa/ contribu-
tions/wordnet, 2002.

[4] B. Falkenhainer, K. D. Forbus, and D. Gentner, ‘The structure map-
ping engine: Algorithm and examples’, Artificial Intelligence, 41, 1-63,
(1989).

[5] G. Fauconnier and M. Turner, The Way We Think, Basic Books, 2002.

[6] V. Francisco, R. Hervés, and P. Gervas, ‘Analisis y sintesis de expresion
emocional en cuentos leidos en voz alta’, Procesamiento de Lenguaje
Natural, (35), (2005).

[71 C. Garcia, R. Hervas, and P. Gervas, ‘Una arquitectura software para
el desarrollo de aplicaciones de generacién de lenguaje natural’, Proce-
samiento de Lenguaje Natural, 33, 111-118, (2004).

[8] D. Gentner, ‘Structure-mapping: A theoretical framework for analogy’,
Cognitive Science, 7(2), (1983).

[9] P. Gervas, B. Diaz-Agudo, F. Peinado, and R. Hervis, ‘Story plot gen-
eration based on CBR’, Journal of Knowledge-Based Systems, 18(4-5),
235-242, (2005).

[10] N. Ide and J. Veroni, ‘Word Sense Disambiguation: The State of the
Art’, Computational Linguistics, (24), 1-40, (1998).

[11] G. A. Miller, ‘Wordnet: a lexical database for English’, Commun. ACM,
38(11), 3941, (1995).

[12] W. Nelson Francis and H. Kucera, Computing Analysis of Present-day
American English, Brown University Press, Providence, RI, 1967.

[13] FE. C. Pereira, R. Hervas, P. Gervds, and A. Cardoso, ‘A multiagent text
generator with simple rhetorical habilities’, in Proceedings of the Work-
shop on Computational Aesthetics: Artificial Intelligence Approaches
to Beauty and Happiness, (2006).

[14] EC. Pereira, A Computational Model of Creativity, Ph.D. dissertation,
University of Coimbra, 2005.

[15] S. Skiena, Implementing Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica, Reading, MA: Addison-Wesley,
1990.

[16] T. Veale, Metaphor, Memory and Meaning: Symbolic and Connectionist
Issues in Metaphor Interpretation, PhD Thesis, Dublin City University,
1995.

