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Abstract 

This paper proposes a new methodology to identify and 
correlate patterns on nearly periodic signal, based on 
signal simplification and clustering approaches. Using 
cubic Bezier curves some significant signal samples 
(control points), enabling to segment adequately the 
original signal, are extracted in a first step. Next, given 
the correlation among extracted control points, the 
detection of similarities within the overall signal is then 
performed through a clustering technique.  

Although the approach is useful for many types of 
signals, the compression of Electrocardiogram (ECG) 
signals is here investigated. Results with standard MIT-
BIH databases show promising compression ratios, in 
particular, high compression ratios are found for long 
duration signals, when the signal presents strong 
regularities. 

 
1. Introduction 

Although digital storage media is currently almost 
inexpensive and computational power has exponentially 
increased in last few years, effective compression 
techniques are still very attractive and useful. Besides 
the increased storage capacity for archival purposes, 
compression methods allow real-time transmission over 
band-limited networks. Among all the areas of 
medicine, cardiology is one of the branches requiring 
the largest amount of data acquisition. In particular, the 
ECG, a biological signal reflecting the heart activity is 
of major importance: in the context of dedicated 
monitoring systems running 24 hours/day, such as 
signal tele-monitoring, intensive-case units or 
arrhythmia detection system, ECG compression is not 
only desirable and useful but also necessary. In the past, 
several methods to analyze and compress ECG signals 
have been proposed, e.g. [1, 2, 3].  

The strong regularity in signals suggests that data 
compression techniques based on finding coding 
repetitions in data are likely to be effective. This is 

specially true for an ECG signal. In fact, two normal 
ECG cycles usually present a high degree of waveform 
similarity. It is then natural, in data compression 
context, to split the signal into beats, and viewing these 
as standard basic patterns. However, this idea have not 
yet been exploited (or only partially) by traditional 
compression methods [4, 5]. Actually, almost 
compression algorithms that takes advantage of this 
idea are based on the segmentation of the RR interval, 
since QRS complex detection is reasonably well 
understood and there are available several robust and 
fast algorithms [6, 7]. However, these methods are only 
viable when applied to normal ECG signals, failing in 
the presence of abnormal cases, like ventricular 
tachycardia or ventricular fibrillation.  

This work presents a method for identifying and 
correlate patterns, mainly with application to quasi 
periodic signals. Although the approach can be applied 
for several types of signals, the application to ECG 
compression is here investigated. The central idea 
consists in finding beat to beat similarities in the ECG 
signal, without using any king of algorithms for clinical 
ECG segmentation (such as QRS detection). The 
proposed scheme consists of two main steps: signal 
simplification where a cubic Bezier curve is used for 
piecewise nonlinear interpolation, originating a reduced 
number of control points, enabling to approximate the 
original signal; detection of similarities within the 
simplified signal, by means of a clustering approach. 
The idea aims at exploiting redundancy through 
selection of a set of characteristic points. A loss 
compression method is then applied using a dictionary 
and exploiting the fact that referencing a dictionary 
entry takes fewer bytes than encoding the repeating 
sequence.  

The remaining of the paper is organized as follows. 
In section 2 cubic Bezier curves applied to signal 
segmentation is presented, as well as the compression 
method based on the dictionary scheme. In section 3 
some experimental results are shown and finally, in 
section 4, some conclusions are drawn. 



2. Methodology 

3.1 Signal Segmentation  
A general Bezier curve [8] is defined by 
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To define a 2-D cubic Bézier curve ( )y t , four 
control points ( 4)L = are nedded, as shown in Figure 1. 

 
Figure 1. Cubic Bezier curve. 

The curve in general does not pass through the 
control points 2( , )   0,..,3∈ℜ =iP x y i  except the first 
and last points ( 0P  and 3P ). The Bezier curves have 
interesting properties: they always are contained within 
the convex hull of the control points and never 
oscillates wildly away from the control points [8]. 
Given their properties, they are commonly used to 
smoothly interpolate between control points.  

Given a discrete time signal ( ),   1,..x k k N= , a cubic 
Bezier curve can be used to interpolate the original 
signal provided the four control points are appropriately 
chosen. Instead of specifying freely the four control 
points, it is assumed that 0(1) (1) ( , )x y P x y= = , 

3( ) ( ) ( , )x N y N P x y= =  and the absciss of control points 

0P  and 1P  as well as 2P  and 3P . Therefore, only two 
parameters have to be determined, the ordinates of the 
control points 1P  and 2P . In particular, from equation 
(1) and (2), a discrete time cubic Bezier curve can be 
defined as 
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By rewriting the last equation as  
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or, in compact form, by 
= + ⋅Y B M w  (5) 

NY ∈ℜ  is a vector consisting of the values to be 
approximated, NB∈ℜ  and 2×∈ℜNM  are matrices 
composed of known values and 2w∈ℜ  ordinates of the 
control points to be evaluated. Thus, w  can be easily 
obtained, in the least square sense, by 

= −( ) * ( )w pinv M Y B  (6) 

When applied to ECG signals the algorithm is 
implemented iteratively, so that the most significant 
points are evaluated. The obtained set of control points 
stand for the reduced form of representation of the 
original signal, within a pre-specified threshold 
( | ( ) ( ) |x k y k ε− < ). The following figure illustrates its 
application to the segmentation of an ECG (MIT-
BIH#1031, sample 850 to 1200).  

850 900 950 1000 1050 1100 1150 1200
-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500
Original ECG
Bezier approximation
Control Point P0=P3
Control Point P1
Control Point P2

 
Figure 2. ECG segmenation with Bezier control points. 

As can be observed, apart from the abcissa of each 
control point ( )I k , three parameters for each segment 
of the signal (pattern) are needed to describe the 
piecewise nonlinear interpolation: the values 0P , 1P  
and 2P . Obviously, if the algorithm stops here the 
obtained compression rate is given by 

= ⋅/(4 )CR N M , being N the length of the original 
signal and M the number of extracted control points. 

3.2 Searching for Similarities  
The compression algorithm proposed here takes into 

consideration that ECG beats tend to be very similar, 
although not exactly the same. Thus, in order to carry 
out data compression, the use of a dictionary consisting 
of the extracted patterns have been used. If sequences 
of similar segments occur often in ECG being 
compressed, theses sequences will be stored in the 
dictionary according to a certain criterion (error 



margin). Compression is achieved since referencing a 
dictionary entry takes fewer bytes than encoding the 
repeating sequence. For practical implementation each 
pattern, depicted in  Figure 3, is defined as:  

[ ] [ ]1 2 3 0 1 0 2 0dP dP dP P P P P P P= − − −  (7) 

 
Figure 3. ECG pattern. 

Actually, two dictionaries have been used: one for 
coding of dP values and other for [ ]1 2dP dP  values. 
The patterns incorporated into the dictionary can be 
determined by means of a clustering technique, such as 
k-means or subtractive clustering [9]. Here a modified 
k-means version has been used, ensuring that all the 
patterns will belong to a data center, within a pre-
specified error. For coding abcissas ( )I k  a lossless 
strategy has been applied (delta coding). The amount of 
compression achieved by the algorithm, defined by the 
ratio between the number of bits necessary to describe 
the original data and the number of bits necessary to 
describe the compressed data is given by 
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Where N is the number of bits necessary to represent 
the original signal and ( )c I  the lossless compression of 
abcissas (I). The parameters PI  and 12PI  define, 
respectively, the entries for the two dictionaries dP and 
[ ]1 2dP dP  being PD  and 122 PD  the number of bits 
needed to store both dictionaries.  

 
3. Experimental Results 

ECG records taken from MIT-BIH Arrhythmia [10] 
and MIT-BIH Malign Arrhythmia Databases [11] were 
used to experimentally assess the performance of the 
proposed method. The algorithm was tested using a 
variety of signals, from normal ECG’s to sustained 
ventricular fibrillation, in order to investigate the 
amount of necessary patterns and consequently the 
achieved compression ratio (8), as well as the error 
induced by the compression process. The percentage 
root mean difference (PRD), equation (9), was used as 

a distortion coefficient, where signals ( )x k and ( )x k  
represent, respectively, the original and compressed 
signals and x defines the original signal average. 
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Table 1 shows the compression ratios and the 
respective PRD ratios for several ECG signals. The 
presented values reflect a value of a PRD ratio such that 
the compressed signal is acceptable (obtained by visual 
inspection). Moreover, the performance of the 
algorithm was tested using only the first 5 seconds of 
each record and the first 400 seconds (digitalized with a 
sampling rate of 250 Hz and 12 bits representation). 

 5 seconds 400 seconds 
MIT[10] PRD CPR PRD CPR 

1031 5,7 9,3 7,1 30,7 
1051 4,0 8,5 7,2 25,7 
2081 3,9 8,6 7,8 22,6 
1191 6,6 13,7 7,6 33,4 
2021 4,6 13,4 7,9 40,2 

MIT[11] PRD CPR PRD CPR 
418 4,3 7,9 7,4 19,8 
420 7,0 9,0 7,9 41,0 
602 6,1 7,8 7,4 17,5 

Table 1. ECG compression results 

Figures 4 and 5 allow visual assessment of the 
quality of two reconstructed signals. Figure 4 presents a 
normal ECG signal, in particular the record #1051, and 
the reconstructed signal for a PRD equal to 4.0.  
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Figure 4. Compression results for the #1051 signal. 



Figure 5 shows the performance of the compression 
method in the presence of a tachycardia/fibrillation, 
namely record #418, and the reconstructed signal for 
PRD equal to 4.3.  
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Figure 5. Compression results for the #418 signal. 

Experimental results show that the proposed method 
achieves a good compression ratio with effectively 
reconstruction quality, namely an excellent preservation 
of QRS complexes and other important signal features. 
Furthermore, experiments with ECG records compares 
favorably with various classical and state-of the-art 
ECG compressors.  

Computationally, the algorithm is very simple and is 
viable in scenarios where limited computing power is 
available. The decompression process is extremely 
lightweight while the compression stage, although more 
computationally intensive than the decompressor, is 
relatively lightweight as well, since the process to 
determine the model coefficients is a least squares 
algorithm. Furthermore, a clustering procedure is 
involved. 

The proposed method is specially interesting when 
signals present strong regularity leading, as expected, to 
high rate of compression ratios. 

 
4. Conclusions 

A methodology able to detect similarities in time 
domain signal with application to data compression has 
been proposed. The method is based on a Bezier curve 
interpolation and on a pattern recognition phase 
founded on a clustering technique. Experimental results 
have shown compression performances in the range of 
the state-of-the-art methods. The main features of this 
method are: i) the proposed method provides a data 
segmentation without any help of a pre-segmentation 

algorithm, exploiting QRS detection (R-R interval); ii) 
the complexity of the method is low, which means it 
can be used for real-time purposes; iii) although the 
method is a general-purpose, it is more efficient for 
long quasi periodic signals; iv) the method can 
implicitly deal with different types of wave forms, 
namely ECG normal sinus rate, ventricular tachycardia 
and ventricular fibrillation.  

Although a compression case-study has been shown, 
other practical applications concerning feature detection 
are currently under study and development. In fact, in 
cardiology context where several biosignals exhibit 
strong periodicities, there is a great interest in detecting 
anomalies or dysfunctions, such as harmful ECG 
morphologies and arrhythmias. 
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