Proceedings from the Nordic MATLAB Conference 2003, Copenhagen, Denmark

GPLAB — A Genetic Programming Toolbox for MATLAB

Sara Silva ! and Jonas Almeida 12

! Biomathematics Group, Instituto de Tecnologia Quimica e Biolégica,
Universidade Nova de Lisboa, PO Box 127, 2780-156 Oeiras, Portugal
sara@itqgb.unl.pt
2 Dept Biometry & Epidemiology, Medical University of South Carolina,
135 Cannon St, Suite 303, PO Box 250835, Charleston SC 29425, USA
almeidaj@musc.edu

Abstract

This paper presents GPLAB, a genetic programming
toolbox for MATLAB. Besides most of the features
traditionally used in genetic programming, it also im-
plements two techniques aimed at controlling the well
known bloat problem, as well as a modified version
of a previously published method for automatically
adapting the genetic operator probabilities in runtime,
which makes it possible to use the toolbox as a test
bench for new genetic operators. Combining a highly
modular and adaptable structure with automatic pa-
rameterization techniques, the toolbox suits all kinds
of users, from the layman who wants to use it as a
“black box”, to the advanced researcher who wants to
The toolbox and
its documentation are freely available for download at
http://www.itgb.unl.pt:1111/gplab/.

build and test new functionalities.

1 Introduction

Genetic programming is the most recent paradigm
of evolutionary computation [1, 6]. It solves com-
plex problems by evolving populations of com-
puter programs, using Darwinian evolution and
Mendelian genetics as inspiration. Until recently,
there were a number of public domain genetic al-
gorithm toolboxes for MATLAB [3, 5], but none
specific for genetic programming. GPLAB was de-
veloped to provide such a free toolbox that can
be used and further developed by others. Ac-
cordingly, a careful programming discipline was
adopted to ensure code reusability and easy main-

tenance. The result was a versatile, generalist and
extendable tool, able to accommodate a wide vari-
ety of usages. It was tested on different MATLAB
versions and computer platforms, namely version
5.2 (R11) for Windows and version 5.3 (R13)
for Windows and Linux. GPLAB and its docu-
mentation are released under GNU General Pub-
lic License, and freely available for download at
http://www.itgb.unl.pt:1111/gplab/.

2 Operational structure

The architecture of GPLAB follows a highly mod-
ular and parameterized structure, which different
users may use at various levels of depth and in-
sight. What follows is a visual description of this
structure, along with brief explanations of some op-
eration details and control parameters. A summary
of three usage profiles appropriate for the different
types of users can be found in the user’s manual
accompanying the toolbox. Some demo functions
are available.

Figure 1 shows the operational structure of
GPLAB. There are three main operation mod-
ules, namely SET VARS, GEN POP, and GEN-
ERATION, each representing an interaction point
with the user. Inside each main module the sub-
modules are executed from top to bottom, the same
happening inside INITIAL PROBS and ADAPT
PROBS. The description of these two can be found
in Sect. 3.3. Any module with a question mark
can be skipped, depending on the parameter indi-

273

Proceedings from the Nordic MATLAB Conference 2003, Copenhagen, Denmark

cated above it. Each module may use one or more
parameters and one or more user functions. User
functions implement alternative or collective pro-
cedures for realizing a module, and they behave as
plug and play devices. Please refer to the user’s
manual for details and references on these.

GENPOP. This module generates the initial
population (INIT POP) and calculates its fitness
(FITNESS). The individuals in GPLAB are tree
structures created using one of the available initial-
ization methods: Grow, Full, or Ramped Half-and-
Half. The functions available to build the trees in-
clude the if-then-else statement and some protected
functions, plus any MATLAB function that verifies
closure. The terminals include a random number
generator and all the variables necessary, created
in runtime.

Fitness is, by default, the sum of absolute dif-
ferences between the obtained and expected results
in all fitness cases. The lower the fitness value, the
better the individual. This is the standard for sym-
bolic regression problems (“regfitness” in Fig. 1),
but GPLAB accepts any other plug and play func-
tion to calculate fitness, like the function for artifi-
cial ant problems, also provided (“antfitness”).

GEN POP is called by the user. It starts by
requesting some parameter initializations to SET
VARS, and finishes by passing the execution to
GENERATION. If the user only requests the cre-
ation of the initial generation, GENERATION is
not used.

GENERATION. This module creates a new
generation of individuals by applying the genetic
operators to the previous population (OPERA-
TOR). Standard tree crossover and tree mutation
are the two genetic operators available as plug and
play functions. They must have a pool of par-
ents to choose from, created by a SAMPLING
method, which may or may not base its choice on
the EXPECTED number of offspring of each in-
dividual. Three sampling methods (Roulette, SUS,
Tournament) and three methods for calculating the
expected number of offspring (Absolute, Rank85,
Rank89) are available as user functions, and any
combination of the two can be used. A fourth
sampling method (“lexictour” in Fig. 1) is one of
GPLAB’s special features, described in Sect. 3.

The genetic operators create new individuals un-
til a new population is filled, a number determined
by the generation gap. This parameter can be set
to any positive integer, causing GPLAB to be able
to operate either in generational mode (when gen-
eration gap equals the population size), any level
of steady-state mode (generation gap lower than
population size), or what can be called a batch
mode (generation gap higher than population size).
In GPLAB there are no strict frontiers between
modes, and any set of parameters can be used with
any generation gap value.

Calculating fitness is followed by the SURVIVAL
module, where the individuals that enter the new
generation are chosen according to the elitism level
parameter. The GENERATION module repeats it-
self until the stop condition is fulfilled, or when the
maximum generation is reached. Several stop con-
ditions can be used simultaneously. This module
can be called either by the user or by GEN POP.

SET VARS. This module either initializes the
parameters with the default values or updates them
with the user settings. Besides the parameters di-
rectly related to the execution of the algorithm,
other parameters affect the output of its results.
Please refer to the user’s manual for a complete
description. SET VARS can be called either by
the user or by a request for parameter initializa-
tion from GEN POP.

3 Special features

This section describes some of the features imple-
mented in GPLAB and not usually found in other
genetic programming software packages, discussing
their possible implications and presenting a few ex-
amples. All the plots presented were generated by
toolbox functions.

3.1 Controlling bloat

In genetic programming, code growth is a healthy
result of genetic operators in search of better so-
lutions. Unfortunately, it also permits the appear-
ance of pieces of redundant code, called introns,
which increase the size of programs without im-
proving its fitness. Besides consuming precious

274

Proceedings from the Nordic MATLAB Conference 2003, Copenhagen, Denmark

Llegend:
<™
1
>

,) parameter

operation module %
(main)

operation module

operation module
(subdivided)

optional operation module
(depending on parameter)

optional operation module
(depending on parameter)

(SET VARS)

stabilize condition

| VARS SETTING |
,)iniﬁol robs
C {INTAL PROBS

| GENPOP |

| GENERATION |
porameter C I(gg;ending on parameter)
E | user function
‘ (plug and play)
% % % H:;ﬁcn, regular, advanced) (GEN POD—
......... »__INTPOP |
wi | e | FITNESS |
E]
5 ..'f)probs
E grow % - {ADAPT PROBS
ramped .
| MV WINDOW |
/]
1 absolute
/] ."
SN Re—e, (Commemaron)
sampling type
~..»{__EXPECTED]
................... .l SAMPLING |
generation gap Cl OPERATOR |
[FmNEss]
~"',)probs

_ADAPT PROBS

/|
41 crossover | MV WINDOW |
m . | ADD CREDI |
[UPDAE |
A1 regfitness
W | SURVIVAL |

Figure 1: Operational structure of GPLAB. The layman interacts with the toolbox using default parameter
values; the regular user tries different settings; the advanced user builds new plug and play functions. The three
usage profiles are described in the user’s manual.

275

Proceedings from the Nordic MATLAB Conference 2003, Copenhagen, Denmark

time in an already computationally intensive pro-
cess, introns may start growing rapidly, a situation
known as bloat [2, 10]. Several techniques have
been used in the attempt to control bloat (reviews
in [7, 9]), and GPLAB implements two of the most
recently successful, lexicographic parsimony pres-
sure [7] and dynamic maximum tree depth [8]. Each
one of them can be used exclusively, but the con-
junction of both has shown to be more efficient in
the battle against bloat [8].

Lexicographic parsimony pressure. This is a
multiobjective technique that optimizes both fit-
ness and size at the same time, without assigning a
new fitness value. Instead, it uses a modified tour-
nament selection operator (“lexictour” in Fig. 1)
that treats fitness as the primary objective and tree
size as the secondary objective, in a lexicographic
ordering. This technique has shown to be very ef-
fective in problems where many different individu-
als have the same fitness [7], meaning where code
growth is mainly caused by introns.

Dynamic maximum tree depth. This tech-
nique introduces a dynamic limit to the maximum
depth of the individuals allowed in the population.
It is similar to the traditional Koza-style strict limit
commonly imposed on tree depth [6], but does not
replace it — both dynamic and strict limits are used
in conjunction. The dynamic limit should be ini-
tially set with a low value, but at least as high as the
depth of the randomly created initial trees. Once
increased, it will not be lowered again. If and when
the dynamic limit reaches the same value as the
strict Koza limit, both limits become one and the
same. This technique has been tested in two differ-
ent problems, where it has surpassed lexicographic
parsimony pressure and shown to effectively avoid
excessive code growth caused by either introns or
exons. The combination of both techniques pro-
duced even better results [8].

3.2 Accuracy versus Complexity

The dynamic maximum tree depth parameter may
be used for another purpose besides controlling
bloat. In real world applications, one may not
be interested or able to invest a large amount of
time in achieving the best possible solution, par-
ticularly in approximation problems. Instead, one

may only consider a solution to be acceptable if it
is sufficiently simple to be comprehended, even if
its accuracy is known to be worse than the accu-
racy of other more complex solutions. Choosing
less stringent stop conditions is not enough to en-
sure that the resulting solution will be acceptable,
as it cannot predict its complexity. GPLAB re-
sponds to this by returning, not only the best in-
dividual found during the run, but the series of all
individuals that have once been considered to be
the best during the run. In this series the user can
find several solutions of different levels of complex-
ity, and choose which one corresponds better to the
desired ratio between accuracy and complexity. It
is important to choose a low value for the initial dy-
namic maximum tree depth, to force the algorithm
to look for simpler solutions before adopting more
complex ones. When the dynamic maximum level
is initially set to a high value, the algorithm does
find complex solutions first, and hardly ever dis-
cards them in favor of simpler ones. Figure 2 illus-
trates a run performed with initial dynamic maxi-
mum tree depth 5 on a symbolic regression problem
(approximation of the exponential function).

Accuracy versus Complexity
45

fithegs
level
nodes

t11

] FJ [N] A]
o (45} [iy]

fitness, level, nodes

—
[y]

107
4
I:I I Il
1] 200 400 G600 200 1000
generation

Figure 2: Evolution of fitness, level (tree depth) and
number of nodes of the best individual found so far. Is
it worth waiting for a more accurate and more complex
solution?

276

Proceedings from the Nordic MATLAB Conference 2003, Copenhagen, Denmark

3.3 Adapting operator probabilities

Due to the extremely wide range of problems that
can potentially be solved by genetic programming,
there seems to be no such thing as the ideal set of
parameter values to use. Some of the most impor-
tant and most difficult to set are precisely the ones
directly related to the heart of the evolutionary pro-
cess: the probabilities of occurrence of the genetic
operators. GPLAB implements a modified version
of a previously published method for automatically
adapting these in runtime [4].

The adaptation procedure is represented in Fig. 1
as the module ADAPT PROBS. It keeps track of a
certain number of past individuals, by means of a
moving window (MV WINDOW), and adds credit
to the genetic operators, proportional to the rela-
tive quality of their offspring when compared to the
previous population (ADD CREDIT). The opera-
tors that created their ancestors also receive credit,
in a lower amount, passed back until a certain num-
ber of backward generations is reached. Only the
individuals inside the moving window participate in
the credit distribution. From time to time the op-
erator probabilities are updated to reflect how well
they have performed during the last interval (UP-
DATE). The initial operator probabilities can also
be automatically set before the run starts, by re-
peatedly simulating modules GEN POP and GEN-
ERATION, which adapts the operator probabili-
ties until a certain stabilization condition is verified
(module INITTIAL PROBS). The operator probabil-
ities may drop to null values, knowing that when-
ever an operator reaches the adaptation time with-
out having produced any offspring during the last
interval, its credit will be twice the amount of the
best operator. This boost will give the operator a
new opportunity to prove itself useful. If not, its
probability will rapidly drop again.

Figure 3 exemplifies the active role of the adap-
tation procedure in presence of destructive genetic
operators. The initial operator probabilities are all
equal, not subject to the initial adaptation proce-
dure. When the two destructive operators “destroy
all” and “destroy less” are used in conjunction with
the regular genetic operators “crossover” and “mu-
tation” on the Even-3 Parity problem, the pattern
shown in Fig. 3 is generated. Both destructive oper-
ators pick one parent and produce one offspring by
replacing the tree with a numeric constant (—100 in

Operatars Evaolution crossover

mutation
destroyall
destroyless

o
.
1
1
1
1

o
i
m

o
. o
W
i

probahilities of occurence
]
ra

0 50 100 150
generation

Figure 3: Operator probabilities evolution in presence

of destructive operators

Operators Evolution

Crogsover
mutation

08f

06

045

probabilities of occurence

02f

0 50 100 150
generation

Figure 4: Alternation pattern between the probabili-

ties of crossover and mutation

“destroy all”, —10 in “destroy less”). Both are dra-
matically destructive, but “destroy all” is so much
worse that it even masks the fact that “destroy less”
is also a very bad operator. It immediately drops
to the bottom, and all the probability boosts it re-
ceives are to no avail.

277

Proceedings from the Nordic MATLAB Conference 2003, Copenhagen, Denmark

It is important to remove the genetic operators
that do not recover after successive boosts, as they
may be preventing an important relationship be-
tween the remaining operators. When both de-
structive operators are removed from the example
above, an elegant pattern of alternation between
crossover and mutation arises (shown in Fig. 4),
as if the positive contribution of one could not be
possible without the previous contribution of the
other. It is beyond the scope of this report to ana-
lyze the conditions that lead to such patterns, and
the plots presented are no more than mere illustra-
tions of using the toolbox as a test bench for genetic
operators.

4 Future Work

The GPLAB toolbox is not a final product. On
the contrary, it was built to serve as a test bench
for new genetic programming functionalities, some
of which will inevitably be integrated in future ver-
sions of the toolbox. Any improvements to GPLAB
will be made available as new versions or simply as
new user function modules ready to be plugged in
the operational structure.

Launched on July 8, 2003, the GPLAB web
page already counts several hundreds of visits, and
dozens of e-mails have been received by the authors
reporting an interest in future updates and sugges-
tions for improving efficiency, including a propo-
sition to parallelize the algorithm. It seems like
GPLAB may be filling a gap in evolutionary com-
putation tools for MATLAB.

Acknowledgements

This work was partially supported by grants QLK2-
CT-2000-01020 (EURIS) from the European Com-
mission and POCTI/1999/BSE /34794 (SAPIENS)
from Fundagao para a Ciéncia e a Tecnologia, Por-
tugal.

References

[1] Banzhaf, W., Nordin, P., Keller, R.E., Fran-
cone, F.D.: Genetic programming — an in-
troduction, San Francisco, CA. Morgan Kauf-
mann (1998)

[2] Banzhaf, W., Langdon, W.B.: Some consid-
erations on the reason for bloat. Genetic Pro-
gramming and Evolvable Machines, 3. Kluwer
Academic Publishers (2002) 81-91

[3] Chipperfield, A.J., Fleming, P.J., Pohlheim,
H., Fonseca, C.M.: A genetic algorithm tool-
box for MATLAB. In Proceedings of the Inter-
national Conference on Systems Engineering
(1994) 200207

[4] Davis, L.: Adapting operator probabilities in
genetic algorithms. In Schaffer, J.D., editor,
Proceedings of the Third International Confer-
ence on Genetic Algorithms, San Mateo, CA.
Morgan Kaufmann (1989) 61-69

[6] Houck, C.R., Joines, J.A., Kay, M.G.: A ge-
netic algorithm for function optimization: a
MATLAB implementation. NCSU-IE Techni-
cal Report 95-09, North Carolina State Uni-
versity, Raleigh, NC (1995)

[6] Koza, J.R.: Genetic programming — on the
programming of computers by means of nat-
ural selection, Cambridge, MA. MIT Press
(1992)

[7] Luke, S., Panait, L.: Lexicographic parsimony
pressure. In Langdon, W.B., Cantu-Paz, E.,
Mathias, K., Roy, R., Davis, D., Poli, R.
Balakrishnan, K., Honavar, V., Rudolph, G.,
Wegener, J., et al., editors, Proceedings of
GECCO0-2002. Morgan Kaufmann (2002) 829—
836

[8] Silva, S., Almeida, J.: Dynamic maximum
tree depth — a simple technique for avoid-
ing bloat in tree-based GP. In Cantd-Paz, E.,
Foster, J.A., Deb, K., Davis, L.D., Roy, R.,
O’'Reilly, U.-M., Beyer, H.-G., Standish, R.,
Kendall, G., Wilson, S., et al., editors, Pro-
ceedings of GECCO-2003. Springer Verlag
(2003) 1776-1787

[9] Soule, T., Foster, J.A.: Effects of code growth
and parsimony pressure on populations in ge-
netic programming. Evolutionary Computa-
tion, 6(4) (1999) 293-309

[10] Soule, T., Heckendorn, R.B.: An analysis of
the causes of code growth in genetic program-
ming. Genetic Programming and Evolvable

Machines, 3 (2002) 283-309

278

