
Recovery and Performance Balance of a COTS DBMS in the Presence of
Operator Faults

Marco Vieira Henrique Madeira
ISEC DEI-FCTUC

Polytechnic Institute of Coimbra University of Coimbra
3031 Coimbra - Portugal 3030 Coimbra - Portugal

mvieira@isec.pt henrique@dei.uc.pt

Abstract

A major cause of failures in large database manage-
ment systems (DBMS) is operator faults. Although most of
the complex DBMS have comprehensive recovery mecha-
nisms, the effectiveness of these mechanisms is difficult to
characterize. On the other hand, the tuning of a large
database is very complex and database administrators
tend to concentrate on performance tuning and disregard
the recovery mechanisms. Above all, database adminis-
trators seldom have feedback on how good a given con-
figuration is concerning recovery. This paper proposes an
experimental approach to characterize both the perfor-
mance and the recoverability in DBMS. Our approach is
presented through a concrete example of benchmarking
the performance and recovery of an Oracle DBMS run-
ning the standard TPC-C benchmark, extended to include
two new elements: a faultload based on operator faults
and measures related to recoverability. A classification of
operator faults in DBMS is proposed. The paper ends
with the discussion of the results and the proposal of
guidelines to help database administrators in finding the
balance between performance and recovery tuning.

1. Introduction

The ascendance of networked information in our
economy and daily lives has increased awareness of the
importance of dependability features. In many cases, such
as in e-commerce systems, computer outages can result in
a huge loss of money or in an unaffordable loss of prestige
for companies. In fact, due to the impressive growth of the
Internet, some minutes of downtime in a server
somewhere may be directly exposed as loss of service to
thousands of users around the world.

Databases play a central role in this information
infrastructure and it is well known that Database
Management Systems (DBMS) have a long tradition in
high dependability, particularly in what concerns data
integrity and availability aspects. Several basic
mechanisms needed to achieve data recovery, such as
transactions, checkpointing, logging, and replica control
management have been proposed/consolidated in the

database arena. However, and in spite of the very
important role played by these mechanisms in DBMS,
there is no practical way to benchmark their effectiveness
or at least to characterize the innumerous configuration
alternatives available in typical DBMS products in what
concerns the impact of these configurations on database
performance and recovery.

The tuning of a large commercial database is a very
complex task and database administrators tend to
concentrate on performance tuning and often disregard the
recovery mechanisms. The constant demands for
increased performance from the end-users and the fact that
database administrators seldom have feedback on how
good a given configuration is concerning recovery
(because faults are relatively rare events) largely explain
the present scenario.

Database industry holds a reputed infrastructure for
performance evaluation and the set of benchmarks man-
aged by the Transaction Processing Performance Council
(TPC) are recognized as one of the most successful
benchmark initiatives of the overall computer industry.
However, data recovery has been largely absent from TPC
benchmarking effort. Existing TPC benchmark specify
that data recovery features of the database must ensure
that data can be recovered from any point in time during
the benchmark running, but the benchmarks specifications
do not include any procedure to confirm that these mecha-
nisms are working properly or to measure the impact of
the recovery mechanisms on the system performance.

The major problem of having pure performance
benchmarks (i.e., benchmarks that only measure raw
performance) for DBMS and transactional systems in
general is that the benchmark results tend to portrait rather
artificial situations, as data recovery mechanisms are
configured for the minimum impact on transaction
performance and the effectiveness of data recovery is
totally disregarded. The tight dependence between
performance and recovery tuning in modern DBMS urge
the definition of practical methods to characterize a given

Funding for this paper was provided, in part, by Portuguese
Government/European Union through R&D Unit 326/94 (CISUC) and
by DBench project, IST 2000 - 25425 DBENCH, funded by the
European Union.

configuration or compare different DBMS products in a
more realistic scenario. Above all, it is important to
include in the benchmarks new measures that show the
benefit of including better recovery mechanisms in the
system or configuring the available mechanisms to
achieve the best recoverability.

This paper proposes an experimental approach to char-
acterize both the performance and the recoverability in
DBMS by extending existing performance benchmarks to
include a faultload (i.e., a set of faults or stressful condi-
tions that activate the recovery mechanisms) and measures
related to recoverability. The approach is presented
through a concrete example of benchmarking the perform-
ance and recovery of an Oracle DBMS running the stan-
dard Transaction Processing Performance Council (TPC)
TPC-C benchmark [1], extended with two new elements:
1) measures related to recovery time, data integrity viola-
tions, and lost transactions and 2) a set of operator faults
as a faultload. This experimental approach is generic in
the sense that it can be applied to any DBMS (i.e., it has
the same field of application as the TPC-C benchmark).

In addition to the first proposal of the extension of
TPC-C benchmark to characterize both the performance
and the recoverability in DBMS, this paper also has the
following contributions:
- Evaluation of the Oracle recovery mechanisms in the

presence of operator faults. It is worth noting that it is
generally assumed that typical DBMS recovery
mechanisms are quite effective, which is in general
corroborated by years of intensive use of DBMS in the
field. Very few works have evaluated experimentally
the behavior of DBMS in the presence of faults.
However, all the experimental evaluation works known
in the literature have shown that a non-negligible
number of faults are not handled correctly by DBMS
[2, 3, 4, 5, 6]. While previous papers are “classic” fault
injection works, that have injected hardware and
software faults, our work is, to the best of our
knowledge, the first experimental evaluation of a
DBMS with operator faults.

- Proposal of a general classification for operator faults
in DBMS. The instantiation of this classification for the
Oracle DBMS is presented and a set of tools have been
designed and built to cause these faults in the target
system in the context of the extension of the TPC-C
benchmark. The method used actually inserts typical
operator faults by mimicking wrong operator
commands using exactly the same means used by the
real database administrator in the field, which assures a
correct reproduction of operator faults. This approach
is generic (i.e., can be applied to any DBMS) and is
fully automatic.

- As an extension of an existing performance benchmark,
this work is a first contribution towards the proposal of

standard dependability benchmarks for DBMS. The
concept of dependability benchmarking has gained
ground in the last few years and is currently the subject
of intense research [7, 8, 9]. The idea is to devise stan-
dardized ways to evaluate both dependability and
performance of computer systems or components.
Comparing to well-established performance bench-
marks, dependability benchmarks have two new
elements, which are the measures related to depend-
ability and the faultload. In our work, the dependability
measures are focused on recoverability (which is di-
rectly related to DBMS down time) and data integrity,
as these are the most relevant measures in typical
database applications, and the faultload consists of
operator faults, which is one unanimously considered
as a very important source of failures in databases.
The structure of the paper is as follows: the next

section presents background on DBMS, especially in what
concerns recovery and performance tuning. Section 3
discusses the problem of operator faults in DBMS and
presents a classification for this kind of faults based on
interviews with database administrators of real databases
installations, as well as analysis of typical database
administration operations. A short description of the set of
tools built to insert these faults is also presented in section
3. The experimental setup is presented in section 4 and the
results are presented and discussed in section 5. Section 6
concludes the paper.

2. Background on DBMS

A database is a collection of data describing the
activities of one or more related organizations [10]1. The
software designed to assist in maintaining and using
databases is called database management system, or
DBMS. A DBMS allows users to define the data to be
stored in terms of a data model, which is a collection of
high-level metadata that hide many low-level storage
details. Most DBMS today are based on the relational data
model, which was proposed by E. F. Codd in 1970 [11,
12]. The relational data model is very simple and elegant,
and defines a database as a collection of one or more
relations, where each relation is a table with rows and
columns. DBMS based on the relational data model are
frequently called relational database management systems.
In the rest of the paper we will use the term DBMS to
refer to relational database management systems.

In practice, a typical database application (e.g.,
banking, insurance companies, telecommunications, etc) is
a client-server system (either a traditional client-server or
a three tier system) where a number of users are connected

1 This first paragraph is a condensed view of key definitions presented
in chapter 1 of the book “Database Management Systems”, by R.
Ramakrishnan, second edition, McGraw Hill, ISBN 0-07-232206-3.

to a database server via a terminal or a desktop computer
(today the trend is to access database servers through the
internet using a browser). The user’s actions are translated
into SQL commands (Structured Query Language: the
relational language used by DBMS [13]) by the client
application and sent to the database server. The results are
sent back to the client to be displayed in the adequate
format by the client application.

A very important notion in DBMS is the concept of
transaction [14]. In a simplified view, a transaction is a set
of commands that perform a given action and take the
database from a consistent state to another consistent
state. Transaction management is an important
functionality of modern DBMS and it is directly related to
dependability aspects, particularly in what concerns
concurrency control and recovery. Concurrency control is
the activity of coordinating the actions of processes that
operate in parallel and access shared data, and therefore
potentially interfere with each other. Recovery assures
that faults (either hardware, software, or operator faults)
do not corrupt persistent data stored in the database tables.

In order to correctly deal with concurrency control and
recovery, DBMS transactions must fulfill the following
properties: atomicity (either all actions in the transaction
are executed or none are), consistency (execution of
transaction results in consistent database states), isolation
(the effects of a transaction must be understood without
considering other concurrently executing transactions),
and durability (the effects of a transaction that has been
successfully completed must persist, even when the
system has a failure after the transaction is finished).
These properties are known as the ACID properties.

The Oracle™ DBMS is one of the leading databases in
the market and as one of the most complete and complex
database it represents all the sophisticated relational
DBMS available today very well. For that reason we have
chosen the Oracle 8i DBMS as case study to show the
experimental approach proposed to characterize both the
performance and the recoverability in DBMS. In the
remaining of this section we briefly describe the key featu-
res of the Oracle 8i DBMS, with particular emphasis in
the recovery and performance tuning and administration.

2.1. Oracle DBMS

An Oracle server consists of an Oracle database and
one or more Oracle server instances [15]. An Oracle
database has logical structures and physical structures.
Because physical and logical structures are separate, the
physical data storage can be managed without affecting
the logical structures. The main physical structures are the
control files, the data files, the redo log files, and the
archive log files. The following point summarizes the role
of each of these physical structures:

- Control files: contain all the basic and vital information
about the database, such as the physical location of the
other files, configuration parameters, etc.

- Data files: are the files where the data (user data,
metadata, or any other type of data) is stored. An
Oracle database can have as many data files as
necessary to fulfill the application needs.

- Online redo log files: group of files (in a minimum of
two) used to record the redo log entries, which are
used during database recovery. These files work in a
circular way and when all the redo log files are full the
Oracle continues writing and overwrites the previous
contents of the files (reuse). Given the importance of
the redo log information, the redo log files can be
replicated to assure correct recovery even when a redo
log file is lost.

- Archive log files: these files store the redo entries in a
permanent way (typically in a tertiary storage device).
The archive log files are optional and, when active,
avoid the loss of redo log information due to the
circular use of the online redo log files.
The user space (i.e., the space used to store user

objects such as tables, indexes, etc) is available through a
set of logical structures: tablespaces, segments, extents,
and data blocks. The tablespace is a logical area that is
physically composed by one or more data files. Users
receive quotas in tablespaces and an Oracle database can
have as many tablespaces as needed for a good
administration of the storage space. Any data object in
Oracle (table, index, etc) is associated to one segment and
segments acquire space from a tablespace through units
called extents. Finally, each extent is composed by a given
number of data blocks, which is the basic storage unit.

The combination of the background processes and
memory buffers is called an Oracle instance. Every time
an instance is started, a system global area (SGA) is
allocated (area of memory used for database information)
and Oracle background processes are started.

An Oracle instance has two types of processes: user
processes and Oracle processes. A user process executes
the code or commands from application programs. The
Oracle processes include server processes that perform
work for the user processes and background processes that
perform maintenance work for the Oracle server. Some of
the most important processes are: the database writer
(DBWR), the log writer (LGWR), the checkpoint
(CKPT), and the archive writer (ARCH).

During the normal database operation, all the activities
are stored as entries in the online redo log files. The
entries are cached in the redo log buffer and regularly
saved into the log files by the LGWR process (actually,
the redo log buffer is written into the log files whenever a
user transaction commits). Another important goal of the
LGWR is to record the activities as frequently as possible,

allowing the DBWR to delay its data writing operations. It
is worth noting that typically a redo log entry is much
smaller than the corresponding data operation described in
the log entry, which means that it is much faster to write
the log entries into the disk than the corresponding data. If
the log archive option is on, the archive log process
(ARCH) copies online redo log files to a tertiary storage
device once a given online redo log file becomes full.

Oracle performs periodical checkpoints, which repre-
sent consistent states of the database from which it is
possible to start recovery. The recovery consists of a
forward phase, in which the redo entries recorded in the
redo log are applied to regenerate the data, followed by a
backward phase, in which some unrecoverable
transactions are rolled back to bring the database to a
clean state. To reduce downtime due faults, Oracle uses a
basic process pair mechanism. It consists of a stand-by
database running in a different machine that is kept in a
permanent recovery process by executing the redo logs of
the primary database. This way, if the primary database
goes down the stand-by database can replace it and resu-
me the work very quickly, greatly reducing the down time.

2.2. Oracle performance and recovery tuning

The performance and recoverability of an Oracle
database depend on many system elements, that can be
summarized as follows: memory and processes, physical
storage, database objects, SQL commands, and recovery
mechanisms. Obviously, the logging and checkpointing
activities necessary to recover from faults also cause some
performance degradation, which is very dependent on
specific tuning options. Furthermore, several components
of the underlying platform (e.g., hardware, operating
system, and network) can also impact the performance and
recovery, but these aspects are clearly outside DBMS
performance and recovery tuning. The following points
summarize the key aspects of Oracle 8i performance and
recovery tuning and give an idea of the huge complexity
of tuning a large database installation. As general
reference for database concepts and tuning see [10] and
for a more specific reference concerning tuning of
Oracle 8i see [15].
- Memory and processes: the goal is to optimize the I/O

operations through the definition of the optimal size of
the different memory areas in the SGA and the cache
and buffer policies. Additionally, it is possible to
optimize the number of some processes such as the
DBWR or LGWR.

- Physical storage: the goal is to minimize contention
when accessing database files and fragmentation in the
physical storage of database objects. Many aspects
affect the physical storage, such as the distribution of
the database files by the available disks, and the

numerous parameters used to configure the space
allocation to database objects through extents and data
blocks.

- Database objects: the definition of database objects
also impacts the performance. For example, the
normalization of the tables, the creation of adequate
indexes, clustering or partitioning of some objects, etc.

- SQL commands: in addition to the DBMS parameters
related to the query optimization and SQL execution,
the transaction design (i.e., set of SQL commands)
also affects performance. In this last case, the goal is
to minimize the performance impact of concurrency
control by avoiding transaction contention due to
object blocking. The optimization of SQL query
execution is mainly related to the policy used by the
DBMS query optimization module (cost or rule based).

- Recovery mechanisms: the tuning of the recovery
mechanism is clearly the most difficult part when a
well-balanced tuning is desired. The goal is to
conciliate aspects such as the minimization of recovery
time and the impact of faults in terms of lost
transactions with maximum performance. Some
examples of parameters related to recovery
mechanisms are size and number of online redo log
files, archive log option, checkpointing policy, and
stand-by database.
It is worth noting that database tuning must also take

into account the interdependencies among most of the
elements mentioned above. In practice, in a complex
DBMS such as Oracle 8i the performance and recovery
tuning may require the definition of thousands of parame-
ters, which clearly show the difficulties faced by database
administrators in handling this problem. This emphasizes
the need for comprehensive benchmarks that include both
performance and recoverability measures. In this sense,
the present work is a first step towards this direction.

3. Operator Faults in DBMS

Our proposal of extending the TPC-C performance
benchmark to measure both performance and
recoverability requires the introduction of two new
elements: recoverability measures and faultload. The
representativeness of these new elements is, obviously, of
utmost importance. Concerning the faultload the challenge
is to define a representative set of faults and find practical
and consistent ways to introduce these faults in the system
under test (to make it possible to repeat the experiments or
to port them to other systems). In the same way we have
concentrated on measures of recovery time and integrity
violations, instead of more general dependability
measures (because these measures are the most relevant to
databases and are directly related to database availability
and data integrity), we also decided to focus on operator

faults, as these faults are unanimously considered by the
database community as responsible for most of the
failures in database systems.

Studies on the underlying causes of database failures in
the field are not generally available to the public, as the
organizations prefer not to disclose this information. Most
of the published studies are not directly focused on
database systems. Nevertheless, published studies clearly
point out software faults and operator faults as the most
frequent causes for computer failures [16, 17, 18, 19, 20].
Furthermore, the great complexity of database
administration tasks and the need of tuning and
administration in a daily basis, clearly explain why
operator faults (i.e., wrong database administrator actions)
are prevalent in database systems. Several interviews with
database administrators of real databases installations
conducted on behalf of this work to define a classification
for operator faults have also confirm the prevalence of
operator faults in database systems.

Although software faults are considered an important
source of failures, the emulation of software faults is still a
research issue and there are no practical tools readily
available to inject this kind of faults [21, 22]. Thus, we
decided to address only operator faults in this first study.

Operator faults in database systems are database
administrator mistakes. End-user errors are not
considered, as the end-user actions do not affect directly
the dependability of DBMS. In fact, the end-users do not
have direct access to the DBMS (e.g., do not execute SQL
commands even in user accounts), and they are only
allowed to use the database through well-defined interface
applications that isolate them from the DBMS.

The list of tasks performed by a database administrator
is very long. Thus, we have decided to analyze the
database administrator tasks and group them in classes
related to the major groups of database administration
operations. This analysis was based on the study of core
functions available in all DBMS [10], interviews with
database administrators of real databases installations, and
examination of database scripts used to help some
database administration tasks. Table 1 shows the proposed
classes of DBMS operator faults (each class of faults
corresponds to many types of mistakes) and gives some
examples of faults for each class.

These major groups of operations can be found in any
commercial DBMS, as they are related to core functions
available in all DBMS [10]. Although the details of some
administrator operations are specific to each DBMS, the
standard SQL used by the vast majority of DBMS greatly
simplifies the establishment of equivalent administrator
mistakes in different DBMS implementation. Some
operator faults, however, are intimately related to specific
features of a given DBMS and those ones may have no
counterparts in other DBMS.

As we can see from the groups of operations used to
define each fault class in Table 1, database administrators
manage all aspects of DBMS. Obviously, administrator
mistakes easily damage DBMS availability and
performance, which shows the interest of benchmarking
the behavior of DBMS in the presence of these faults.
The injection of operator faults in a DBMS can be easily
achieved by reproducing common database administrator
mistakes. That is, operator faults can be injected in the
system by using exactly the same means used in the field
by the real database administrator (i.e., we do not emulate
faults as it is usual in traditional fault injection: we really
reproduce operator faults). In order to make the procedure
fully automatic, faults can be injected by a set of scripts
that perform the wrong operation at a given moment (the
fault trigger). As usually happens in traditional fault
injection, the fault trigger can be defined in such a way
that operator faults can be uniformly distributed over time
or can be synchronized with a specific event or command
of the workload.
Classes Description

M
em

or
y

&
pr

oc
es

se
s

ad
m

in
.

Mistakes in the administration of processes and memory
structures. Incorrectly define the memory allocation and
processes initialization parameters are typical faults related
to processes and memory administration. Another typical
fault is the accidental database shutdown that causes the
loss of service.

S
ec

ur
it

y
m

an
ag

. Mistakes in the attribution of passwords, access privileges,
and disk space to users. These are very problematic faults
in database administration, as their effects are difficult to
detect.

S
to

ra
ge

ad
m

in
.

Mistakes in the administration of the physical and logical
storage structures. Common examples of this class of faults
are: the removal or corruption of database files, the
incorrect distribution of files by several disks, and letting
the storage structures run out of space.

D
at

ab
as

e
ob

je
ct

ad
m

in
.

Errors related to the management of the user objects. The
removal of a user object (e.g., table, index, etc.), the
incorrect configuration of the user objects, and the
incorrect use of the optimization structures are common
faults related to the database schema administration.

R
ec

ov
er

y
m

ec
ha

n.
ad

m
in

. Mistakes in the configuration and administration of the
database recovery mechanisms. Some typical examples
are: the inexistence of backups, the removal or corruption
of a log file, and the inexistence of archive logs.

Table 1. Classes of DBMS operator faults.

3.1. Example of operator faults in Oracle DBMS

Table 2 shows an instantiation of the operator fault
classes proposed in Table 1 for the case of Oracle 8i
DBMS, where each line represents specific types of
operator faults. The right column indicates whether each
type of faults is likely be found in other DBMS or not,
based on the analysis of fault characteristics and their
relation with general architectural features of DBMS [10].

A simplified comparative analysis of actual
implementations of DBMS for some major vendors
(Oracle, Microsoft, and Sybase) has also been done. The
notation used is the following: “Yes” means that exactly
the same type of fault can be found in other DBMS;
“Equivalent” means that the type of fault needs to be
translated to take into account implementation details but
a fault with equivalent effects can be found in other
DBMS; “Oracle” means that the type of fault is specific of
Oracle 8i DBMS. As we can see, most of the faults are
expected to be found in other DBMS. Although a more
comprehensive study is required to evaluate the portability
of these types of faults across different DBMS
implementations, this simplified analysis adds a flavor of
generality to the data presented in Table 2, and suggests
that a faultload based on a subset of these types of
operator faults could be fairly general.

Type of operator fault Other

Making a database instance shutdown Yes
Removing or corrupting the initialization file Yes
Incorrect configuration of the SGA parameters Yes
Incorrect config. max. number of user sessions Yes

M
em

or
y

&
pr

oc
es

se
s

ad
m

in
.

Killing a user session Yes
Database access level faults (passwords) Yes
Incorrect attrib. of system and object privileges Equivalent
Attribution of incorrect disk quotas to users Equivalent
Attribution of incorrect profiles to users EquivalentSe

cu
ri

ty
m

an
ag

em
.

Incorrect attribution of tablespaces to users Oracle
Delete a controlfile, tablespace or rollback seg. Oracle
Delete a datafile Equivalent
Incorrect distribution of datafiles through disks Yes
Insufficient number of rollback segments Oracle
Set a tablespace offline Oracle
Set a datafile offline Equivalent
Set a rollback segment offline Oracle
Allow a tablespace to run out of space Oracle

St
or

ag
e

ad
m

in
is

tr
at

io
n

Allow a rollback segment to run out of space Oracle
Delete a database user Yes
Delete any user’s database object Yes
Incorrect config. object’s storage parameters Equivalent
Set the NOLOGGING option in tables OracleD

at
ab

as
e

ob
je

ct
ad

m
in

.

Incorrect use of optimization structures Yes
Delete a redo log file or group Equivalent
Store all redo log group members in same disk Equivalent
Insufficient redo log groups to support archive Equivalent
Inexistence of archive logs Equivalent
Delete a archive log file Equivalent
Store archive files in the same disk as data files Equivalent

R
ec

ov
er

y
m

ec
ha

ni
sm

s
ad

m
in

is
tr

at
io

n

Backups missing to allow recovery Equivalent

Table 2. Example of concrete types of DBMS operator
faults for Oracle 8i.

3.2. Operator faults emulation and recovery

As mentioned before, the injection of operator faults in
a DBMS can be easily achieved by reproducing common
database administrator mistakes. However, in order to
emulate an operator fault in a way similar to what happens
in real world the set of steps represented in Figure 1 must

be followed. A very important aspect concerning the fault
emulation is the instant of activation of the faults (fault
trigger). The same fault activated in different moments
may cause different behaviors according to the system
state, which means that different instants for the injection
of faults must be chosen.

Figure 1. Steps in the injection of an operator fault.

Another relevant aspect to automate the experiments is
that it is necessary to evaluate the type of recovery
procedure that may be required after each fault. This
means that the scripts used to inject each type of fault
must also include all the steps required to start the
adequate recovery procedure, which is much more
complex than the actual reproduction of the operator
faults. The starting instant of the recovery depends on the
time needed to detect the error. Due to the fact that in real
situations that time is highly human-dependent, a typical
detection time (for experiment purposes) has to be
established for each type of operator fault.

4. Experimental setup

The basic platform used in the experiments presented
in this paper consists of two Intel Pentium III servers with
256MB of memory, four 20GB hard disks, running the
Windows 2000 operating system and connected through a
dedicated fast-Ethernet network.

As mentioned earlier in the paper, the TPC-C
performance benchmark [1] running on top of Oracle 8i
database server is used as case study for this joint
evaluation of performance and recoverability. The TPC-C
performance benchmark represents a typical database
installation. This workload includes a mixture of read-
only and update intensive transactions that simulate the
activities found in many complex OLTP application
environments. The performance metric for this benchmark
is expressed in transactions-per-minute-C (tpmC).

Figure 2 shows the key components of the
experimental setup. The two basic configurations used in
the experiments consist of a single database server (which
is the standard configuration) and a configuration with a
stand-by database to study the benefits of using a spare
server to speed up recovery. The TPC-C specification also
includes an external driver system that emulates all the
client applications and respective users during the
benchmark run. This driver system has been extended to

handle the insertion of the operator faults. Additionally,
the driver system also records the base data needed to get
the recovery and integrity measures, which consist of
recovery time, lost transactions, and detection of
integrity violations. It is worth noting that these measures
are taken from the end-user point of view, which means
that, for example, the recovery time includes all the time
needed to recover the Oracle server plus the time needed
to reestablish the transaction execution at the client
application level (i.e., as it would be seen by the end-user).

Figure 2. Experimental setup layout.

The operator faults are injected through a set of scripts
and following the steps represented in Figure 1. In order
to make it easy to reproduce the experiments we have
decided to inject the faults in three specific moments
(instead of using a random distribution for the fault
triggers), respectively after 150, 300, and 600 seconds
from the TPC-C start. The faults injected in the first
instant (150 seconds) affect the system when it is speeding
up to reach the nominal transaction performance. The
faults injected in the second instant (300 seconds) affect
the system when it is on its maximum processing
throughput. Finally, the faults injected in the third instant
(600 seconds) affect the system when a large amount of
transactions has already been processed. The duration of
each individual experiment was 20 minutes and the
execution of all the experiments is fully automatic.

Considering the types of faults presented in Table 2,
we have excluded from this first study the classes of faults
“security management”, because the security issues are
out of scope of this work, and “recovery mechanisms
administration”, as most of these faults just affect database
performance and would require two consecutive faults to
affect the system in other visible ways. In fact, after a first
fault affecting the recovery mechanisms we would need a
second fault of other type to activate the recovery and
reveal the effects of the first fault.

From the three operator faults classes considered
(“memory and processes administration”, “storage
administration”, and “database object administration”
faults) we have selected six main types of fault. These
faults have been chosen based on their ability to emulate
the effects of other types of faults (to minimize the

number of experiments needed), on the diversity of impact
in the system, and on the complexity of required recovery.
The basic six types of faults include: Shutdown abort,
Delete a datafile, Delete a tablespace, Set a datafile
offline, Set a tablespace offline, and Delete user’s object.

A total of 146 faults have been injected from the six
types of faults mentioned above, covering all the tested
configurations. The scripts to emulate the operator faults
were programmed in Perl and SQL and can easily be
ported to other DBMS.

5. Experimental results and discussion

Three sets of experiments have been conducted. The
first set of experiments evaluates the effectiveness of
different configurations of the basic recovery mechanism
(online redo logs). The second set of experiments
evaluates different configurations of the archive log
mechanism. The last set of experiments assesses the
effectiveness of the stand-by database mechanism. The
following sub-sections present and discuss these results.

5.1. Results with basic recovery mechanism

When the online redo log mechanism is used alone it
only guarantees the recovery of Shutdown Abort type of
faults, due to the redo log files reuse. However, some
other faults can be recovered provided that the last
database backup was made after the last reuse of any redo
log file.

The frequency of checkpoints is one important
recovery factor affecting the database performance.
Obviously, very frequent checkpoints tend to reduce the
recovery time. Other relevant factor to reduce the
recovery time is to minimize the time a given data block
marked as dirty remains in the database cache (because
this reduces the amount of data to be recovered).

The checkpoint frequency and database cache
consistency algorithm are dependent on several parameters
related to recovery mechanisms, such as the redo log file
size, the number of redo log groups, and the checkpoint
timeout (controlled by the log_checkpoint_timeout
parameter). The actual trigger of a checkpoint and the
cache activity profile are also intimately related to the
transaction activity (dependent, in turn, on the user
applications), which is responsible for the difficulties in
forecasting the impact of recovery configurations on
performance (that is why we need benchmarking).

In order to assess the impact of different checkpointing
policies on performance and recovery, we have defined a
set of different recovery configurations and we have
injected the faultload (faults represented by the Shutdown
Abort type) to measure the recovery time. Table 3 shows
the set of configurations and Figure 4 shows the results.

Results show a clear impact of the different recovery
configurations on database performance. However, we
have observed a clear impact on the performance only for
configurations having high checkpointing rates. As
expected, the recovery time for these configurations is the
lowest. An important conclusion from Figure 4 is that we
can increase the checkpoint rate, reducing the recovery
time, without causing a severe impact on performance.

Config. File Size Redo Log
Groups

Checkpoint
Timeout

CKPT per
Experiment

F400G3T20 400 MB 3 1200 sec. 1
F400G3T10 400 MB 3 600 sec. 1
F400G3T5 400 MB 3 300 sec. 1
F400G3T1 400 MB 3 60 sec. 1

F100G3T20 100 MB 3 1200 sec. 5
F100G3T10 100 MB 3 600 sec. 5
F100G3T5 100 MB 3 300 sec. 5
F100G3T1 100 MB 3 60 sec. 4
F40G3T10 40 MB 3 600 sec. 13
F40G3T5 40 MB 3 300 sec. 12
F40G3T1 40 MB 3 60 sec. 14
F10G3T5 10 MB 3 300 sec. 54
F10G3T1 10 MB 3 60 sec. 55
F1G6T1 1 MB 6 60 sec. 319
F1G3T1 1 MB 3 60 sec. 380
F1G2T1 1 MB 2 60 sec. 263

Table 3. Set of recovery configurations used.

The configurations F400G3T1 and F100G3T1, in spite
of having a low checkpointing frequency, have a very
short recovery time. This is due to the short checkpoint
timeout (60 seconds) that reduces the amount of data to be
recovered due to the frequent writes of dirty cache data
blocks into database files.

0
10
20
30
40
50
60
70
80

F4
00

G
3T

20

F4
00

G
3T

10

F4
00

G
3T

5

F4
00

G
3T

1

F1
00

G
3T

20

F1
00

G
3T

10

F1
00

G
3T

5

F1
00

G
3T

1

F4
0G

3T
10

F4
0G

3T
5

F4
0G

3T
1

F1
0G

3T
5

F1
0G

3T
1

F1
G

6T
1

F1
G

3T
1

F1
G

2T
1R

ec
ov

er
y

T
im

e
(S

ec
on

ds
)

0
500
1000
1500
2000
2500
3000
3500

P
er

fo
rm

an
ce

(t
pm

C
)Recovery Time

Performance

Figure 4. Performance vs recovery time.
One very important conclusion is that all the faults

represented by the Shutdown Abort have not caused data
integrity violations or loss of committed transactions.
Only the transactions under execution when the fault is
injected have to be rolled back, but in this case the end-
user is notified that the transaction has been aborted.

5.2. Results with Archive Logs

The activation of the archive logs is extremely
important because the system can recover from most of
the operator faults, as the archive logs store all the redo

sequence. In this second set of experiments we activated
the archive logs to evaluate their impact on performance
and recoverability. These experiments used the
configurations G40G3T10 to F1G2T1 (the other
configurations are not relevant because the large size of
the online redo log files would require a longer
experiment time to start the log entries archiving)
presented in Table 3 and include the injection of all types
of operator faults presented in section 4.

The results presented on Figure 5 show a moderate
impact on database performance, which suggests that the
archive log option must always be activated.

0
500

1000
1500
2000
2500
3000

F4
0G

3T
10

F4
0G

3T
5

F4
0G

3T
1

F1
0G

3T
5

F1
0G

3T
1

F1
G

6T
1

F1
G

3T
1

F1
G

2T
1P
er

fo
rm

an
ce

(t
pm

C
)

Without Archive Logs

With Archive Logs

Figure 5. Performance with and without archive logs.

Another interesting aspect is to observe how the
recovery time depends on the type of fault and database
recovery configurations. The Oracle database has two
types of recovery: incomplete and complete recovery
(respectively with and without loss of committed transac-
tions). The different types of operator faults are associated
to one of these types of recovery. Table 4 presents the
recovery times observed for the operator faults that caused
incomplete recovery and Table 5 presents the recovery
times for the faults that caused complete recovery.

Recovery time (seconds)
Fault Configuration Injection

150 Sec
Injection
300 Sec

Injection
600 Sec

F40G3T10 264 284 339
F40G3T5 235 256 335
F40G3T1 235 293 342
F10G3T5 265 277 372
F10G3T1 260 316 380
F1G6T1 340 474 >600
F1G3T1 301 384 >600

D
el

et
e

us
er

’s
ob

je
ct

F1G2T1 300 343 >600
F40G3T10 277 304 357
F40G3T5 277 309 360
F40G3T1 282 291 365
F10G3T5 278 287 382
F10G3T1 282 315 364
F1G6T1 353 462 >600
F1G3T1 356 472 >600D

el
et

e
ta

bl
es

pa
ce

F1G2T1 249 423 >600

Table 4.Recovery time for faults with incomplete recov.
Results show that different configurations have

different recovery times. Once again, the recovery time
depends on the checkpoint frequency, but only for the
faults that do not use the archive log files (shutdown
abort, set tablespace offline, and set datafile offline).

For the faults that require the processing of the archive
log files the recovery time is not influenced by the check-
points frequency, because the recovery starts from a
checkpoint that is not stored in the online redo log files
anymore. In practice, the recovery always starts from the
reposition of database files from a backup. In this case,
the recovery time depends on the size of the archive log
files. Small files tend to increase the recovery time be-
cause a large amount of files have to be processed. In this
case, the best recovery time is obtained for larger files.

Recovery time (seconds)
Fault Configuration Injection

150 Sec
Injection
300 Sec

Injection
600 Sec

F40G3T10 31 34 35
F40G3T5 28 31 34
F40G3T1 24 24 28
F10G3T5 21 21 22
F10G3T1 19 22 22
F1G6T1 14 13 13
F1G3T1 17 13 18S

hu
td

ow
n

ab
or

t

F1G2T1 18 17 16
F40G3T10 33 42 57
F40G3T5 39 40 64
F40G3T1 32 43 64
F10G3T5 36 51 76
F10G3T1 35 55 77
F1G6T1 59 109 191
F1G3T1 55 98 139D

el
et

e
da

ta
fi

le

F1G2T1 48 70 115
F40G3T10 10 11 17
F40G3T5 9 11 18
F40G3T1 11 10 11
F10G3T5 6 4 7
F10G3T1 6 6 5
F1G6T1 3 1 5
F1G3T1 4 1 4

S
et

da
ta

fi
le

of
fl

in
e

F1G2T1 6 2 3
Set tablespace offline Always close to 1 second

Table 5.Recovery time for faults with complete recov.
A relevant result for the faults that caused incomplete

recovery is that some commited transactions have been
lost. However, the number of lost commited transactions
was constantly very small because the recovery was
always started immediately after the fault occurrence. This
doesn’t happen in the field, because the detection time
may be dependent on the database administrator actions.
In our experiments we assumed a constant (and small)
detection time, as the goal of our work is to assess the
effectiveness of the recovery mechanisms and not the
database administrator reaction time and capabilities.
Another very important conclusion is that none of the
operator faults caused data integrity violations.

5.3. Results with Stand-by Database

The main goal of the stand-by database is to reduce the
recovery time and, consequently, minimize downtime. The
stand-by database is kept in a permanent recovery state in
which it processes the redo entries in archive logs of the

primary database. For this reason, different configurations
of the archive logs and online redo logs cause different
behaviors on the stand-by database. Furthermore, in addi-
tion to the performance degradation caused by the activa-
tion of the archive logs mechanism, stand-by database also
requires some mean to share archive log files between
both machines, which may also cause some overhead.
Lines in Figure 6 show the performance results for both
the stand-by database and the archive log mechanisms. As
we can see, both the archive logs and the stand-by
database cause a moderate performance impact, which
suggests that performance penalty is not an excuse for not
using these more elaborate Oracle recovery mechanisms.

0

40

80

120

160

200

F4
0G

3T
10

F4
0G

3T
5

F4
0G

3T
1

F1
0G

3T
5

F1
0G

3T
1

F1
G

6T
1

F1
G

3T
1

F1
G

2T
1

R
ec

ov
er

y
T

im
e

(S
ec

.)

0

500

1000

1500

2000

2500

3000

P
er

fo
rm

an
ce

(t
pm

C
)

Archive Logs
Standby DB
Archive Logs
Standby DB

Figure 6. Performance and recovery time with archive
logs and stand-by database.

The recovery time in a stand-by database is the same
for all the faults. This is due to the fact that the stand-by
database activation time is independent of the primary
database. Figure 6 shows the recovery times for operator
faults injected 600 seconds after the workload starting. In
order to allow results comparison, Figure 6 also presents
the recovery times obtained in the experiments with the
archive log mechanism for the Delete Datafile fault, injec-
ted 600 seconds after the workload start. As can be seen, a
considerable reduction of the recovery time is achieved.

However, in the stand-by database configuration, if the
primary database current redo log group cannot be
archived due to the crash of the system, the transactions
associated to the log entries saved on that group are lost,
and the corresponding commited transactions cannot be
recovered. To reduce the number of lost redo log entries,
the size of the redo log files must be the as small as
possible. Figure 7 shows the results concerning the lost
transactions using different redo log files sizes and
different number of redo log groups.

0
1000
2000
3000
4000
5000

F4
0G

3T
10

F4
0G

3T
5

F4
0G

3T
1

F1
0G

3T
5

F1
0G

3T
1

F1
G

6T
1

F1
G

3T
1

F1
G

2T
1

#
L

os
t

T
ra

ns
ac

ti
on

s

Figure 7. Lost transactions in the stand-by database.

6. Conclusion

This paper proposes an experimental approach to
characterize both the performance and the recoverability
in DBMS by extending the standard TPC-C benchmark to
include two new elements: a faultload based on operator
faults and measures related to recoverability. Given the
rather artificial performance results achieved by typical
performance benchmarks (because normally do not take
into account the balance between performance and
recoverability) we think that this kind of benchmarks is
very useful to characterize DBMS in realistic scenarios.
Additionally, the same environment can be used to
characterize recovery mechanisms configurations in
DBMS, including measures such as recovery time, data
integrity violations, and lost transactions.

The paper also proposes a classification of operator
faults for DBMS, and defines a comprehensive set of
types of operator faults. A set of tools have been designed
and built to reproduce operator faults in Oracle DBMS,
which is, to the best of our knowledge, the first proposal
of an environment to inject operator faults in DBMS.

The experimental results obtained by extending the
TPC-C benchmark with our approach were analyzed and
discussed in detail. These results clearly show that
recovery mechanisms do affect peak performance but, at
the same time, show that it is possible to configure the
Oracle DBMS to get good recovery features with
moderate or even minimal performance impact. In our
opinion, it would be difficult to characterize these well-
balanced configurations without an experimental approach
such as the one proposed in this paper.

7. References

[1] Transaction Processing Performance Consortium, “TPC
Benchmark C, Standard Specification, Version 5.0,” 2001,
available at: http://www.tpc.org/tpcc/.

[2] S. Bagchi, Y. Liu, K. Whisnant, Z. Kalbarczyk, R. Iyer, Y.
Levendel, “A Framework for Database Audit and Control Flow
Checking for a Wireless Telephone Network Controller”, Proc.
of the 2001 Intl. Conference on Dependable Systems and
Networks, Gotheburg, Sweden, 1-4 July, 2001, pp.225-234.

[3] W. T. Ng and P. M. Chen, “Integrating Reliable Memory in
Databases”, In Proceedings of the 1997 Intl. Conf. on Very
Large Databases (VLDB), pages 76-85, August 1997.

[4] S.Chandra and Peter M.Chen, "How Fail-Stop are Faulty
Programs?", 28th International Symposium on Fault-Tolerant
Computing, Munich, Germany,1998, pp. 240-249.

[5] M. Sabaratnam, Ø. Torbjørsen and S.Hvasshovd,
“Evaluating the Effectiveness of Fault Tolerance in Replicated
Database Management Systems”, Proceedings of 29th
International Symposium on Fault-Tolerant Computing, June
15-18, Madison, Wisconsin, 1999, pp. 306-313.

[6] D. Costa, T. Rilho, and H. Madeira, “Joint Evaluation of
Performance and Robustness of a COTS DBMS Through Fault-
Injection”, IEEE/IFIP Dependable Systems and Networks
Conference – DSN (FTCS-30 e DCCA-8), New York, USA, 25-
28 June, 2000, pp. 251-260.

[7] Aaron Brown and David Patterson, "Towards availability
benchmark: a case study of software RAID systems",
Proceedings of 2000 USENIX Annual Technical Conference,
San Diego, California, USA, June 18-23, 2000, pp 263-276.

[8] H. Madeira and P. Koopman, “Dependability
Benchmarking: making choices in an n-dimensional problem
space”, First Workshop on Evaluating and Architecting System
Dependability (EASY), DSN-2001, Göteborg, Sweden, July 1,
2001.

[9] K. Kanoun, J. Arlat, D. Costa, M. Dal Cin, P. Gil, J-C.
Laprie, H. Madeira, and N. Suri, “DBench: Dependability
Benchmarking”, in Suppl. of the Int. Conference on Dependable
Systems and Networks, DSN-2001, Chalmers University of
Technology, Göteborg, Sweden, 2001, pp. D.12-D.15.

[10] R. Ramakrishnan, “Database Management Systems” second
edition, McGraw Hill, ISBN 0-07-232206-3.

[11] E. F. Codd, "A Relational Model of Data for Large Shared
Data Banks ", Communications of the ACM (1970).

[12] E. F. Codd, The Relational Model for Database
Management (Addison-Wesley Publishing Company, 1990),
ISBN 0-201-14192-2.

[13] C. J. Date and Hugh Darwen, “The SQL Standard”, Third
Edition (Addison-Wesley Publishing Company, 1993), 414
pages; paperbound; ISBN 0-201-55822-X.

[14] J. Gray and A. Reuter, “Transaction Processing: Concepts
and Techniques”, The Morgan Kaufmann Series in Data
Management Systems, Jim Gray, Series Editor 1993, ISBN 1-
55860-190-2.

[15] Oracle Corp., "Oracle 8i Server Concepts Manual", 1999.

[16] J. Gray, “A Census of Tandem Systems Availability
Between 1985 and 1990”, IEEE Transactions on Reliability,
Vol. 39, No. 4, pp. 409-418, October 1990.

[17] M. Sullivan and R. Chillarege, “Comparison of Software
Defects in Database Management Systems and Operating
Systems”, Proceedings of the 22nd IEEE Fault Tolerant
Computing Symp., FTCS-22, pp. 475-484, July 1992.

[18] I. Lee and R. K. Iyer, “Software Dependability in the
Tandem GUARDIAN System”, IEEE Transactions on Software
Engineering, Vol. 21, No. 5, pp. 455-467, May 1995.

[19] M. Kalyanakrishnam, Z. Kalbarczyk, R. Iyer, ”Failure Data
Analysis of a LAN of Windows NT Based Computers”,
Symposium on Reliable Distributed Database Systems,
SRDS18, October, Switzerland, pp. 178-187, 1999.

[20] Sunbelt Int., “NT Reliability Survey Results”,
http://www.sunbelt-software.com/ntrelres3.htm, March,23, 1999

[21] J. Christmansson and R. Chillarege, “Generation of an
Error Set that Emulates Software Faults”, Proceedings of the
26th IEEE Fault Tolerant Computing Symposium, FTCS-26,
Sendai, Japan, pp. 304-313, June 1996.

[22] H. Madeira, M. Vieira and D. Costa, “On the Emulation of
Software Faults by Software Fault Injection”, Int. Conf. on
Dependable Systems and Networks, New York, USA, June,
2000, pp. 417-426.

