
Sixrm: Full Mesh Reliable Source Ordered Multicast

Pedro Ferreira, João Orvalho and Fernando Boavida
LCT - Laboratory of Communications and Telematics

Centre of Informatics and Systems of University of Coimbra (CISUC)
Polo II, Pinhal de Marrocos

3030 Coimbra, Portugal
+351 239 790 091, +351 239 790 035, +351 239 790 012

E-mail: pmferr@dei.uc.pt, orvalho@dei.uc.pt, boavida@dei.uc.pt

Abstract: In this paper we describe Sixrm, a reliable multicast
protocol that supports multiple sources that are at the same time
multiple destinations and that works both on ipv4 and on ipv6.
The protocol is completely configurable by profile settings and is
implemented completely in Java Standard Edition 1.5.
The protocol is included on the distributed server part of
network middleware for large scale mobile and pervasive
augmented reality that we also introduce in this paper, and
supports the ordering of messages by source without duplicates
and its reliable delivery to the application, without the support
of network elements.

1. INTRODUCTION

A significant requirement of pervasive applications is fast
service development and deployment [1], which implies the
introduction of various service and application frameworks
and platforms. For this, middleware is a common solution.
The benefits of middleware utilization are the improved
programming model, and the hiding of many implementation
details, which make middleware based application
development much faster. It is now becoming quite clear that
entertainment, and more specifically mobile gaming, will be
one of the killer applications of future wireless networks [2].
Augmented reality extends reality with virtual elements while
keeping the computer in an assistive, unobtrusive role [3]. It
is possible to create games that place the user in the physical
world through geographically aware applications. Most of the
latest mobile phones are equipped with cameras and some of
the latest ones are coming with some form of 3D rendering
technology [4] [5]. Bluetooth technology and increasing
miniaturization will lead, in the near future, to low-cost,
specialized pervasive equipment for augmented reality. In [6]
we described the main objectives of our research concerning
systems that satisfy the requirements of network middleware
for large scale mobile and pervasive augmented reality
games. In [7] we described a middleware system that is being
developed for large scale mobile and pervasive augmented
reality games that satisfies these objectives. The system
targeted by the middleware is composed of 3 levels: the back-
office central level, the large scale network level, and the
personal area network level. This paper addresses one of the
constituents of the large scale network level.

2. RELIABLE MULTICASTING

Reliable multicast of packets is a requirement of large scale
distributed entertainment applications. However, it has been
shown that current solutions for that effect have significant
problems [8], examples of those being the nak or ack
explosion problems. The reliable multicast transport working
group of IETF [9] has been addressing the problem of
reliable multicast transport, but only in the one-to-many
approach, not in the many-to-many area. The experimental
protocol PGM [10], the only many-to-many protocol that has
reached RFC status in IETF, requires support by network
elements. This is hard to get implemented in reality. We felt
it was necessary to create a protocol capable of working in
the many-to-many scenario, without the nak implosion
problem but nak based, source ordered and that avoided
duplicates. We also needed a protocol that could work in
ipv6, and that does not require the support of network
elements. So, we created Sixrm.

3. THE SIXRM PROTOCOL

The Sixrm protocol consists of six types of packets. These
are: Data packets (TYPE_DATA), Open packets
(TYPE_OPEN), Close packets (TYPE_CLOSE), nak packets
(TYPE_NAK), information packets (TYPE_INFO), and error
packets (TYPE_ERROR). It is a nak based protocol, in which
the destinations, when they detect that they did not received a
packet from certain source, transmit a nak for the group that
only that source will listen to and repeat the transmission of
the lost packet. If that is not possible, an error packet will be
transmitted for the destination. A source first opens the
channel for communication sending a packet for all
destinations in the multicast group, an open packet
(TYPE_OPEN), that all currently listening destinations will
receive. This corresponds to the Open operation on the Sixrm
node. The packet contains the source identity and source ip
address. All currently open destinations (those that already
have executed the Open operation), when receiving the open
packet, perform initialization for that source, and respond to
the open packet with an information packet containing the
destination (and possible source) identity and ip address. The
source (or destination) identities are Java long data types.
When receiving the information packets, the source performs

the same initialization that the destinations did when they
received the open packet.
For the close operation, the source transmits the close packet
and removes itself from the group. All destinations, when
they receive the close packet, perform cleanup operations for
that source.
As for data transmission, data is transmitted sequentially.
Each new byte buffer that is handled to the Sixrm protocol
for transmission is buffered for transmission and
subsequently transmitted, in the next available time slot.
When the data is transmitted, it is given a monotonically
increasing sequence number, packed in a packet of type data
(TYPE_DATA) and send to the group for all destinations to
listen.
It must be mentioned by now that every packet transmitted by
Sixrm contains the source transmit memory buffer state (send
window), which includes all messages since the last one
memorized until the newest one that was sent (the biggest
sequence number). The newest and oldest sequence numbers
are transmitted with each message.
Each destination maintains a receiving window, for each
source, that is smaller than the source transmit window and
which has is greatest sequence number always equal to the
source transmit window newest sequence number and its
oldest sequence number adjusted to be that number minus
some minimum value.
Each time a source transmits a value, it puts that value in its
sent buffer (transmit window), and if necessary, if the buffer
can not grow anymore, discards the oldest message that was
in the buffer. The value is transmitted and stored in the buffer
in a packet of type data (TYPE_DATA).
Each time a destination receives a packet, it verifies witch
kind of packet it is. Depending on the kind of packet, the
destination acts differently.

3.1 Packets of type nak

When a destination (which is also a source) receives a Nak
packet, it means someone did not receive a packet. The Nak
packet contains the source address, the source identity, the
sequence number, the target address, and the target identity.
We can tell if the nak packet is for us by comparing the target
address and target identity with our ip address and identity. If
equal, it was our packet that was not received, if not equal, it
was someone else’s packet that was not received, but we still
need to memorize the nak. Our answer will depend on the
fact that the nak was direct to us or not.

3.1.1 Nak directed to us

If the Nak was directed to us, then we must try to resend the
packet that was lost. Unfortunately, that may not always be
possible. Given the sequence number of the nak, we access
the sent memory (transmit window), and verify if we have the
packet.

If we have the packet, then, we resend the packet to the
group. We do not memorize the nak.
If we do not have the packet, then we can not recover from
the error and must send an error packet to the destination
informing the destination that we do not have the packet with
that sequence number. We also send an error packet to the
application telling the application that a data packet with a
determined sequence number did not reach all destinations.

3.1.2 Nak directed to someone else

If the nak was directed to some other destination (and source)
then we must memorize the nak to prevent us from, in the
near future, transmitting a nak for the same packet. For this
effect, we memorize the nak and a time value that is equal to
the current time plus a random back off time value during
which we cannot transmit a nak for this packet. We do not
prevent the transmission forever because even naks can be
lost. In this way, probably we will receive the packet related
to the nak if it is missing and clear the nak before the need to
transmit it again arises.

3.2 Packets of type error

When a destination (which is also a source) receives an error
packet, it means a source could not retransmit a packet for a
destination. The error packet contains the source address, the
source identity, the sequence number of the packet that
generated the error, and the target address and target identity.
We can tell if the error packet is for us by comparing the
target address and target identity with our ip address and
identity. If equal, it was our packet that wasn’t available, if
not equal, it was someone else’s packet that wasn’t available.
Only if the error is for us do we deliver it to the application.

3.3 Packets of type data

When receiving a packet of type data, the destination first
verifies if it did already initialize the memory structures for
that source.
Then, if the packet sequence number is within the receiving
window, it buffers the data packet. It also removes from
memory any naks for that data packet that may exist.
A data packet contains the source address, the source identity,
the sequence number, the data buffer, the transmit window
newest sequence and the transmit window oldest sequence.
Taking for granted that the memory structures were already
initialized, they are altered by the data packet, namely the
receiving window. The newest element in the receiving
window is always the transmit window newest sequence
number.
After buffering the data packet, the destination verifies that
the receiving window oldest sequence number is below the
minimum difference with the newest and a packet with that
sequence number exists. In that case, the packet is handed to

the application. The process repeats while possible until the
receiving window oldest sequence number aligns with the
minimum configured difference from the newest sequence
number.
After this, the receiving buffer is verified for missing packets
in between the receiving window. Naks are transmitted for
each missing packet if is not forbidden to do so. It is
forbidden to do so if the nak is memorized and its associated
time value is greater than the current system time.

3.4 Packets of type open

Packets of type open means a source has executed the open
operation and expects us to execute initialization of internal
memory structures and respond with information packets
with our information (source address and identity).
Open packets contain the source address and the source
identity. When receiving an open packet, the destination (and
source) will initialize its memory structures for that source,
and send an information packet containing its information
(that would be sent on an open packet) on an information
packet.

3.5 Packets of type close

Packets of type close means a source has executed the close
operation and will not be sending or receiving more packets
with sequence numbers bigger than the latest.

3.6 Packets of type information

Packets of type information means a destination (and source)
is responding to a request from a source open packet. It
expects us to execute initialization of internal memory
structures, if we did not that already for it.
Information packets contain the source address and identity.
When receiving an information packet, the destination (and
source) will initialize its memory structures for that source, if
it did not already did so.

4. THE SIXRM API

The Sixrm API is a simple API with only 4 classes, all on the
package pt.uc.dei.lcst.stf.sixrm .These classes are the
following: SixrmEntity, SixrmFileKey, SixrmListener and
SixrmPacket. We now describe in more detail each of these
classes.

4.1 Class SixrmEntity

This class SixrmEntity takes care of communication for a
Sixrm node (entity). A sixrm node acts simultaneously as a
source and destination of Sixrm packets.
A sixrm entity is constructed from the identifier (long), the
address (ip address – Java InetAddress), the group (ip address

– Java InetAddress) ,the port (int), the ttl (time to live – int),
the profile (Java Properties), and the listener
(SixrmListener).
 The profile contains configuration parameters summarized in
Table 1.

Configuration Meaning
maxOutBufferSize Maximum size of an output packet
maxInBufferSize Maximum size of an input packet
maxSentBufferSize Maximum size of the sent buffer (transmit

window)
maxQueuedBufferSize Maximum size of the queue of messages to

transmit
maxRecvBufferSize Maximum size of the receive buffer
minRecvWindowSize Minimum size of the receive window
maxRecvWindowSize Maximum size of the receive window
minRandomBackoff Minimum random back off time of nak

packets
maxRandomBackoff Maximum random back off time of nak

packets
minIntervalTime Minimum interval time between

transmissions (adaptive throughput)
maxIntervalTime Maximum interval time between

transmissions (adaptive throughput)
intervalSteppingDown Interval stepping down the interval time

when there is no error or nak.
intervalSteppingUp Interval stepping up the interval times when

there is an error for us (2 xs) or a nak for us
(1x).

Table 1 - Profile settings

When the SixrmEntity receives data packets or error packets,
methods of SixrmListener are called.
Important methods of the SixrmEntity class are summarized
on Table 2.
Method Operation
void setListener(SixrmListener listen) Sets the listener for received

packets.
void sendMessage(byte[] b) Sends a message (a data

packet)
void Open() Open operation
void Close() Close operation

Table 2 - Methods of SixrmEntity

4.2 Class SixrmPacket

The class SixrmPacket represents a Sixrm packet. A Sixrm
packet may contain a data buffer, a source ip address, a
sequence number, a packet type, a source identity, a target
identity, a target ip address, a source transmit window newest
sequence number and a source transmit window oldest
sequence number.
Basically, this class has constructors for the various types of
packets that exist (TYPE_DATA, TYPE_OPEN,
TYPE_INFO, TYPE_CLOSE, TYPE_NAK and
TYPE_ERROR), and getter and setter methods for the data
fields it contains.

4.3 Class SixrmListener

The class SixrmListener contains only one method,
summarized in Table 3.

Method Operation
Void receive(SixrmPacket pack) Receives a packet (error or data).

Table 3 - Methods of SixrmListener

This is the interface that applications must implement.

4.4 Class SixrmFileKey

The Class SixrmFileKey is a helper class used to uniquely
identify a source by its address and identity. A SixrmFileKey
contains an ip address and an identity (long).
A SixrmFileKey instance identifies a source or destination of
Sixrm packets (a Sixrm node).

5. TESTS

The Sixrm protocol API has it is implemented was subject to
various functional and stress tests, with several profile
settings. It was demonstrated that, according to the profile
settings, one can have many instances of Sixrm running on
the same computer (over 10 instances, if the settings are
right). It was demonstrated also, that according to the
settings, many more instances could be run on different
computers. This is because they will not consume all CPU
time, like we did on these stress tests, but only a minimum,
and the sources will try to adapt to the slowest computer and
weakest link (because of nak throughput adaptation, and
error throughput adaptation, within the limits set forth in the
profile).
We did tests on two computers connected by a 100 Mbit full
duplex switch configured in a ipv6 network, and tests in one
only computer configured to run in a ipv6 network.
Those were real tests, not simulated tests. The test results
presented here are extracts from the tests with one computer,
because they show the delay and jitter introduced solely by
the responsibility of the Sixrm protocol.
We present here graphics for delay and jitter for one of the
nodes (received at the first node) of a Sixrm network witch
achieved twelve nodes in the same computer without errors.
When the thirteen’s node was added, there were briefly some
errors that were handed to the test application by the Sixrm
protocol, in a period when the computer’s processor was at a
peak load of 100% and availability was arriving at its
physical limits, which we believed were the causes of the
inability of the node to handle processing data.
The profile settings for these tests are described in Table 4.
The Figure 1 represents delay for the second node on the
system as received on the first node. The Figure 2 represents
jitter for the same situation.

Profile value Setting
maxOutBufferSize 3000
maxInBufferSize 3000
maxSentBufferSize 1000
maxQueuedBufferSize 5
maxRecvBufferSize 1000
minRecvWindowSize 10
maxRecvWindowSize 250
minRandomBackoff 10
maxRandomBackoff 50
minIntervalTime 25
maxIntervalTime 250
intervalSteppingDown 1
intervalSteppingUp 16

Table 4 - Profile settings for the tests

Delay

0

500

1000

1500

2000

2500

3000

0
21

0
42

0
60

0
81

0
99

0
12

00
14

10
16

20
18

30
20

40
22

50
24

60
26

70
28

80
30

90
33

00
35

10
37

20
39

30
41

40
43

50
45

60
47

70
49

80
51

90
54

00
56

10
58

20
60

30
62

40
64

50
66

60
68

70
70

80
72

90

Message sequence number (samples)

M
ill

is
ec

on
ds

Delay

Figure 1 - Delay from second node on first node

Jitter

-500

-400

-300

-200

-100

0

100

200

0
21

0
42

0
60

0
81

0
99

0
12

00
14

10
16

20
18

30
20

40
22

50
24

60
26

70
28

80
30

90
33

00
35

10
37

20
39

30
41

40
43

50
45

60
47

70
49

80
51

90
54

00
56

10
58

20
60

30
62

40
64

50
66

60
68

70
70

80
72

90

Message sequence number (samples)

M
ill

is
ec

on
ds

Jitter

Figure 2 - Jitter from second node on first node

We do not show here results from more nodes both from lack
of space and because the results are in all cases similar to
these.
From these results we can conclude that the delay is normally
always approximately 150 milliseconds and that the jitter
normally varies between 0 and approximately 17
milliseconds. This happens consistently except some

exceptions, which occur exactly on the moments where we
were adding nodes to the sixrm network and the network was
adjusting itself. We can see that in these moments the delay
and jitter briefly increase and then stabilise in acceptable
values again. In fact, they stabilize in the same values as the
number of nodes increases.
These numbers for delay and jitter (the stable ones) are
adequate for most interactive delay sensitive applications.
As the server network will mostly be a stable one, as
probably all nodes will be functioning since the first few
minutes when integrated into the large scale network, the
sixrm protocol is, we think, adequate for the purpose we
create it for.

6. CONCLUSIONS

In this paper, we described the Sixrm reliable multicast
protocol. We first described the protocol, then its
implementation API, then the tests we have submitted the
implementation.
We can conclude that the Sixrm protocol is adequate for most
interactive delay sensitive applications that require a reliable
multicast protocol that supports ipv6 with multiple sources
and multiple destinations in which each source is a
destination, delivering source ordered packets without
duplicates, while not requiring support from network
elements.
As for future work, we are going to integrate the Sixrm
protocol in our large scale mobile and pervasive augmented
reality network middleware, test it further too see how well it
behaves, and do some optimizations.
For this, we will be integrating it with the ARMS –
Augmented corba Reliable Multicast System – corba event
service [11].

7. AKNOWLEDGMENTS

This work is being partially financed by the Portuguese

Foundation for Science and Technology – FCT, and by the E-
NEXT IST FP6 NoE.

8. REFERENCES

[1] Kimmo Raatikainen, Henrik Bærbak Christensen, Tatsuo
Nakajima, “Application Requirements for Middleware
for Mobile and Pervasive Systems”, Mobile Computing

and Communications Review, Volume 6, Number 4,
October 2002, pp. 16 – 24 , ACM Press

[2] Keith Mitchell, Duncan McCaffery, George Metaxas,
Joe Finney, Stefan Schmid and Andrew Scott, “Six in the
City: Introducing Real Tournament – A Mobile IPv6
Based Context-Aware Multiplayer Game”, Proceedings
of NetGames'03, May 22-23, 2003, Redwood City,
California, USA, pp. 91-100, ACM Press

[3] Hideyuki Tamura, Hiroyuki Yamamoto, and Akihiro
Katayama, “Mixed Reality:Future Dreams Seen at the
Border between Real and Virtual Worlds”, Virtual
Reality, November/December 2001, pp. 64 –70, IEEE

[4] Nokia – Developer resources (Forum Nokia),
http://www.forum.nokia.com/, Accessed April 2004

[5] Sony Ericsson Developer World,
http://developer.sonyericsson.com/, Accessed April 2004

[6] Pedro Ferreira, “Network Middleware for Large Scale
Mobile and Pervasive Augmented Reality Games” in
Proc. of the CoNext 2005 - ACM Conference on
Emerging Network Experiment and Technology, pp.
242-243, CoNext 2005 - ACM Conference on Emerging
Network Experiment and Technology, Toulouse, France,
October-2005

[7] Pedro Ferreira, João Orvalho, Fernando Boavida, ”Large
Scale Mobile and Pervasive Augmented Reality Games”,
in Proc. of the EUROCON 2005 - The International
Conference on "Computer as a Tool", pp. 1775-1778,
Vol. 1, # 1, EUROCON 2005 - The International
Conference on "Computer as a Tool", Belgrade, Serbia
and Montenegro, November-2005

[8] M. Pullen, M. Myjack, C. Bouwens, “Limitations of
Internet Protocol Suite for Distributed Simulation in the
Large Multicast Environment”, RFC 2502, IETF,
February 1999

[9] Reliable Multicast Transport (IETF Working group),
http://www.ietf.org/html.charters/rmt-charter.html,
Acessed April 2006

[10] T. Speakman, J. Crowcroft, J. Gemmell, D. Farinacci, S.
Lin, D. Leshchiner, M. Luby, T. Montgomery, L. Rizzo,
A. Tweedly, N. Bhaskar, R. Edmonstone, R.
Sumanasekera, L. Vicisano, “PGM Reliable Transport
Protocol Specification”, RFC 3208, IETF, December
2001

[11] João Gilberto de Matos Orvalho, “ARMS – Uma
plataforma para aplicações multimédia distribuídas, com
qualidade de serviço”, Phd Thesis, December 2000, DEI-
FCTUC

