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Abstract. We present an application of an automatic theorem proving
(ATP) in the verification of constructions made with dynamic geometry
software (DGS). Given a specification language for geometric construc-
tions, we can use its processor (i.e., a DGS) to deal with syntactic errors
(with respect to the underlying language). The processor can also detect
semantic errors — situations when, for a given concrete set of geometri-
cal objects, a construction is not possible. However, dynamic geometry
tools don’t test if, for a given set of geometrical objects, a construction
is geometrically sound, i.e., if it is possible in a general case. Using an
ATP, we can do this last step by verifying the geometric construction
deductively. We have developed a system for the automatic verification
of regular constructions, using our ATP system, GCLCprover, to auto-
matically verify the geometric constructions made with the DGSs GCLC
and Eukleides. This gives a real application of ATP in dynamic geometry
tools.

1 Introduction

Dynamic geometry software (e.g., Cinderella, [5, 26], Geometer’s Sketchpad, [9,
12] Cabri, [4, 17]) visualise geometric objects and link formal, axiomatic nature
of geometry (most often — Euclidean) with its standard models (e.g., Cartesian
model) and corresponding illustrations. The common experience is that dynamic
geometry software significantly help students to acquire knowledge about geo-
metric objects and, more generally, for acquiring mathematical rigour. However,
most (if not all) of these programs use only geometry concepts interpreted via
concrete instances in Cartesian plane. A construction is always associated with
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concrete fixed points (with concrete Cartesian coordinates). In such environ-
ments, some constructions (usually by ruler and compass) are illegal (e.g., if
they attempt to use intersection of parallel lines), but the question if such con-
struction is always illegal or it is illegal only for given particular fixed points is
left open (if a construction is never illegal, i.e., if it is always possible, we will
call it regular). Indeed, for answering such question, one has to use deductive
reasoning, and not only semantic check for the special case. Consider one simple
example: given (by Cartesian coordinates) three fixed distinct points A, B, C,
we can construct a point D as an image of the point C in translation TAB; later
on, if we try to construct an intersection of lines AC and BD, we will discover
that there is no such intersection (since these two lines are parallel). This holds
not for some specific points A, B, C, with D determined as above, but for all
triples of points A, B, C. So, in this situation, the user of a geometry tool should
get the information that his/her construction is illegal, and moreover, that it is
illegal not only for a given special case, but always. In this way, the deductive
nature of geometrical conjectures and proofs should be linked to the semantic
nature of models of geometry and, also, to human intuition and to geometrical
visualisations.

In the rest of this paper we discuss our system that addresses the above prob-
lem. Our system is implemented within dynamic geometry systems GCLC [13]
and Eukleides [21, 23] and uses the geometry theorem prover GCLCprover [14]
based on the area method [6, 7]. Our framework, GeoThms [24, 25], is a web tool
that integrates the above components with a repository of theorems related to
geometrical constructions.

Closely related to our system is Geometry Explorer, based on the full-angle
method [28]. This system provides tight integration of DGS and ATP, and
produces human-readable proofs of properties of constructed objects (in LATEX
form). MMP/Geometer also combines features of DGS and ATP, and uses dif-
ferent proving methods, including those generating synthetic, human-readable
proofs [8, 19]. There are several other system that in some degree link DGSs
with ATPs: Geometry Expert (GEX) [11]; GEOTHER [10, 27]; Cinderella [5, 16,
26]; Discover [2]; GeoView [1], and GeoGebra [15]. However, none of these sys-
tem provides a formal verification system for constructions, accompanied with
arguments in the form of synthetic proofs.

Paper overview. Section 2, briefly discusses geometric constructions, the do-
main of our system; Section 3 talks about parts of our framework, with §3.1
about dynamic geometry software, especially GCLC and Eukleides, §3.2 about
automated theorem proving in geometry and especially the prover GCLCprover,
based on the area method, §3.3 the integration of all these tools in an Web
Geometric Framework; Section 4 presents the verification system and the cov-
ered critical constructions; Section 5 presents some examples; Section 6 discusses
further work, and in Section 7 we draw final conclusions.



2 Geometry Constructions

For hundreds, or even thousands of years, geometric construction problems have
been one of the most attractive parts of geometry and mathematics. A geometric
construction is a sequence of specific, primitive construction steps. These primi-
tive construction steps (also called elementary constructions) are based on using
a ruler (or a straightedge3) and a compass, and they are:

– construction (with a ruler) of a line such that two given points belong to it;
– construction (with a ruler) of a segment connecting two points;
– construction of a point which is an intersection of two lines (if such a point

exists);
– construction (with a compass) of a circle such that its centre is one given

point and such that the second given point belongs to it;
– construction of intersections between a given line and a given circle (if such

points exist).

By using the set of primitive constructions, one can define more complex,
compound constructions, (e.g., construction of a right angle, construction of the
midpoint of a line segment, etc.).

The abstract (i.e., formal, axiomatic) nature of geometric objects have to
be distinguished from their usual interpretations. A geometric construction is
a procedure consisting of abstract steps and it is not a picture, but for each
construction there is its counterpart, its interpretation in the standard Cartesian
model.

3 Component Modules of the Automatic Verification

System

In this section, we present the building blocks of our automatic verification
system for geometrical constructions.

3.1 GCLC and Eukleides

GCLC is a tool for teaching and studying mathematics, especially geometry
and geometrical constructions, and also for storing descriptions of mathematical
figures and producing digital illustrations.4 GCLC provides support for a range
of geometric constructions and isometric transformations. In GCLC there is also

3 The term “straightedge” is sometimes used instead of “ruler” in order to emphasise
there are no markings which could be used to make measurements.

4 GCLC package is freely available from www.matf.bg.ac.yu/~janicic/gclc/. The
mirrored version is available from emis (The European Mathematical Information
Service) www.emis.de/misc/index.html. There are versions of GCLC for Windows
and for Linux.



support for symbolic expressions, second order curves, parametric curves, while-
loops, etc. GCLC is based on the idea that constructions are formal procedures,
rather than drawings. Thus, in GCLC, producing mathematical illustrations
is based on “describing figures” rather than of “drawing figures”. All figures
are described in this spirit, in GC language. These descriptions directly reflect
meaning of mathematical objects to be presented, and are easily understandable
to mathematicians. WinGCLC is the Windows version of GCLC, with a rich
graphical interface and provides a range of additional functionalities to GCLC.
It supports interactive work, animations, traces, “watch window” for monitoring
values of selected objects etc. [13].

Eukleides5 is an Euclidean geometry drawing language. There are two pro-
grams related to it. The first is eukleides, a compiler for typesetting geometric
figures within a (La)TeX document. It can also convert such figures to EPS for-
mat or to various other vector graphic formats. The second is xeukleides, a
GUI front-end for creating interactive geometric figures. This program can also
be used for editing and tuning Eukleides code. Eukleides, like GCLC, has been
designed to be close to the traditional language of elementary Euclidean geome-
try. We have developed a tool euktogclcprover, that converts Eukleides files to
GCLCprover files, enabling the prover to be used with geometric constructions
described within GCLC or Eukleides.

3.2 GCLCprover, an ATP based on the Area Method

Automated theorem proving in geometry has two major lines of research: syn-
thetic proof style and algebraic proof style (see, for instance, [18] for a survey).
Algebraic proof style methods are based on reducing geometry properties to al-
gebraic properties expressed in terms of Cartesian coordinates. These methods
are usually very efficient, but the proofs they produce do not reflect the geomet-
rical nature of the problem and they give only yes or no conclusion. Synthetic
methods attempt to automate traditional geometry proof methods producing
human-readable proofs.

The area method is a synthetic method providing traditional (not coordinate-
based), human-readable proofs. The proofs are expressed in terms of higher-level
geometric lemmas and expression simplifications. The main idea of the method
is to express hypotheses of a theorem using a set of constructive statements, each
of them introducing a new point, and to express a conclusion by an equality of
expressions in some geometric quantities (e.g., signed area of a triangle), without
referring to Cartesian coordinates. The proof is then based on eliminating (in
reverse order) the points introduced before, using for that purpose a set of appro-
priate lemmas. After eliminating all introduced points, the current goal becomes
an equality between two expressions in quantities over independent points. If it

5 Eukleides is available from http://www.eukleides.org, There are versions
for a number of languages. The second author of this paper is responsi-
ble for the Portuguese version of Eukleides: EukleidesPT is available from
http://gentzen.mat.uc.pt/~EukleidesPT/



is trivially true, then the original conjecture was proved valid, if it is trivially
false, then the conjecture was proved invalid, otherwise, the conjecture has been
neither proved nor disproved. In all stages, different simplifications are applied
to the current goal. The method does not have any branching, which makes it
very efficient. The area method is applicable to a wide range of constructions
and a wide range of geometric conjectures. For details of the method, correctness
proofs for all simplification steps see [22].

We have implemented GCLCprover, a theorem prover that allows formal de-
ductive reasoning about objects constructed with the help of DGSs. The prover is
based on the area method. It produces proofs that are human-readable and with
a explicit justification for every proof step. The prover can be used in conjunc-
tion with other dynamic geometry tools. Apart from the original implementation
by its authors [6, 7], we are aware of another two geometry prover based on the
area method: one within the Theorema project [3], and one within the system
Coq [20].

GCLCprover is tightly integrated with geometry tools such as GCLC. This
means that one can use the prover to reason about a GCLC construction (i.e.,
about objects introduced in it), without changing and adapting it for the deduc-
tion process — the user only needs to add the conclusion he/she wants to prove.
The geometric constructions made within GCLC are internally transformed into
primitive constructions of the area method, and in some cases, some auxiliary
points are introduced.

GCLCprover can prove many complex geometric problems in milliseconds,
producing readable proofs (in LATEX or XML form).

3.3 The Geometric Framework

GeoThms6 is a framework that links dynamic geometry software (GCLC, Euk-
leides), geometry theorem provers (GCLCprover), and a repository of geometry
problems (geoDB). GeoThms provides a Web workbench in the field of construc-
tive problems in Euclidean geometry. Its tight integration with dynamic geome-
try tools and automatic theorem provers (GCLC, Eukleides, and GCLCprover,
for the moment) and its repository of theorems, figures and proofs, give the user
the possibility to easily browse through the list of geometric problems, their
statements, illustrations and proofs. It also provides an interface to the DGS
and ATP components, allowing the interactive use of those programs and also
supporting the automatic verification of regular constructions done with the
DGSs.

4 Integrated Automated Verification System

The system for automated testing whether a construction is regular or illegal is
built into the tool GCLC and uses GCLCprover.

6 GeoThms is accessible from http://hilbert.mat.uc.pt/~geothms



If, within a description of a construction, there is a conjecture to be proved,
GCLC automatically invokes the prover GCLCprover. A mechanism for au-
tomated deductive testing whether a construction is regular or illegal can be
switched off or on (by using appropriate parameter when calling GCLC).

If the mechanism is turned on, while processing the input file (with a descrip-
tion of a geometrical construction), GCLC provides to its built-in theorem prover
all construction steps performed (transformed into a suitable form). When the
main module of GCLC encounters a construction step that cannot be performed
(e.g., two identical points do not determine a line), it reports that the step is
illegal with respect to a given set of fixed points, and then it invokes the theorem
prover. The prover is run on the critical conjecture (e.g., it tries to prove that
two points are identical) and, if successful, it reports that the construction step
is always illegal/impossible.

In GeoThms, the automated verification mechanism is incorporated in the
“Interaction with the Drawer” section. Whenever the user uses the DGS, the
appropriate option is used and, if a deductive error occurs, an error message is
shown, along with a link to a PDF file with the proof of the conjecture (auto-
matically generated by the GCLCprover).

Realm. Our automatic verification deductive-check system currently covers the
following critical constructions:

– construction of a line given two points (error if the two points are identical);
– construction of a segment-bisector given two endpoints (error if the two

points are identical);
– constructing an angle-bisector of the angle determined by three points A, B,

C (error if A and B, or C and B are identical);
– constructing an intersection of lines a and b (error if the two lines are paral-

lel);
– calculating an angle determined by three points A, B, C (error if A and B,

or C and B are identical);

Geometry objects that are subject to deductive verification have to be made
within the DGSs using the following primitives:

– introducing points;
– constructing lines by two points;
– determining the intersection of two lines;
– constructing the midpoint of a segment;
– constructing the segment bisector;
– constructing the line passing through a given point, perpendicular to a given

line;
– constructing the foot from a point to a given line;
– constructing the line passing through a given point, parallel to a given line;
– constructing the image of a point in a given translation;
– constructing the image of a point in a given scaling transformation;



– taking a random point on a given line.

which are internally transformed into primitive constructions of the area method.
For more details see [22].

It is worth pointing out that although GCLC and Eukleides have support
for a large number of constructions, only few of them can be illegal. The above
list of critical constructions almost exhaust them. The only possible illegal con-
structions that are not covered by the current version of our system are con-
structions of intersection points of circle and line, and of two circles. Corre-
sponding geometry conjectures cannot be generally handled by the area method
and GCLCprover. In our future work, we will consider extending our system by
additional deduction methods that can cover also these sorts of constructions.

5 Worked Examples

In this section we give several examples for which our system can deductively
confirm that are not regular. There is also one example that is out of the scope
of the current version of our system.

5.1 Example 1

Consider the example discussed in Section 1: given three fixed distinct points A,
B, C, let us construct a point D as an image of the point C in translation TAB;
draw lines AB and CD (denoted p and q) and label all the points. The GCLC
code for this construction is given in Figure 1. Figure 2 shows the illustration
produced by GCLC.

point A 20 10

point B 40 25

point C 70 15

translate D A B C

line p A C

line q B D

drawline A B

drawline C D

cmark_lt A

cmark_lt B

cmark_lt C

cmark_lt D

Fig. 1. GCLC code for example with parallel lines



A

B

C

D

Fig. 2. Figure generated by GCLC for example with parallel lines

If we attempt to construct a point X as intersection of lines p and q (by
adding the command intersec X p q at the end of the code given in Figure 1),
we will get the following message:

Error 14: Run-time error: Bad definition.

Can not determine intersection. (Line: 18, position: 10)

File not processed.

This information is semantic-based, it is true for the given particular points
A, B, C, i.e., for these three particular points, lines p and q are parallel. How-
ever, if our deductive-check system is turned on (i.e., if the GCLC program was
invoked with the option for deductive check), we will also get additional, much
deeper information:

Deduction check invoked: the property that led to the error is

tested for validity.

Total number of proof steps: 18

Time spent by the prover: 0.001 seconds

The conjecture successfully proved - the critical property always holds.

The prover output is written in the file error-proof.tex.

This means that it was proved that lines p and q are always parallel, so this
construction is always illegal. The proof of this fact is generated by the prover
GCLCprover and the proof outline is given in Figure 3. Note that the condition
p‖q is equivalent to the condition that areas of triangles ABD and CBD are
equal.

5.2 Example 2

Consider the example given in Figure 4. This example is very similar to the
previous one, the only difference is in the way the point D is determined. In



(1) SABD = SCBD , by the statement

(2) (SABC + (1 · (SABB + (−1 · SABA)))) = SCBD , by Lemma 29 (point D eliminated)

(3) (SABC + (1 · (0 + (−1 · 0)))) = SCBD , by geometric simplifications

(4) SABC = SCBD , by algebraic simplifications

(5) SABC = (SCBC + (1 · (SCBB + (−1 · SCBA)))) , by Lemma 29 (point D eliminated)

(6) SABC = (0 + (1 · (0 + (−1 · (−1 · SABC))))) , by geometric simplifications

(7) 0 = 0 , by algebraic simplifications

Q.E.D.

Fig. 3. Proof of critical property for example 5.1

both cases the point D gets the same Cartesian coordinates. However, in the
first example, D is determined by a construction based on the points A, B,
C. In contrast, in the second example, the point D is determined by Cartesian
coordinates, independently from the points A, B, C.

point A 20 10

point B 40 25

point C 70 15

point D 90 30

line p A C

line q B D

drawline A B

drawline C D

cmark_lt A

cmark_lt B

cmark_lt C

cmark_lt D

intersec X p q

Fig. 4. GCLC code for example with parallel lines and the point D given by Cartesian
coordinates

This time, it is not possible to deduce that this construction is always illegal:

Run-time error: Bad definition. Can not determine intersection.



(Line: 16, position: 10)

Deduction check invoked: the property that led to the error will

be tested for validity.

The conjecture not proved - the critical property does not always hold.

The prover output is written in the file error-proof.tex.

5.3 Example 3

Consider a more involved example (see Figure 5 and Figure 6): let O1 and O2 are
pairwise intersections of the side-bisectors of triangle ABC. These two points are
always identical, so the construction of a line p determined by these two points
is not possible. When encounter this construction step, the system invokes the
prover which successfully proves that this step is always illegal.

point A 30 10

point B 70 10

point C 60 45

med a B C

med b A C

med c B A

intersec O_1 a b

intersec O_2 a c

drawsegment A B

drawsegment A C

drawsegment B C

cmark_b A

cmark_b B

cmark_t C

cmark_lb O_1

cmark_rb O_2

line p O_1 O_2

Fig. 5. GCLC code for example with two identical points

5.4 Example 4

In the example shown in Figure 7 (with illustration shown in Figure 8), line t

contains point A and is tangent to the circle k. The constructions is as follows: let



A B

C

O1 O2

Fig. 6. Illustration for the regular part of the construction given in Figure 5.

k is the circle with centre O passing through the point X ; let M be the midpoint
of the segment OA; let l is the circle with centre M and passing through the
point A; let T1 and T2 are the intersection points of the circles k and l. Since,
T2 belongs to l, it holds that the angle AT2O is right angle. Since T2 belongs to
k, it follows that T2 belongs to the tangent from A to k. Let us denote by t the
tangent AT2 from A to k. Since t is a tangent, its intersection with k are two
identical points P1 and P2. Therefore, P1 and P2 do not determine a line, which
is relevant for the construction step line p P 1 P 2. This is detected by the
main construction module (for the given, specific points), but the prover fails to
prove it (because of the realm of the area method, see Section 4).

6 Further Work

We are planning to further improve the underlying deducting module, and to
implement other geometry theorem provers, covering constructions that are out
of the realm of the current system.

Also, we are planning to develop a support for guided step-by-step construc-
tions. Such a tutoring system would control each step of the user, both in syntax,
semantics, and deductive terms, and would serve as a teaching assistant for stu-
dents studying geometry.

7 Conclusions

In this paper, we presented our system for automatic verification of construc-
tions. It provides a deep argument why a certain construction is not regular and
it gives a new value to dynamic geometry tools. The system is used within dy-
namic geometry tools GCLC and Eukleides, in a wider context of our publicly
available geometrical framework GeoThms. The underlying deduction module
is based on the area method for Euclidean geometry. For future work, we are



point A 20 25

point O 60 25

point X 60 40

circle k O X

midpoint M O A

circle l M A

intersec2 T_1 T_2 k l

line t A T_2

intersec2 P_1 P_2 k t

cmark_t A

cmark_t O

cmark_lb T_2

drawcircle k

drawline t

line p P_1 P_2

Fig. 7. GCLC code for example with tangent

A O

T2

Fig. 8. Illustration for the regular part of the construction given in Figure 7.

planning to implement some other geometry prover, and to further extend the
realm of our system. We are also planning to extend the system so it can be
used as a tutor for students studying geometry.

Acknowledgements: We are grateful to Reinhard Kahle for an inspiring discus-
sion about topics presented in this paper.



References
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13. Predrag Janičić GCLC – A Tool for Constructive Euclidean Geometry and More
than That. In Nobuki Takayama, Andres Iglesias, and Jaime Gutierrez, editors,
Proceedings of International Congress of Mathematical Software (ICMS 2006)
LNAI 4151. Springer-Verlag, 2006.
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