
Multi-caste Ant Colony Optimization
Algorithms

Leonor Melo1,2, Francisco Pereira1,2 and Ernesto Costa2

1 Instituto Superior de Engenharia de Coimbra, 3030-199 Coimbra, Portugal
2 Centro de Informática e Sistemas da Universidade de Coimbra, 3030-790 Coimbra,

Portugal
leonor@isec.pt, xico@dei.uc.pt, ernesto@dei.uc.pt

Abstract. In this paper we present a multi-caste ant colony optimiza-
tion approach, where each caste has its own set of parameters. Two vari-
ants are proposed: in the first, the composition of the castes remains fixed
throughout the optimization, whilst the other allows ants to move from
one caste to another. Results obtained in several traveling salesperson
problem instances reveal that the adoption of a multi-caste framework
increases the robustness of ACO algorithms. In concrete, we show that
the existence of different castes removes the need to carefully define q0,
an essential parameter for the success of Ant Colony System.

Keywords: Ant Colony Optimization, Parameters Adaptation, Multi-
ple Castes

1 Introduction

Ant colony optimization (ACO) algorithms are powerful metaheuristics loosely
inspired in the social behavior of ants. When foraging, real ants deposit pheromone
on the ground, thereby signaling relevant information to other members of the
colony. This indirect communication mechanism allows ants to collectively solve
difficult tasks. ACO algorithms are computational models of this behavior. They
are iterative methods based on a set of artificial agents that cooperatively solve
difficult optimization problems. Communication is implemented as pheromone
signals that artificial ants place on promising solutions components.

Actually, there are many different ACO variants with differences, e.g., in
the way pheromone levels are updated. Selecting the best ACO configuration
to apply in a specific optimization situation is not trivial. It requires a deep
understanding of the properties of different ACO variants and a careful selection
of the settings to adopt. In this paper we focus on the task of determining the best
set of parameters. It is well-known that the behavior of ACO methods strongly
depends on the selected settings. Moreover, even a perfect set of parameters for
the early stages of optimization, might turn out to be a poor choice as the run
progresses. With this is mind, we propose a multi-caste ACO framework that
removes the need to perform a careful parameter specification. The colony is

EPIA'2011 ISBN: 978-989-95618-4-7

194



divided in several castes, each one with a specific set of parameters. Two multi-
caste variants are considered: in the first, the composition of the castes remains
fixed, whereas in the second, ants are allowed to jump from one caste to another
in search of a better set of parameters.

The multi-caste framework is used to gain insight about the advantages of
relying on adjustable settings for the Ant colony systems (ACS), one of the main
ACO variants. We focus our attention on q0, a parameter that strongly influences
the behavior of the ACS [18]. Results obtained with the traveling salesperson
problem (TSP) reveal that the multi-caste approach increases the robustness
of the ACS variant. The standard mono-caste version is highly dependent on
the specific q0 value selected, and the best results on distinct TSP instances
are obtained with different settings. On the contrary, the multi-caste versions of
ACS exhibit a similar behavior irrespectively of the specific q0 values ascribed.
This outcome shows that the increased diversity introduced by castes helps ACS
to avoid low quality traps in the search space.

The paper is structured as follows: in section 2 we briefly describe ACO
algorithms. Section 3 comprises a presentation of the multi-caste ACS variants.
In section 4 we present and analyze the main optimization results. Finally, section
5 gathers the main conclusions and highlight directions for future work.

2 Ant Colony Optimization

ACO is one of the most successful branches of swarm intelligence. ACO algo-
rithms were originally proposed by Marco Dorigo and, as its name suggests,
take inspiration from pheromone-based interactions occurring in ant societies
[3]. Real ants deposit pheromone on the ground while foraging. The other ants
from the colony tend to follow the path where the pheromone concentration is
higher, collectively leading to the appearance of a promising trail [11].

ACO algorithms mimic this behavior when solving an optimization problem.
A set of artificial ants iteratively build solutions for a given situation. Relevant
information is shared, thereby increasing the likelihood of discovering promising
solutions. In concrete, an artificial ant is a probabilistic procedure that con-
structs a solution biased by heuristic information and pheromone values. The
heuristic knowledge is usually modeled as greedy information, specific from the
problem being solved. The pheromone values represent dynamic feedback infor-
mation, reflecting the colony search experience and implementing a mechanism
for indirect communication. Pheromone values change over time, guiding the
search procedure towards promising solutions.

2.1 Ant Colony Optimization for the TSP

The TSP is a famous NP-hard combinatorial optimization problem. Given a
set of cities and all pairwise distances between them, the goal is to discover
the shortest tour that visits every city exactly once. This was the first problem

EPIA'2011 ISBN: 978-989-95618-4-7

195



addressed by ACO algorithms, both because it is a difficult optimization situ-
ation and it can be modeled in a suitable way for the exploration performed
by artificial ants. A specific TSP instance is represented by a fully connected
undirected graph G = (V,E) where V is the set of cities and E is the set of
roads connecting pairs of cities. Each edge from E has a distance eij associated.
The objective is to find the Hamiltonian cycle of minimal total cost. To apply
an ACO algorithm to a problem, one must first define the solution components.
A connected graph is then created by associating each component with a vertex
and creating edges to link vertices. The TSP representation previously defined
immediately establishes the graph where the ants will operate. The pheromone
value, τij , represents the desirability of a certain edge. The higher the value, the
more attractive that edge is for the ants. Associated with each edge there is also
a static heuristic value, ηij = 1

eij
, representing the attractiveness of the edge

from a greedy point of view.

Ants start building a solution in a random vertex and iteratively add compo-
nents by following a specific edge. At each decision point (the current vertex), an
ant makes a probabilistic choice of the path to take (only edges that do not vio-
late feasibility constraints are considered). The choice is biased by the pheromone
level and heuristic knowledge of each possible path. After completing a solution,
ants provide feedback by depositing pheromone on the edges crossed. The goal of
pheromone update is to reinforce the desirability of paths appearing in promis-
ing solutions. To avoid stagnation, pheromone levels are periodically decreased
by a certain factor.

2.2 Ant Colony System (ACS)

Ant System (AS) was the first ACO algorithm proposed [5], [6]. In this paper
we focus on Ant Colony System (ACS), an AS variant that was proposed with
the aim to improve efficiency when applied to the TSP [4]. ACS differs form AS
in 3 aspects:

State transition rules When deciding which edges should be part of the
solution the ants use a set of rules. In ACS, these rules allow for choosing between
the exploration of new solutions or the exploitation of heuristic and acquired
knowledge. An ant in node i decides to move to node j according to the rule in
equation (1)

j =

{
argmaxil∈N(sp)

{
τil · ηβil

}
if q < q0 (exploitation)

J otherwise (biased exploration)
(1)

where q is a uniformly distributed variable over [0, 1], q0 ∈ [0, 1] is a parameter,
N(sp) is the set of cities not visited yet, τil is the pheromone value associated with
that move, ηil is the corresponding heuristic information, β is a parameter used
to control the relative influence of the heuristic information, and J is a random

EPIA'2011 ISBN: 978-989-95618-4-7

196



variable selected according to the probability distribution given by equation (2).

pij =


τij · ηβij∑

il∈N(sp) τil · η
β
il

if cij ∈ N(sp)

0 otherwise

(2)

where pij is the probability of an ant in node i to move to node j. The rules
displayed in (1) and (2) favor the transition to nodes that are near and have a
connection with a high pheromone level. The parameter q0 is essential in ACS,
as it balances the relative importance given to exploration versus exploitation.
Whenever an ant has to make a decision about which path to follow, a variable
q is sampled: if q < q0 the path with the highest τil ·ηβil value is chosen (exploita-
tion); otherwise, an edge is probabilistically selected according to (2)(biased
exploration).

Global pheromone updating rule In the end of an iteration, only the best
ant (since the beginning of the run) is allowed to update the trail. The logical
reason to this restriction is to bias the search towards area surrounding the best
solution found so far. The trail is updated according to equation (3)

τij =

{
(1− ρ) · τij + ρ/Lgb if cij belongs to the solution
τij otherwise

(3)

where 0 < ρ < 1 is the pheromone decay parameter and Lgb is the length of the
best solution found so far.

Local pheromone updating rule Each time an edge is crossed by an ant, its
pheromone value is slightly decreased, thereby discouraging remaining ants to
follow the exact same trail in that iteration. The objective of the local pheromone
updating is to prevent excessive convergence and to promote the exploration of
alternative solutions inside an iteration. After passing through an edge, an ant
updates the pheromone level using the formula (4)

τij ← (1− ξ) · τij + ξ · τ0 (4)

where 0 < ξ < 1 is the pheromone decay parameter and τ0 is the initial
pheromone level.

The application of ACS to the optimization of a given problem, requires the
definition of the following parameters:

m - Number of ants in the colony;
β - relevance given to the heuristic knowledge in the selection of an edge;
ρ - evaporation rate: if ρ is low the pheromone values will persist longer.
q0 - probability of selecting the next city greedily;
ξ - pheromone decay coefficient: used to make the trails already used in the

present iteration less attractive to the other ants;
τ0 - initial pheromone value for all the sections of the trail: usually set to a very

small constant value.

EPIA'2011 ISBN: 978-989-95618-4-7

197



3 Multi-caste Ant Colony Optimization

Though being a successful metaheuristic, the behavior of ACO algorithms strongly
depends on the values of some parameters [7], [8], [18]. However, discovering the
ideal settings for a specific situation is a non-trivial task and it requires significant
efforts. The most straightforward approach is to perform an off-line parameter
setting, i.e., to estimate what might be the best set of values before applying the
algorithm in the real optimization task. This alternative is usually accomplished
by a trial-and-error procedure, and is a time-consuming, human-intensive and
error prone task [1], [20]. Moreover, different problems (and even different in-
stances of the same problem) usually require different settings, and therefore
previous analysis might not be helpful in new situations.

Adaptive parameter tuning is an active area of research (see, e.g., [18], [20]
and references therein). In simple terms, this approach consists in self-adjusting
the parameter values while the algorithm is running. The advantages are clear:
self-adaptation removes the need to engage in cumbersome estimations about
what might be the ideal setting for a specific situation and it contributes to
the appearance of more robust ACO algorithms, i.e., algorithms that self-tailor
to the problem being addressed. Obviously, there is also a limitation since the
algorithm must adjust its setting, while simultaneously searching for promising
solutions.

In this paper we present a set of experiments that help to gain insight about
the advantages of relying on an adaptive setting for the ACS. We focus our
attention on the q0 parameter, as this is the most distinctive feature of this
ACO variant and has a very high influence in the behavior of the algorithm [18].
In the next sections we briefly highlight the limitations of fixed settings and
introduce two simple ACS variants that allow for an on-the-fly adaptation of q0.

3.1 Limitations of ACS with fixed settings

Varying the parameter values as the search progresses might lead to an overall
performance enhancement [12]. The work described in [20] studies the evolu-
tion of the solution quality as the computations run, for different parameter
settings. Even though the analysis is mainly focused on the MAX-MIN variant,
the general conclusion is that the best parameter values depend on the specific
point of the search process where the algorithm is at. We did a set of similar
experiments for ACS, focusing on the impact of adopting different values for
q0 = {0.75, 0.9, 0.95, 0.99}. The anytime-behavior [22] of the ACS was recorded
for several instances of the TSP. An illustrative example of the type of results
obtained may be observed in Fig. 1. The chart displays the evolution of the
mean-best-fitness (MBF) for each value of q0, in a TSP instance with 417 cities.
Results are averages of 30 runs, obtained with the same parameter settings, and
the y axis shows the deviation of the MBF from the optimum. ACS didn’t use
local search, in order to better understand the real influence of parameter q0 in
the behavior of the algorithm.

EPIA'2011 ISBN: 978-989-95618-4-7

198



1e+01 1e+03 1e+05 1e+07

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

number of evaluations

re
la

tiv
e 

er
ro

r

q0=0.75
q0=0.90
q0=0.95
q0=0.99

Fig. 1. Example of the anytime behavior of ACS for an instance of size 417

The results clearly show the impact of q0 in the performance of ACS. In the
beginning of the run, higher values of q0 lead to a fast discovery of promising
solutions. However, excessive greediness leads to premature convergence. Lower
values of q0 allow the ACS to maintain the ability to improve solutions and,
by the time the optimization reaches 107 evaluations, q0 = 0.75 is already the
configuration. Experiments performed on instances of different size revealed the
same trend. We then argue that it might be advantageous to let ACS switch its
q0 during the optimization, as this will enable the algorithm to adjust to different
optimization stages. The next ACS variants establish how this adjustment can
be done.

3.2 Multi-caste ACS

In the multi-caste version of the ACS, a colony has more than one caste of
ants. Ants belonging to different castes have different parameter values. The
idea behind our proposal is to allow for the algorithm to use the best ant for any
given moment. We propose two variants: const-multi-caste and jump-multi-caste.
The alterations needed to the conventional ACS are minimal.

Const-multi-caste The colony is divided in castes, all with the same number
of ants. The distribution remains fixed throughout the optimization. Each caste
is characterized by a specific q0 value. Ants inherit the setting from the caste to
which they belong and, when applying the state transition rules, rely on their
specific q0 value.

Jump-multi-caste The initial distribution is similar to that of const-multi-
caste. However, at the end of each iteration, two ants are selected at random. If

EPIA'2011 ISBN: 978-989-95618-4-7

199



the ants belong to different castes and both castes have more than 20% of the
total number of ants, the quality of their solutions is compared. The ant with
the worse solution jumps to the caste of the winning ant. The idea behind this
variant is to provide a simple method to dynamically adjust the size of the castes,
favoring those that in the current search status encode the most promising q0
value.

3.3 Related Work

Several approaches were proposed in the past few years to address the adjustment
of parameters values throughout the execution of the algorithm. Whereas in some
proposals, parameter values change according to some predefined schedule or are
function of the time or number of iterations ([13], [20]), in others, the adaptation
depends on the behavior of the algorithm, e.g., on the distance between the
present solution and the optimum ([16], [2], [9]). Still, other approaches expand
the search space by adding the dimensions that represent the parameters ([21],
[15]) or rely on an external search procedure to optimize the parameters values
during the execution of the algorithm([10], [12], [14]). For a recent and detailed
overview of the different methods, please refer to [20].

4 Experiments

Several experiments were performed to compare the results obtained by const-
multi-caste and jump-multi-caste against the conventional ACS. The goal is to
gain insight about the possible advantages of relying on ACS variants that allow
for the simultaneously existence of different q0 values and that adjust the relative
weight of each one of the specific settings considered. We used the publicly
available ACOTSP software [19], both to get the values of the standard ACS
variant and as the base for our own implementations. Unless otherwise noted,
the default values used for the experiments are: m = 10, β = 2, ρ = 0.1, ξ = 0.1,
τ0 = 1/(n ·Lnn) (where Lnn is the length of the tour using the nearest neighbor
heuristic [7], [19]), q0 = {0.75, 0.9, 0.95, 0.99}. Local search was never used and
each experiment was repeated 30 times.

Several symmetric TSP instances of different size were selected from the
TSPLIB 95 [17]. In concrete, we performed experiments with instances with
99, 189, 417, 783, 1577, 3038 and 5934 cities, for which the optimal solution is
known. To better understand the effect of the multi-caste approach we divided
the configurations in 3 groups as depicted in Table 1. The mono caste group uses
the conventional ACS algorithm, the multi caste group uses the const-multi-caste
variant and the jump caste group the jump-multi-caste. All the configurations set
the total number of ants, m, to 10, except the cquads and fquads configurations
that have m = 20 (so that all castes begin with 5 ants). The values for q0 are
the ones noted in the last column of the table. All tests were performed on an
ATHLON 64 X2 3800+ 2.0 GHz computer and allowed to run for 5000 seconds
for most instances and 20000 seconds for rl5934.

EPIA'2011 ISBN: 978-989-95618-4-7

200



Table 1. Configurations used in the experiments

group configuration n. of castes n. of ants per caste q0 of the castes

c75 1 10 0.75
mono caste c90 1 10 0.90

c95 1 10 0.95
c99 1 10 0.99

c75 90 2 5 0.75 and 0.90
c75 95 2 5 0.75 and 0.95
c75 99 2 5 0.75 and 0.99

multi caste c90 95 2 5 0.90 and 0.95
c90 99 2 5 0.90 and 0.99
c95 99 2 5 0.95 and 0.99
cquads 4 5 0.75, 0.90, 0.95 and 0.99

j75 90 2 5 0.75 and 0.90
j75 95 2 5 0.75 and 0.95
j75 99 2 5 0.75 and 0.99

jump caste j90 95 2 5 0.90 and 0.95
j90 99 2 5 0.90 and 0.99
j95 99 2 5 0.95 and 0.99
jquads 4 5 0.75, 0.90, 0.95 and 0.99

4.1 Results

Table 2 contains an overview of the optimization results. Columns 3 to 9 iden-
tify the ACS configuration that obtained the best and worst MBF in the 7 TSP
instances used in the experiments. In each column, symbol V marks the con-
figuration with the absolute best average performance, whereas symbol Xmarks
the variants that obtained results with a distribution identical to the overall
best performing configuration (significance level of 0.05). Likewise, symbol X
marks the worst configuration and X highlights variants who have an identical
distribution to X.

The column corresponding to the rat99 instance is not very informative. This
is a small instance and nearly all ACS variants obtained results that are statis-
tically identical to the best performing configuration. Differences are so small,
that several variants obtained results that are statistically identical to the best
and worst configurations. Focusing on the other 6 instances, some interesting
patterns arise. In most cases, the absolute best and worst performing config-
urations are from the mono caste group. This reveals both a strength and a
weakness of standard ACS. If one is able to find ideal parameter settings, then
the algorithm excels in the optimization. However, a poor selection for the value
of a single parameter severely compromises its effectiveness. Information from
Table 2 also confirms that offline tuning is a difficult task: three different values
of q0 obtained the best results with mono caste in different TSP instances. As
for the const multi caste and jump caste groups, they show signs of increased
robustness. They never obtain the worst result and, with just a few exceptions,

EPIA'2011 ISBN: 978-989-95618-4-7

201



they do not achieve results identical to the worst. Also, they rarely exhibit the
absolute best performance, but they frequently obtain results that are similar
to those achieved by the best performing configuration. This is an interesting
result. A straightforward modification in the structure of ACS, allowing for sev-
eral q0 to coexist during the optimization, visibly increases the robustness of the
algorithm, preventing it from getting trapped in low quality regions of the search
space.

Table 2. Overview of the optimization results in the 7 selected TSP instances. Symbol
V marks the best configuration and Xhighlights the variants who’s distribuition isn’t
have an identical distribution to V. Symbol X marks the worst configuration and X
highlights variants who have an identical distribution to X.

group configuration rat99 d198 fl417 rat783 fl1577 pcb3038 rl5934

c75 X X V X X X X
mono caste c90 XX V X X V

c95 XX X V V
c99 XX X X X

c75 90 XX X X
c75 95 XX X X X
c75 99 XX X

multi caste c90 95 XX X X XX X
c90 99 XX X XX
c95 99 X X X
cquads V X X

j75 90 XX X X
j75 95 XX X X V
j75 99 X X X

jump caste j90 95 XX X X X X X X
j90 99 XX X X X
j95 99 X X X X X
jquads X X X

Results do not show a clear advantage of quads configurations (cquads and
jquads) over those that only consider two q0 values. This is true both for multi caste
and jump caste groups. With the current results, it is impossible to determine
if this is a consequence of the basic framework proposed for multi-caste variants
or is an indicator that just two settings are enough to allow for an increased
robustness in search. It is important to notice that the quads configurations re-
quires 20 ants (instead of the 10 used by the other configurations). Usually, the
performance of ACS tends to deteriorate as the number of ants increases and this
might compromise the performance of the quads. Understanding the impact of
the number of castes in the performance of ACS is a topic that we will address in
future research. Experimental results show that the jump-multi-caste approach
does not provide any clear advantage over const-multi-caste, thereby suggesting

EPIA'2011 ISBN: 978-989-95618-4-7

202



that on-the-fly adaptation of the number of ants belonging to each caste is not
useful. This might be a consequence of the basic adjustment procedure proposed
for jump-multi-caste and we believe that a different adaptive strategy might help
to further enhance the robustness of this approach.

A detailed distribution of results can be consulted in the box-plot charts from
Figures 2 to 8. This detailed view confirms the general trends derived from the
analysis of data in table 2. As a rule, there is always a mono caste group that is
clearly worse that the others in the same group, and many times worse than any
other in any other group. In the groups multi caste and jump caste, the difference
between the best and worst performing configurations is not so noticeable. The
outcome of the fl1577 instance is somehow atypical, as the differences between
the best and worse performing configurations are not as marked. This is probably
a consequence of the specific properties of this particular instance.

0.
00

0.
01

0.
02

0.
03

0.
00

0.
01

0.
02

0.
03

0.
00

0.
01

0.
02

0.
03

c7
5

c9
0

c9
5

c9
9

c7
5_

90

c7
5_

95

c7
5_

99

c9
0_

95

c9
0_

99

c9
5_

99

j7
5_

90

j7
5_

95

j7
5_

99

j9
0_

95

j9
0_

99

j9
5_

99

cq
ua

ds

jq
ua

ds
Fig. 2. Results for the rat99 instance

Figure 9 displays the anytime behavior of the const-multi-caste variant for
the same instance that was used to study the same behavior of standard ACS
(see Fig. 1). A comparison of both figures reveals that multi-caste ACS tends
to be more stable and with smaller differences in performance than those exhib-
ited by standard ACS with different q0 values. More important, over time the
different configurations tend to converge to the approximately the same good
results, therefore making parameter selection less relevant to the success of the
optimization. Even though we display results from just one instance, the same
trend is visible in other cases.

We complete our analysis by providing evidence that the multi caste variants
are indeed using different q0 values. Figure 10 displays a chart with the value
of q0 encoded in the best so far ant over time. Results are averages of 30 runs
and were obtained in the instance with 783 cities, although the same trend is
visible for other instances. It can be seen that the different castes contribute
to discover new best solutions, as the q0 keeps oscillating between extremes. In

EPIA'2011 ISBN: 978-989-95618-4-7

203



0.
00

0.
02

0.
04

0.
06

0.
00

0.
02

0.
04

0.
06

0.
00

0.
02

0.
04

0.
06

c7
5

c9
0

c9
5

c9
9

c7
5_

90

c7
5_

95

c7
5_

99

c9
0_

95

c9
0_

99

c9
5_

99

j7
5_

90

j7
5_

95

j7
5_

99

j9
0_

95

j9
0_

99

j9
5_

99

cq
ua

ds

jq
ua

ds

Fig. 3. Results for the d198 instance

0.
01

0.
03

0.
05

0.
01

0.
03

0.
05

0.
01

0.
03

0.
05

c7
5

c9
0

c9
5

c9
9

c7
5_

90

c7
5_

95

c7
5_

99

c9
0_

95

c9
0_

99

c9
5_

99

j7
5_

90

j7
5_

95

j7
5_

99

j9
0_

95

j9
0_

99

j9
5_

99

cq
ua

ds

jq
ua

ds

Fig. 4. Results for the fl417 instance

0.
01

0.
02

0.
03

0.
04

0.
01

0.
02

0.
03

0.
04

0.
01

0.
02

0.
03

0.
04

c7
5

c9
0

c9
5

c9
9

c7
5_

90

c7
5_

95

c7
5_

99

c9
0_

95

c9
0_

99

c9
5_

99

j7
5_

90

j7
5_

95

j7
5_

99

j9
0_

95

j9
0_

99

j9
5_

99

cq
ua

ds

jq
ua

ds

Fig. 5. Results for the rat783 instance

EPIA'2011 ISBN: 978-989-95618-4-7

204



0.
02

0.
04

0.
06

0.
08

0.
02

0.
04

0.
06

0.
08

0.
02

0.
04

0.
06

0.
08

c7
5

c9
0

c9
5

c9
9

c7
5_

90

c7
5_

95

c7
5_

99

c9
0_

95

c9
0_

99

c9
5_

99

j7
5_

90

j7
5_

95

j7
5_

99

j9
0_

95

j9
0_

99

j9
5_

99

cq
ua

ds

jq
ua

ds

Fig. 6. Results for the fl1577 instance

0.
05

0.
15

0.
25

0.
05

0.
15

0.
25

0.
05

0.
15

0.
25

c7
5

c9
0

c9
5

c9
9

c7
5_

90

c7
5_

95

c7
5_

99

c9
0_

95

c9
0_

99

c9
5_

99

j7
5_

90

j7
5_

95

j7
5_

99

j9
0_

95

j9
0_

99

j9
5_

99

cq
ua

ds

jq
ua

ds

Fig. 7. Results for the pcb3038 instance

0.
10

0.
20

0.
30

0.
10

0.
20

0.
30

0.
10

0.
20

0.
30

c7
5

c9
0

c9
5

c9
9

c7
5_

90

c7
5_

95

c7
5_

99

c9
0_

95

c9
0_

99

c9
5_

99

j7
5_

90

j7
5_

95

j7
5_

99

j9
0_

95

j9
0_

99

j9
5_

99

cq
ua

ds

jq
ua

ds

Fig. 8. Results for the rl5934 instance

EPIA'2011 ISBN: 978-989-95618-4-7

205



1e+01 1e+03 1e+05 1e+07

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

number of evaluations

re
la

tiv
e 

er
ro

r

c75_90
c75_95
c75_99
c90_95
c90_99
c95_99
cquads

Fig. 9. Example of the anytime behavior of multi caste for an instance of size 417

most instances there is a slight trend for the average value of q0 to decrease
over time. This is in accordance with the analysis of the anytime behavior of
standard ACS, which revealed an advantage of using lower values of q0 as the
search progresses.

5 Conclusions

Parameter settings play an important role in the performance of ACO algorithms
and, in recent years, there has been a growing interest in the development of
adaptive approaches that adjust settings during the optimization. We presented
and analyzed two multi-caste variants of ACS that allow for different values of
q0 to be used during a single run of the algorithm. The first variant, const-multi-
caste, contains several castes with a fixed number of ants, each group with its
own q0 value. Jump-multi-caste also relies on different castes, but allows ants to
migrate from one group to the other in search of a more effective setting for a
specific period of the optimization. Results obtained with several TSP instances
reveal that multi-caste configurations are more robust than standard ACS. They
are particularly effective in avoiding the poor performance that results from a
suboptimal selection of parameters, since they are able to discover good solutions
irrespectively of the exact configuration adopted. This is a relevant result, as
it simplifies the task of specifying the parameters for an ACO algorithm and
increases the likelihood of discovering promising solutions.

Experimental results are not conclusive about the advantage of relying on
jump-multi-caste over the const-multi-caste variant. A different adaptive strat-
egy might be required for jump-multi-caste and this is a topic that we will address
in the near future. Also, we aim to expand this framework to other parameters,
as this might help to further enhance the robustness of the adaptive algorithm.

EPIA'2011 ISBN: 978-989-95618-4-7

206



evaluations

q0

0.85

0.90

0.95

0e+00 2e+06 4e+06

c75_90 c75_95

0e+00 2e+06 4e+06

c75_99 c90_95

c90_99

0e+00 2e+06 4e+06

c95_99

0.85

0.90

0.95

cquads

Fig. 10. q0 values over time for an instance of size 783

Acknowledgments. This work was supported by Fundação para a Ciência e
Tecnologia, under grant SFRH/PROTEC/67643/2010.

References

1. Birattari, M.: The Problem of Tuning Metageuristics from a machine learning
perspective. Ph.D. thesis, Universite Libre de Bruxelles (December 2004)

2. Cai, Z., Huang, H., Qin, Y., Ma, X.: Ant colony optimization based on adaptive
volatility rate of pheromone trail. Int. J. Communications, Network and System
Sciences (2), 792–796 (2009)

3. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization - artificial ants
as a computational intelligence technique. Technical report, Université Libre de
Bruxelles, Institut de Recherches Interdisciplinaires et de Développements en In-
telligence Artificielle (September 2006)

4. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

5. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Tech.
rep., Politecnico di Milano, Italy (1991)

6. Dorigo, M., Maniezzo, V., Colorni, A.: Optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics 26(1), 29–41 (1996)

7. Dorigo, M., Stützle, T.: Ant Colony Optimization. A Bradford Book, MIT Press,
Cambridge Massachussetts (2004)

EPIA'2011 ISBN: 978-989-95618-4-7

207



8. Favaretto, D., Moretti, E., Pellegrini, P.: Engineering Stochastic Local Search Algo-
rithms. Designing, Implementing and Analyzing Effective Heuristics, Lecture Notes
in Computer Science, vol. 5752, chap. On the Explorative Behavior of MAX–MIN
Ant System, pp. 115–119. Springer Berlin, Heidelberg (2009)

9. Forster, M., Bickel, B., Hardung, B., Kokai, G.: Self-adaptive ant colony optimisa-
tion applied to function allocation in vehicle networks. In: GECCO ’07 Proceedings
of the 9th annual conference on Genetic and evolutionary computation. pp. 1991–
1998. ACM (2007)

10. Gaertner, D., Clark, K.: On optimal parameters for ant colony optimization algo-
rithms. In: Arabnia HR, J.R. (ed.) Proceedings of the 2005 International Confer-
ence on Artificial Intelligence, ICAI 2005. pp. 83–89. CSREA Press (2005)

11. Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in
the argentine ant. Naturwissenschaften 76, 579–581 (1989)

12. Hao, Z.F., Cai, R.C., Huang, H.: An adaptive parameter control strategy for aco.
In: Proceedings of the Fifth International Conference on Machine Learning and
Cybernetics. IEEE Press (2006)

13. Matthews, D.C., Sutton, A.M., Hains, D., Whitley, L.D.: Improved robustness
through population variance in ant colony optimization. In: Stützle, T., Birattari,
M., Hoos, H. (eds.) SLS ’09 Proceedings of the Second International Workshop on
Engineering Stochastic Local Search Algorithms. Designing, Implementing and An-
alyzing Effective Heuristics. pp. 145–149. Springer-Verlag Berlin Heidelberg (2009)

14. Melo, L., Pereira, F., Costa, E.: Mc-ant: a multi-colony ant algorithm. In: Collet, P.,
Monmarché, N., Legrand, P., Shoenauer, M., Lutton, E. (eds.) Artificial Evolution:
9th International Conference, Evolution Artificielle , EA’2009 LNCS 5975. pp. 25–
36. Springer Berlin / Heidelberg (2009)

15. Pilat, M.L., White, T.: Using genetic algorithms to optimize acs-tsp. In: Dorigo,
M., Caro, G.D., Sampels, M. (eds.) Ant Algorithms: Third International Workshop,
ANTS 2002, LNCS, vol 2463. pp. 282–287. Springer, Heidelberg, Germany (2002)

16. Randall, M.: Near parameter free ant colony optimisation. In: Dorigo, M., Birattari,
M., Blum, C., Gambardella, L., Mondada, F., Stützle, T. (eds.) ANTS’2004, Ant
Colony Optimization and Swarm Intelligence, LNCS 3172. pp. 374–381. Springer-
Verlag Berlin Heidelberg (2004)

17. Reinhelt, G.: TSPLIB: a library of sample instances for the tsp (and related
problems) from various sources and of various types. URL: http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/

18. Ridge, E.: Design of experiments for the tuning of optimisation algorithms. Ph.D.
thesis, Department of Computer Science, University of York, U.K. (2007)

19. Stützle, T.: ACOTSP: A software package of various ant colony opti-
mization algorithms applied to the symmetric traveling salesman problem.
URL:http://www.aco-metaheuristic.org/aco-code/ (2002)

20. Stützle, T., Lopez-Ibanez, M., Pellegrini, P., Maur, M., de Oca, M.M., Birattari,
M., Dorigo, M.: Parameter adaptation in ant colony optimization. Technical report
number tr/iridia/2010-002, IRIDIA, Bruxelles, Belgium (2010)

21. White, T., Pagurek, B., Oppacher, F.: Connection management using adaptive
mobile agents. In: Arabnia, H. (ed.) Proceedings of the International Conference
on Parallel and Distributed Processing Techniques and Applications (PDPTA’98).
pp. 802–809. CSREA Press (1998)

22. Zilberstein, S.: Using anytime algorithms in intelligent systems. AI MAGAZINE
17(3), 73–86 (1996)

EPIA'2011 ISBN: 978-989-95618-4-7

208




