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Abstract. In this paper we present Tyche, a nonlinear pseudorandom
number generator designed for computer simulation. Tyche has a small
128-bit state and an expected period length of 2127. Unlike most non-
linear generators, Tyche is consistently fast across architectures, due to
its very simple iteration function derived from ChaCha, one of today’s
fastest stream ciphers.
Tyche is especially amenable for the highly parallel environments we
find today, in particular for Graphics Processing Units (GPUs), where it
enables a very large number of uncorrelated parallel streams running in-
dependently. For example, 216 parallel independent streams are expected
to generate about 296 pseudorandom numbers each, without overlaps.
Additionally, we determine bounds for the period length and parallelism
of our generators, and evaluate their statistical quality and performance.
We compare Tyche and the variant Tyche-i to the XORWOW and TEA8

generators in CPUs and GPUs. Our comparisons show that Tyche and
Tyche-i simultaneously achieve high performance and excellent statistical
properties, particularly when compared to other nonlinear generators.
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1 Introduction

Pseudorandom numbers are often used for testing, simulation and even aesthetic
purposes. They are an integral part of Monte Carlo methods, genetic and evo-
lutionary algorithms, and are extensively used in noise generation for computer
graphics.

Monte Carlo methods were first used for computing purposes by Ulam and
von Neumann, while attempting to solve hard problems in particle physics [1].
Monte Carlo methods consist of iterated random sampling of many inputs in
some probability distribution, followed by later processing. Given enough inputs,
it is possible to obtain an approximate solution with a reasonable degree of
certainty. This is particularly useful for problems with many degrees of freedom,
where analytical or exact methods would be far too inefficient. Monte Carlo
methods are not, however, very computationally efficient — typically, to reduce



the error margin by half, one has to quadruple the amount of sampled inputs [2].
Today, Monte Carlo methods are used in the most various fields, such as particle
physics, weather forecasting, financial analysis, operations research, etc.

Current general-purpose processors typically have 2 or 4 cores. Graphics pro-
cessing units have tens to hundreds [3]; future architectures are slated to scale
up to hundreds and thousands of cores [4]. This development entails some con-
sequences: silicon real estate is limited, and the increase in processing units
decreases the total fast memory available on-chip. Thus, it becomes an interest-
ing problem to design a random number generator that can take advantage of
massively parallel architectures and still remain small, fast and of high quality.
With these goals in mind, we introduce Tyche, a fast and small-state pseudoran-
dom number generator especially suited for current parallel architectures. The
iteration function of Tyche, derived from the stream cipher ChaCha’s quarter-
round function [5], is nonlinear and fast; it uses a very small amount of state (4
32-bit registers) and, yet, it has a very large average period.

In Section 2 we review the state of the art in theory and practice of random
number generation. In Section 3 we describe the Tyche function. In Section 4 we
provide an analysis of several important features of the algorithm, such as the
expected period, statistical quality and parallelism. We then introduce a variant
of Tyche with higher instruction-level parallelism in Section 5. In Section 6, we
experimentally evaluate and compare Tyche. Section 7 concludes the paper.

2 Related Work

There is an enormous body of work in the literature regarding pseudorandom
number generation. One of the first and most popular methods to generate
pseudorandom numbers in digital computers was Lehmer’s linear congruential
method, consisting of a linear recurrence modulo some integer m. Since then, re-
searchers have proposed numerous other linear algorithms, most notably lagged
Fibonacci generators, linear feedback shift registers, Xorshift generators and the
Mersenne Twister [6,7,8]. The statistical properties of linear generators are well
known and widely studied; several empirical tests are described in [6, Chapter 3].
One of the drawbacks of such linear generators, in particular linear congruential
generators, is their very regular lattice structure [6, Section 3.3.4]. This causes
the usable amount of numbers in a simulation to be far less than the full period
of the generator [9].

Nonlinear pseudorandom generators, like the Inversive congruential gener-
ator and Blum Blum Shub [10,11], avoid the drawbacks of linearity. However,
nonlinear generators often require more complex arithmetic than linear ones and
have smaller periods, rendering them impractical for simulations.

The generation of pseudorandom numbers in parallel environments is also a
well studied subject [12,13,14]. The main problem is to enable multiple concur-
rent threads of execution to get random numbers in parallel. Two main solutions
exist for this problem: parametrization and cycle splitting. Parametrization con-
sists in creating a slightly different full period generator for each instance; this



can be done by, e.g., changing the iteration function itself. Cycle splitting takes
a full period sequence and splits it into a number of subsequences, each used
within an instance. Cycle splitting is often used in linear congruential genera-
tors, since it is possible to leap to any arbitrary position in the stream quite
easily. Other generators, such as the Mersenne Twister, rely on different initial
parameters (i.e., parametrization) to differentiate between threads.

In the case of GPUs and other vector processors, we face additional restric-
tions, because the amount of fast memory per core is quite limited, thus re-
stricting the internal state we can use. Furthermore, GPUs lack some important
instructions, such as native integer multiplication and/or division, leading to a
large slowdown for some popular random number generators. Still, linear con-
gruential generators have been studied in GPUs [15].

There have been some initial attempts to adapt cryptographic functions for
fast GPU random number generation. Tzeng and Wei [16] used the MD5 hash
function and reduced-round versions thereof to generate high-quality random
numbers. Zafar and Olano [17] used the smaller and faster 8-round TEA block
cipher to generate high-quality random numbers for Perlin noise generation.

3 Tyche

This section will present Tyche. In the following sections, all values are assumed
to be 32 bits long, unless otherwise noted. + represents addition modulo 232; ⊕
denotes the exclusive-or (xor) operation; ≪ means bitwise rotation towards the
most significant bits.

3.1 Initialization

The state of Tyche is composed of 4 32-bit words, which we will call a, b, c and
d. Tyche, when initialized, takes a 64-bit integer seed and a 32-bit integer idx.
Algorithm 3.1 describes the operations performed during initialization.

Algorithm 3.1: Tyche Init(a, b, c, d, seed, idx)

a← bseed/232c
b← seed mod 232

c← 2654435769
d← 1367130551⊕ idx
for i← 0 to 20
do MIX(a, b, c, d)

return (a, b, c, d)

The MIX function called in Algorithm 3.1 is used here to derive the initial
state; it is described further in Section 3.3. The constants used in the initial-
ization, 2654435769 and 1367130551, were chosen to be b232/ϕc and b232/πc,
where ϕ is the golden ratio and π is the well-known constant. Their purpose is
to prevent a starting internal state of (0, 0, 0, 0).



3.2 The algorithm

Once its internal state is initialized, Tyche is quite simple. It calls the MIX
function once and returns the second word of the internal state, as shown in
Algorithm 3.2.

Algorithm 3.2: Tyche(a, b, c, d)

(a, b, c, d) = MIX(a, b, c, d)
return (b)

3.3 The MIX function

The MIX function, used both in initialization and state update, is derived di-
rectly from the quarter-round function of the ChaCha stream cipher [5]. As
described in Algorithm 3.3, it works on 4 32-bit words and uses only addition
modulo 232, XOR and bitwise rotations.

Algorithm 3.3: MIX(a, b, c, d)

a← a+ b
d← (d⊕ a) ≪ 16
c← c+ d
b← (b⊕ c) ≪ 12
a← a+ b
d← (d⊕ a) ≪ 8
c← c+ d
b← (b⊕ c) ≪ 7
return (a, b, c, d)

4 Analysis of Tyche

4.1 Design

We can find many different designs for random number generators. The design
we propose here attempts to achieve high period, speed, and very low memory
consumption. One of the ways in which it achieves this is by using a very simple
recursion:

xi+1 = f(xi) (1)

This requires no extra space other than the state’s size and perhaps some
overhead to execute f . One could use, e.g., a counter to ensure certain mini-
mum period — this would evidently require more registers per state, which goes
against our main objectives. A similar approach to ours has been used in the



LEX [18] stream cipher, using the AES block cipher in Output Feedback mode
(OFB) and extracting 4 bytes of the state per iteration.

Another crucial design choice concerns function f . Should it be linear? Most
current random number generators are indeed linear: LCG, Xorshift, LFSR con-
structions, etc. These functions have the advantage of being very simple and
easily analyzed. However, linear random number generators tend to have highly
regular outputs: their outputs lie on simple lattice structures of some dimen-
sion. This makes such generators unsuitable for some types of simulations and
considerably reduces their useful period [19]. Nonlinear generators generally do
not have this problem [2]. Moreover, despite being very simple, linear genera-
tors may not be very fast. Linear congruential generators and their derivatives
require multiplications and modular reductions. Unfortunately, these operations
are not present in every instruction set and can be hard to implement otherwise.

One could then simply search for a good nonlinear random number generator.
However, nonlinear generators for simulation purposes are hard to find, and
generally much slower than their linear counterparts. Indeed, one could simply
use a cryptographic stream cipher as a random number generator. That would,
however, be several times slower and would require a much larger state. Indeed,
even TEA8 as described in [17] requires 136 instructions per 64 bits of random
output, while MIX only requires 12 instructions per 32 bits of random output.

In light of these reasons, we chose our function to be nonlinear and to use
exclusively instructions available in almost every chip — addition, xor, bit ro-
tations1. The overlap of 32-bit addition and xor creates a high amount of non-
linearity and simultaneously allows for very fast implementations, owing to the
simplicity of such instructions.

4.2 Period

The MIX function, used to update the internal state, is trivially reversible. Thus
it is a permutation, with only one possible state before each other state. How
does this affect the expected period? Were the MIX function irreversible, it would
behave like a random mapping—in that case, the period would be about 2n/2 for
an n-bit state [20]. In our case, the expected period is the average cycle length
of a random element in a random permutation: (2n + 1)/2 ≈ 2n−1 for an n-bit
state [21, Section 1.3.3].

It is also known that random permutations do have small-length cycles. In
fact, we can trivially find one cycle of length 1 in the MIX function: MIX(0,0,0,0)
= (0,0,0,0) — this is in fact its only fixed point [22]. However, if using the
initialization described in Section 3.1, this state will never be reached. It is also
extremely unlikely to reach a very short cycle—the probability of reaching a
cycle of length m is 1/2n; the probability of reaching a cycle of length m or less
is
∑m

i 1/2n = m/2n [23]. In our case, the chance of reaching a state with period
less than or equal to 232 is roughly 2−96.

1 While many chips do not have bit rotations natively, they are trivially achievable
with simple logical instructions such as shifts and xor.



4.3 Parallelization

Our algorithm is trivial to use in parallel environments. When initializing a state
(using Algorithm 3.1 or 5.1), each computing unit (e.g., thread, vector element,
core) uses the same 64-bit seed, but its own index in the computation (the idx

argument of Algorithm 3.1). We chose a 64-bit seed to avoid collisions; since
seeds are often chosen at random, it would only require about 216 initializations
for a better than 50% chance to rerun a simulation using the same seed if one
used 32-bit seeds. This would be unacceptable.

What about overlaps? Parallel streams will surely overlap eventually, given
that the function is cyclic and reversible. This is as bad as a small period in
a random number generator. To find out how fast streams overlap, consider a
simple case: s streams outputting a single value each. Given that each stream
begins at an arbitrary state out of n possible states, the probability of an overlap
(i.e., a collision) would be given by the birthday paradox:

1− n!

(n− s)!ns
(2)

This is, however, a simplified example; what we want to know is the likelihood
that, given s streams and a function f that is a random permutation, no stream
will meet the starting point of any other in less than d calls to f . This can be seen
as a generalization of the birthday problem, and was first solved by Naus [24].
The probability that at least one out of s streams overlaps in less than d steps
in a cycle of length m is given by

1− (m− sd+ s− 1)!

(m− sd)!ms−1
(3)

In our particular case, m is in average 2127; s should be no more than 216; d
should be a large enough distance to make the generator useful — we choose 264

here as an example minimum requirement. Thus, 216 parallel streams producing
264 numbers will overlap with a probability of roughly 2−32. Conversely, when
running 216 parallel streams, an overlap is not expected until about 264/2−32 =
296 iterations have passed.

5 A Faster Variant

One issue with the construction described in the previous section is that it is
completely sequential. Each instruction of the MIX function directly depends
on the immediately preceding one. This does not take any advantage of modern
superscalar CPU machinery. Thus, we propose a variant of Tyche, which we call



Tyche-i, able to take advantage of pipelined processors. Tyche-i is presented in
Algorithms 5.1, 5.2, and 5.3.

Algorithm 5.1: Tyche-i Init(a, b, c, d, seed, idx)

a← bseed/232c
b← seed mod 232

c← 2654435769
d← 1367130551⊕ idx
for i← 0 to 20
do MIX-i(a, b, c, d)

return (a, b, c, d)

Algorithm 5.2: Tyche-i(a, b, c, d)

(a, b, c, d) = MIX-i(a, b, c, d)
return (a)

Algorithm 5.3: MIX-i(a, b, c, d)

b← (b≫ 7)⊕ c; c← c− d
d← (d≫ 8)⊕ a; a← a− b
b← (b≫ 12)⊕ c; c← c− d
d← (d≫ 16)⊕ a; a← a− b
return (a, b, c, d)

The main difference between Tyche and Tyche-i is the MIX-i function. The
MIX-i function is simply the inverse function of Tyche’s MIX. Unlike MIX,
MIX-i allows for 2 simultaneous executing operations at any given time, which
is a better suit to superscalar processors than MIX is. The downside, however,
is that MIX-i diffuses bits slower than MIX does: for 1-bit differences in the
internal state, 1 MIX call averages 26 bit flipped bits, while MIX-i averages 8.

6 Experimental Evaluation

6.1 Performance

We implemented and compared the performance of Tyche and Tyche-i against
the XORWOW generator found in the CURAND library [25]. XORWOW is a
combination of a Xorshift [8] and an additive generator, with a combined period
of 2192 − 232. The test setup was the Intel Core 2 E8400 processor for the CPU
benchmarks, and the NVIDIA GTX580 GPU for the GPU benchmarks. Table 1
summarizes our performance results in both architectures; note that GPU figures
do not take into account kernel and memory transfer overheads, as those are
essentially equal for every option.



Table 1: Period, state size, results of TestU01’s “BigCrush”, and performances,
in cycles per 32-bit word, of various pseudorandom number generators in the
CPU and GPU.
Algorithm Period State BigCrush CPU GPU

Tyche ≈ 2127 128 160/160 12.327321 1.156616

Tyche-i ≈ 2127 128 160/160 6.073590 0.763572

XORWOW [25] 2192 − 232 192 157/160 7.095927 0.578620

TEA8 [26] 264 64 160/160 49.119271 5.641948

As expected (cf. Section 5), Tyche-i is roughly twice as fast as Tyche on the
Core 2, a processor with high instruction-level parallelism. In the GPU, Tyche-i
is still quite faster, but by a lower (roughly 1.5) ratio.

The XORWOW algorithm only requires bit shifts, not bit rotations. Unfortu-
nately, the Fermi GPU architecture does not support native bit rotations, which
are replaced by two shifts and a logical operation. This explains the slight speed
advantage of XORWOW. Note that we are able to improve 2 out of the 4 ro-
tations by using the Fermi PRMT instruction, which allows one to permute bytes
of a word arbitrarily. On the CPU, native rotations are as fast as shifts, and
Tyche-i actually beats XORWOW in speed.

We also include a comparison with TEA8, which reveals to be markedly
slower than any of the other choices for GPU (and CPU) random generation. As
we already pointed out in Section 4.1, TEA8 requires at least 136 instructions
per 64-bit word, which is much higher than either Tyche, Tyche-i or XORWOW.

6.2 Statistical quality tests

In order to assess the statistical quality of Tyche and Tyche-i, we performed a
rather exhaustive battery of tests. We employed the ENT and DIEHARD suites
and the TestU01 “BigCrush” battery of tests [27,28,29]. Every test performed
in both variants showed no statistical weaknesses (cf. Table 1).

Another aspect of Tyche is that it is based on the ChaCha stream cipher.
ChaCha’s “quarter-round” function is also employed, albeit slightly modified,
in the BLAKE SHA-3 candidate[22]. The “quarter-round” has been extensively
analyzed for flaws, but both functions are still regarded as secure [30,31]. This
increases our confidence in the quality of Tyche as a generator.

Finally, note that the XORWOW algorithm fails 3 tests in the “BigCrush”
battery: CollisionOver (t = 7), SimpPoker (r = 27), and LinearComp (r = 29),
the latter being a testament of its linear nature.

7 Conclusion

In this paper we presented and analyzed Tyche and Tyche-i, fast and small
nonlinear pseudorandom generators based on the ChaCha stream cipher building
blocks.



Tyche and Tyche-i use a very small amount of state that fits entirely into 4 32-
bit registers. Our experiments show that Tyche and Tyche-i are much faster than
the also nonlinear and cryptographic function-derived TEA8, while exhibiting a
large enough period for serious simulations with many parallel threads. On the
other hand, when we compare Tyche and Tyche-i to the slightly faster (but
linear) XORWOW algorithm, statistical tests (i.e., BigCrush) suggest that both
Tyche and Tyche-i have better statistical properties.
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