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Abstract—Graphics processing units (GPUs) have become
increasingly popular over the last years as a cost-effective means
of accelerating various computationally intensive tasks. We study
the particular case of modular exponentiation, the crucial opera-
tion behind most modern public-key cryptography algorithms.
We focus our attention on the NVIDIA GT200 architecture,
currently one of the most popular for general purpose GPU
computation.

We report our efforts to run modular exponentiation faster
than any other method we were aware of for GPUs. Part of our
performance advantage results from a different interleaving of
the Montgomery multiplication, which was neglected in previous
literature. The other part comes from carefully exploring general
techniques, like loop unrolling and inline PTX assembly. Our
throughput results, at over 20000 RSA-1024 decryptions per
second or 41426 512-bit modular exponentiations per second,
present a significant speedup over previous GPU implementa-
tions, without any significant latency penalty.

Lastly, we evaluate our results in light of several popular
metrics, namely performance/price and performance/watt ratios.
We find that, while current GPUs generally perform better than
CPUs, they show worse performance/watt ratios.

Keywords-CUDA, GPGPU, Montgomery multiplication, Mod-
ular exponentiation, RSA

I. INTRODUCTION

Public-key cryptography is at the heart of modern Internet
security. Widely used secure communication protocols, such
as SSL and IPsec, rely on secure key exchange and digital
signature algorithms such as the Diffie-Hellman [1], RSA [2]
and DSA [3] algorithms. Unfortunately, public-key algorithms
are not nearly as computationally cheap as symmetric en-
cryption algorithms. A detailed study [4] of an SSL session
shows that over 90% of the time spent in cryptographic
operations was in the RSA key exchange, which entails a high
computational cost for high-traffic websites, where the rate of
new connections per second can easily reach the thousands.
To offload the costs, we can resort to cryptographic accelerator
cards.

Graphics processing units (GPUs) are excellent candidates
to perform this acceleration, due to their flexibility and mod-
erate cost. Additionally, modern GPUs are very powerful:
their transistor count has been growing exponentially over
the last few years, exceeding even CPU transistor counts [5].
It is not uncommon today for high-end GPUs to exceed 1

trillion floating point operations per second (FLOPs). They
are also easily programmable, using tools like CUDA [6] and
OpenCL [7].

In this paper, we harvest the power of GPUs to speed up the
most common public key operation used in Web servers —
RSA decryption1. We focus on a specific key length, 1024-bit
RSA, for two main reasons: it is the most common key length
in use [8], and it allows easier comparisons with other existing
CPU and GPU implementations.

To improve on previous state of the art results, we focused
on two aspects: fully exploiting both the tools and the under-
lying hardware and selecting algorithms better suited to the
architecture. The former was done by performing full manual
unrolling, using GPU (PTX) assembly directly and maximiz-
ing register use at the expense of less threads per block. The
latter consisted of careful selection and benchmarking of var-
ious hitherto untried interleaving approaches for Montgomery
reduction, which showed the method most commonly used
in the literature is not the best for NVIDIA GPUs. More
specifically, we found that the Coarsely Integrated Operand
Scanning (CIOS) method of Koç et al. [9] is not the best
method in the GPU; methods that “finely” integrate both
multiplication and reduction in the same loop, namely Finely
Integrated Operand Scanning (FIOS) and Finely Integrated
Product Scanning (FIPS), seem to be better suited for the
GPU, and our implementation greatly benefits from the switch
to these methods.

Our resulting RSA implementation, directed at the NVIDIA
GT200 architecture, outperforms all previous GPU imple-
mentations by a large margin, and remains competitive with
recent implementations on newer (read: better) hardware. An
NVIDIA GTX260 graphics card is able to perform over
20000 1024-bit RSA decryptions per second, outperforming
the previous best previous implementation by a factor of over
2.5 [10].

Many different GPU architectures exist today, namely G80,
GT200, G100 and G110 from NVIDIA, and the R700, Ev-
ergreen, and Northern Islands from AMD. We chose the
GT200 architecture, however, as it has a very attractive

1In a typical SSL key exchange, the user encrypts his key with the server’s
public RSA key, and a decryption is performed server-side.
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Figure 1. The GT200 architecture — a scalable array of SMs

price/performance ratio as measured in flops per dollar, is
quite widespread, and is easily programmable using the CUDA
toolkit. At the time of this writing, the Geforce GTX260 card
costs about $100 and delivers 715 Gflops, giving a ratio of
715/100 = 7.15 Gflops per dollar. The GTX 480 has a ratio of
1344/400 = 3.36 Gflops/dollar; the newer GTX 580 decreases
this ratio to roughly 1581/500 = 3.16 Gflops/dollar.

In the remainder of this article, we will describe how we
were able to achieve our performances. Section II describes the
target architecture, NVIDIA GT200, and exposes its strengths
and weaknesses. Section III exposes the crucial algorithms
in our implementation, i.e. the multi-precision multiplication,
modular reduction and exponentiation techniques employed
and how they are mapped into actual CUDA code effectively.
Section V summarizes our results. In Section IV, we compare
our results with related work in GPU public-key cryptography.
Finally, Section VI concludes the paper.

II. THE GT200 ARCHITECTURE

NVIDIA’s GT200 architecture is a natural evolution of the
previous G80 architecture. [11] gives a thorough coverage of
the G80 architecture. The hardware architecture of the G80
matches quite well the CUDA programming model described
in [6]: the computing portion of the card is seen as an array
of streaming multiprocessors (SM). Early G80 GPUs were
composed of 16 SMs; GT200 models have up to 60.

A. The streaming multiprocessor

In Figure 2 we show a diagram of the streaming multipro-
cessor (SM). Each SM contains its own shared memory and
register file and also its own constant and texture memory
cache. Besides these specialized fast memories, the GPU has
access to local and global memory, which reside outside the
chip and are not cached. Additionally, each SM contains a
single instruction cache, 8 ALUs and 2 Special Function Units
(SFU). To maximize the ALU area on the chip, each of these
ALUs operates in a SIMD fashion, in groups of 32 threads,
called warps, controlled by a single instruction sequencer.
At each cycle, the SM thread scheduler chooses a warp to

Instruction Fetch

Instruction L1 Cache

Thread/Instruction Dispatch

Shared Memory

SF
U

SF
U

SP0 RF0 SP4RF4

SP1 RF1

SP2 RF2

SP3 RF3

SP5RF5

SP6RF6

SP7RF7

Constant L1 Cache

Streaming Multiprocessor

Figure 2. The streaming multiprocessor, building block of the GT200
architecture.

be executed. Since each of the 8 ALUs supports up to 128
concurrent thread contexts, i.e., each ALU can be aware of
up to 128 concurrent threads operating in it, it is possible to
have 1024 concurrent threads executing on a single SM —
in a 60-SM GPU, this amounts to up to 61440 simultaneous
threads being executed at any given time.

1) Fast memory: As mentioned in the previous section,
each SM contains its own register file and shared memory.
The amount of registers available to a single kernel is dictated
by the number of threads currently executing in a given SM,
and has a maximum limit of 128 registers per thread. For
example, a kernel running 192 threads per block will use at
most 84 registers per thread2. Once the register count per
thread rises over 64 registers, some restrictions exist, however:
the second source of an assembly instruction cannot be in
a register larger than 63 (the instruction set only reserves 6
bits for this operand) and the register 127 ($r7f) cannot be
accessed at all [13].

Shared memory provides variable array indexing and allows
for communication between threads within an SM. The shared
memory bank in the GT200 is split into 16 banks, each
capable of dispatching a memory read/write every 2 cycles.
Thus, if all threads within a half-warp access a value in a
different bank (or all access the same value), there is no
performance penalty. Otherwise, there will be bank conflicts,
and memory accesses to values sharing the same bank will
be serialized [6]. Microbenchmarking results show the latency
for shared memory accesses is about 38 cycles [14].

2Since the number of registers of a kernel is always rounded to the next
multiple of 4 [12], this limit is the largest multiple of 4 below or equal to
16384/192



Each SM also sports constant and texture caches. Constant
caches enable fast memory accesses, as long as all threads try
to access the same memory location; accesses are serialized
otherwise. In the GT200, each SM contains 2KB of L1
constant cache, with a latency of 8 cycles [14]. Unlike the
other fast memories, texture caches are outside the SM and
have much higher latencies, placed around 260 cycles [14].

2) Arithmetic units: Each of the 8 ALUs can compute
simple arithmetic instructions, be it integer, logical or single
precision floating point, per cycle. Moreover, each ALU can
compute an MAD (multiply-and-add) operation per cycle.
Each SFU unit can compute transcendental functions (e.g.,
sin, cos), and contains 4 floating point multipliers. The GT200
also introduces a double-precision arithmetic unit per SM,
able to dispatch 1 double precision multiply-add per cycle.
Thus, an SM can compute 8 · 2 + 4 · 2 = 24 floating-
point operations per cycle — a 60-SM GPU at 1242 MHz
can (theoretically) compute 1, 788, 480, 000, 000 floating-point
operations per second, a little over 1.7 Tflop/s, or around
149, 040, 000, 000 (149 TFlops) double precision floating-
point operations per second.

Integer multiplication in the GT200, as in the G80, is limited
to native 24-bit multiplication provided by the mul24 and
mad24 instructions. Full 32-bit multiplication is performed by
a combination of 24-bit multiplications, shifts and additions,
which render its throughput around 4 times lower, from ap-
prox. 8 mul24 per cycle to approx. 1.7 32-bit multiplications
per cycle [14].

III. FAST MODULAR EXPONENTIATION

The most important operation in RSA is modular expo-
nentiation. In the case of RSA-1024 decryption, it is fairly
standard to replace one large 1024-bit exponentiation by 2
smaller 512-bit independent ones — this technique, discov-
ered by Quisquater, is often called the “CRT trick” [15].
This improvement matches quite well the GPU programming
paradigm and, as such, in the remainder of this section we
study the performance of 512-bit modular exponentiation in
the GT200.

A. Integer representation

One of the first and foremost concerns when implementing
multi-precision arithmetic on a new architecture is how to
represent the numbers so as to better take advantage of the
features of said architecture. In the case of the GT200, the
biggest concerns are twofold: integer multiplication and carry
propagation.

One can certainly use the usual positional number system
with base 232, equal to the native word size. This allows
one to use the native carry handling instructions for addition
and subtraction3, addc and subr. This representation has
the drawback of “wasting” cycles by ignoring that the native
integer multiplication of the GT200 is 24-bit.

3The NVCC compiler does not have intrinsic functions that enable one to
make use of such instruction effectively. We workaround this issue by using
NVCC’s undocumented inline PTX assembly.

Using a base 224 representation would do away with this
waste, but would introduce 8 unused bits per word. Carry
propagation would also need 2 instructions (a shift and add), as
opposed to just one. We found that the storage waste represents
a higher (throuhgput) penalty than the computation waste, and
chose the base 232 representation.

There are other, alternative, representations. Residue num-
ber systems are quite popular in the literature [10], [16], [17];
they fail to beat positional systems in throughput in seemingly
all cases [10], [17]. Some implementations use floating point
numbers to represent integers, e.g., [18]. Once again, repre-
senting an integer in [−29, 29] reliably using floating point
wastes some bits per word, i.e., the exponent bits.

B. Modular multiplication

Fast modular multiplication is at the heart of any fast
modular exponentiation algorithm. We perform multiplication
using the classic quadratic “schoolbook” algorithm. Asymptot-
ically superior algorithms, such as Karatsuba [19] or Toom-
Cook [20], [21], are not yet suitable at 512 bits — they require
more temporary space [22] and more elementary operations
than schoolbook multiplication.

Algorithm 1: Montgomery multiplication.
Input: Integers A,B,N,R. N < R must be odd.
Output: Product ABR−1 mod N .
µ← −1/N mod R;
C ← AB;
Q← Cµ;
C ← (C +QN)/R;
if C ≥ N then

return C −N ;
else

return C;
end

Modular reduction is performed using Montgomery’s al-
gorithm [23]. Montgomery’s algorithm essentially replaces
one division by 2 multiplications, which is often much faster
than schoolbook division, as common hardware (including
GPUs) typically has poor integer division support. While Bar-
rett’s [24] reduction has the same complexity as Montgomery,
Montgomery is often faster in software [25]. Algorithm 1
describes the original Montgomery algorithm for modular
multiplication. As we can see, this algorithm requires enough
storage for a full 512-bit multiplication, i.e., at least 2n words
of temporary storage for n-word numbers. This is far from
optimal.

Koç et al. [9] show how to implement Montgomery multipli-
cation using n+3 words of temporary storage. By interleaving
multiplication with reduction, Koç et al. were able to both
reduce the storage requirements and increase the speed of
modular multiplication. We implemented, tuned and bench-
marked 3 of the most successful algorithms derived by this
approach: CIOS, FIOS and FIPS.



In the following section, the 3 methods are described and
their mapping into hardware explained. The notation used in
this section is as follows: A and B are s-digits integers, and
ai (resp. bi) denotes the ith digit of A (resp. B) for some digit
length w; in our case, w = 32. N is the modulus, and is also
s-digit long.

Algorithm 2: Montgomery multiplication (CIOS method).

Input: s-word integers A,B, 2n−1 ≤ N ≤ 2n.
n′0 = −n−10 mod 2w. w is word bit length.

Output: Product P = AB2−n mod N .
P ← 0;
for i from 0 to s− 1 do

u← 0;
for j from 0 to s− 1 do

(u, v)← ajbi + pj + u;
pj ← v;

end
(u, v)← ps + u;
ps ← v;
ps+1 ← u;
q ← p0n

′
0 mod 2w;

(u, v)← p0 + n0q;
for j from 1 to s− 1 do

(u, v)← njq + pj + u;
pj−1 ← v;

end
(u, v)← ps + u;
ps−1 ← v;
ps ← ps+1 + u;

end
if P ≥ N then return P −N ;
else return P ;

1) Montgomery by CIOS: The CIOS approach, described
in Algorithm 2, is the most used approach both in software
and in GPUs [10], [17]. CIOS stands for Coarsely Integrated
Operand Scanning, which describes accurately how this algo-
rithm works. For each word of the modulus, CIOS performs
two separate loops: one for the multiplication step, another one
for the reduction step. In each of these steps, the product is
multiplied by one digit of the multiplicand, and subsequently
reduced; this reduction is quite fast, since the the partial
product is at most 32-bit larger than the modulus.

The operations are performed in operand scanning form,
which translates into regular memory accesses across both
operands and modulus. However, CIOS generates long carry
chains across the inner loops that make instruction-level par-
allelism hard to accomplish.

2) Montgomery by FIOS: The Finely Integrated Operand
Scanning method goes one step further and integrates both
multiplication and reduction in the same inner loop, which is
executed s2 − s times. This fine integration is this method’s
greatest advantage, as it reduces greatly the overhead and code
size inside the outer loop. This method is particularly attractive

for RISC processors [26].
However, the FIOS method requires the addition of 2-word

quantities, which entails the propagation of a possible carry
over to a third word. Instead, we follow the approach of [26],
who alleviate the need for fast add-with-carry instructions with
a redundant representation, where two w-bit words represent a
(w+1)-bit quantity. Algorithm 3 describes this latter approach
to FIOS.

Algorithm 3: Montgomery multiplication (FIOS method).

Input: s-word integers A,B, 2n−1 ≤ N ≤ 2n.
n′0 = −n−10 mod 2w. w is word bit length.

Output: Product P = AB2−n mod N .
P ← 0;
for i from 0 to s− 1 do

(u, v)← a0bi + p0;
t← u;
q ← vn′0 mod 2w;
(u, v)← n0q + v;
for j from 1 to s− 1 do

(u, v)← ajbi + t+ u;
t← u;
(u, v)← njq + pj + v;
pj−1 ← v;

end
(u, v)← ps + t+ u;
ps−1 ← v;
ps ← u;

end
if P ≥ N then return P −N ;
else return P ;

3) Montgomery by FIPS: The Finely Integrated Product
Scanning Method follows the alternative approach to multipli-
cation popularized by Comba [27]. Instead of going through
the multiplicands in the usual “schoolbook” fashion, FIPS’
outer loop goes through the words of the final product itself.
This results in a method with more potential parallelism (each
word of the final product can be calculated individually until
the very end), but it has the drawback of requiring more add-
with-carry instructions — consecutive sums of products do
not fit in just two words, and require a third one to house the
resulting carries.

Although FIPS is “finely integrated”, it does not result in
a tight single inner loop like the FIOS method. In fact, as
shown in Algorithm 4, FIPS has 2 outer loops, each with an
inner loop that cannot be fully unrolled, as it depends on the
current outer loop iteration. FIPS also has somewhat irregular
memory access patterns, which does not help its performance.
However, outer-loop iterations have more implicit parallelism
than operand scanning methods, which is possible to exploit in
fully unrolled implementations. This FIPS method is particu-
larly successful in DSP and ASIC chip implementations [28],
[29].



C. Exponentiation

Algorithm 4: Montgomery multiplication (FIPS method).

Input: s-word integers A,B, 2n−1 ≤ N ≤ 2n.
n′0 = −n−10 mod 2w. w is word bit length.

Output: Product P = AB2−n mod N .
(t, u, v)← 0;
for i from 0 to s− 1 do

for j from 1 to i− 1 do
(t, u, v)← (t, u, v) + ajbi−j ;
(t, u, v)← (t, u, v) + pjni−j ;

end
(t, u, v)← (t, u, v) + aib0;
pi ← vn′0 mod 2w;
(t, u, v)← (t, u, v) + pin0;
v ← u, u← t, t← 0;

end
for i from s to 2s− 1 do

for j from i− s+ 1 to s− 1 do
(t, u, v)← (t, u, v) + ajbi−j ;
(t, u, v)← (t, u, v) + pjni−j ;

end
pi−s ← v;
v ← u, u← t, t← 0;

end
ps ← v;
if P ≥ N then return P −N ;
else return P ;

Once fast modular multiplication is achieved, it is still
necessary to minimize the number of multiplications through
an efficient exponentiation algorithm. Among the choices
available, we have the classic binary exponentiation, k-ary
exponentiation and sliding window exponentiation [30, Section
2.6]. The sliding window method results in the lowest amount
of modular multiplications.

Given the low fast memory space available in the GPU, we
chose the sliding window method with a window size smaller
than recommended: the optimal size in our implementation
for 512 bits was 4 (instead of the theoretical best 5), which
requires the storage of only 8 extra numbers. The extra logic
required for the sliding window implementation is negligible
compared to the savings in modular multiplications.

D. CUDA implementation

In our implementation, we perform one entire 512-bit expo-
nentiation per thread, to maximize throughput. To maximize
the amount of registers available per thread, an initial thread
block size of 128 was considered. This, however, translated
into poor GPU occupancy. Since a thread block size of 192 is
the minimum recommended size [6], we selected this as our
thread block size, leaving us with 84 registers per thread to
work with. Later, we decreased the sliding-window size to 4
and increased the block size to 224 threads (resp. 64 registers
per thread), with slightly superior results.

__device__ void __umul32mad1(u32 a, u32 b, u32 c,
u32 &p0, u32 &p1)

{
asm("{ .reg .u64 %prod; \n\t"

".reg .u64 %sum; \n\t"
"cvt.u64.u32 %sum, %4; \n\t"
"mad.wide.u32 %prod, %2, %3, %sum; \n\t"
"cvt.u32.u64 %0, %prod; \n\t"
"shr.u64 %prod, %prod, 32; \n\t"
"cvt.u32.u64 %1, %prod; \n\t"
"} \n\t"
: "=r"(p0), "=r"(p1)
: "r"(a), "r"(b), "r"(c));

}

Figure 3. CUDA device function, using PTX assembly, for the a × b + c
operation.

To make the above algorithms fast, we had to perform
heavy loop unrolling. Loop unrolling serves two purposes:
remove the necessity of indexed accesses to words, storing
them in registers, and remove the overhead associated with
loop control flow. We performed unrolling manually, and used
inline PTX assembly whenever appropriate, i.e., to perform
32 × 32-bit wide multiplications (and respective multiply-
add instructions) and to use add-with-carry instructions not
available in the CUDA C dialect. Figure 3 depicts one of the
most important uses of inline PTX in our implementation, the
a×b+c operation, with 32 bit inputs and 64 bit output. Some
unrolled implementations were cleaner than others: FIOS was
particularly unrolling friendly, due to its simple single inner
loop. FIPS was the opposite, and required unrolling both the
inner and outer loops, which resulted in a performance penalty.

Whenever possible, we specialized the modular multiplica-
tion algorithms to the squaring case, thus saving a significant
amount of multiplications due to the symmetry of this opera-
tion. This was one of the single biggest performance boosts,
following inline PTX assembly use. Squaring adaptations of all
the methods, however, were not unrolling-friendly, requiring
full manual unrolling.

To avoid divergent threads, and following results by Walter
et al. [31], [32], we added one extra word to all algorithms.
This removes the necessity of the final conditional subtraction
in all variants of Montgomery multiplication, thus avoiding
diverging threads and possible side-channel attacks [33]. This
had no negative performance impact in our implementation;
on the contrary, it was actually slightly faster.

IV. RELATED WORK

The first GPU implementation of a public key primitive
was performed by Moss et al. [16] on an NVIDIA 7800 GTX
GPU. Moss et al. used residue number systems (RNS) to
represent large integers and performed modular exponentiation
in this representation with moderate success: a speedup factor
of 3 relative to the reference CPU was obtained when com-
puting batches of 100000 modular exponentiations. Also on
the NVIDIA 7800 GTX, Fleissner [34] implemented 192-bit
modular exponentiation. Numbers of this length, however, are



not suitable for (non-elliptic curve) public-key cryptographic
keys.

More recently, Szerwinski et al. employed the newer G80
architecture from NVIDIA and the CUDA framework to
develop efficient modular exponentiation and elliptic curve
scalar multiplication [17]. Their work, which included imple-
mentations of both Montgomery and RNS arithmetic, yielded
a throughput of up to 813 modular exponentiations per second
on an NVIDIA 8800GTS; the minimum latency for this
throughput, however, was of over 6 seconds. Harrison and
Waldron improved this figure for the special case of RSA-
1024 decryption, where they obtained a peak throughput of
5536.75 decryptions per second [10].

Elliptic curve cryptography GPU implementations have also
been studied in the literature [17], [18], [35]–[38]. The current
champion is the implementation of [36], which reports 481
million 210-bit modular multiplications per second on an
NVIDIA GTX 295.

In parallel to our work, Jang et al. [39] have announced
preliminary results in the NVIDIA Fermi architecture. They
achieved 74732 RSA-1024 decryptions per second on a GTX
580 card. They achieve this by parallel arithmetic across
threads using lazy carry propagation, a well-known strategy
in vector processors [40]–[45].

V. RESULTS AND DISCUSSION

Our performance figures were measured on an NVIDIA
GTX260 GPU. Figure 4 shows the throughput obtained when
running our exponentiation kernel on batches of increasing
amounts of 512-bit exponentiations, using each of the in-
terleaving methods described in Section III. Evidently the
performance of modular exponentiation on the GPU is highly
dependent on the amount of parallel work it receives: a single
exponentiation performed will be quite slow in comparison
with common CPUs. The FIOS method is also clearly superior
in seemingly all cases, with the CIOS method trailing behind
both FIOS and FIPS.

Figure 5 shows the observed latency of our implementation,
and compares it to a reference CPU implementation using
GMP [46] and an Intel Xeon W3565 processor. When per-
forming a single exponentiation, the GPU has an enormous
latency when compared to the CPU. The GPU quickly recov-
ers, and when performing about 1000 simultaneous exponen-
tiations, it already beats the CPU.

Despite considerably improving throughput our implemen-
tation does not suffer from added latency relatively to previous
implementations. The latency for a single exponentiation in
our implementations is 70ms; the implementation of [17] has
a minimum of 6930ms. [10] reports a latency of 218ms when
executing batches of 1024 exponentiations; when executing
batches of 1024 exponentiations, we achieve a latency of
109ms, which is maintained for batches of up to 4608 ex-
ponentiations.

Table I summarizes the results of the literature and our own
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on 512-bit modular exponentiation speed4. We scaled some of
the results as required; we assumed a perfect speedup of 8
from the 813 modular exponentiations per second of [17], and
we multiplied the 1024-bit decryption results of [10] and [39]
by 2, to have a common operation for all data points — 512-
bit modular exponentiation. The “Modexp/s (scaled)” line of
Table I scales each of the GPU results into our hardware, the
NVIDIA GTX 260, taking into account number of cores and
frequency.

Our implementation is faster than the previous ones,
i.e., [17] and [10], even when taking hardware differences into
account. Our implementation fails to outperform the recent
work of [39] by a small margin, which is easily explained
by the support of full 32 × 32 integer multiplications of the
Fermi architecture. When compared to high-end processors,

4The price information was obtained at the time of this writing from the
lowest price for each model found on the shopping search website http://www.
pricegrabber.com/.



GTS8800 [17] GTX8800 [10] GTX260 (This paper) GTX580 [39] Intel W3565 [46] AMD Phenom II 1090T [46]
Cores 112 128 192 512 4 6

Frequency (MHz) 1188 1350 1294 1544 3200 3200
Price (USD) 250 173 100 500 300 200

TDP (W) 150 155 202 244 130 125
GFLOPS 399 518 715 1581 102 153
Modexp/s 6504 11074 41426 149464 32608 77002

Modexp/s (scaled) 13052 15282 41426 46973 N/A N/A
Modexp/s/W 43 71 205 612 250 616

Modexp/s/USD 26 64 414 298 131 385

Table I
COMPARISONS OF MODULAR EXPONENTIATION PERFORMANCES ON VARIOUS CPU AND GPU IMPLEMENTATIONS.

our implementation outperforms Intel, but not AMD CPUs.
Jang et al [39] claim their implementation of RSA is

comparable to 3 hexa-core processors. They focused only,
however, on Intel CPUs. As Table I shows, AMD processors
have quite a performance advantage over Intel processors when
it comes to fast modular arithmetic. One GTX580 GPU using
the implementation in [39] is, instead, equivalent to a little
over 12 AMD K10 cores at 3.2GHz. Such 12-core chips are
already available as the AMD Opteron 6100 series [47].

Performance per watt changes the landscape considerably.
Out implementation is able to perform 205 exponentiations
per second per watt. The recent GTX 580 card packs many
more cores in the same die, while consuming only slightly
more energy; this raises its performance to nearly 3 times our
implementation, at 612 exponentiations per second per watt.
The GTX 580 is only beat in performance per watt by the
AMD processor, which has the best performance/watt ratio of
616. When it comes to performance per dollar, our numbers
surpass every other, at 414 exponentiations per second per
dollar.

It is harder to fairly compare our work with the elliptic
curve arithmetic implementation of Bernstein et al [36]. Their
article reports 481 million 210-bit modular multiplications
per second on an NVIDIA GTX295, running at the same
frequency as our GTX260 but with 2.5 times more SMs.
Scaling down, [36] is expected to obtain 194.4 million 210-
bit modular multiplications per second on a GTX260 card.
Our own implementation performs roughly 26 million 512-bit
modular multiplications per second. Adjusting by a quadratic
factor ((512/210)2) to 210-bit modular multiplications results
in 155 million modular multiplications per second. How-
ever, [36] reports that their implementation slows down by a
logarithmic factor of −2.46 as modulus bit length rises; using
this adjusting exponent, our implementation would achieve
233 million modular multiplications.

VI. CONCLUSION

In this paper we have carefully implemented the arithmetic
required for fast RSA-1024 decryption in GT200 GPUs. Our
findings were twofold: previous implementations were under-
using the full potential of G80 and GT200 GPUs, accessible
only through direct PTX assembly. We also found that CIOS,
the usual technique to interleave Montgomery multiplication

and reduction, is not optimal on the GT200. Both FIPS and
FIOS showed to be superior, and FIOS enabled us to reach
the best recorded performances in the GT200 architecture to
date.

While our GPU implementation has excellent performance,
its performance/watt ratio is lower than that of a regular
processor. In fact, no GPU implementation of RSA has been
able to beat the best CPUs in this metric. The work of
Bernstein et al [36] has been able to beat AMD processors
in performance per watt; they did so, however, when dealing
with integers of at most 300 bits, where there is much less
register and memory pressure. Thus, at this point CPUs still
offer better performance per watt for modular exponentiation.
It’s harder to assess performance per dollar, since prices are
quite volatile. As older graphics cards become increasingly
common and cheaper, however, we expect this ratio to remain
stronger for GPUs than CPUs.
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