
libboincexec: A generic virtualization approach
for the BOINC middleware

Diogo Ferreira, Filipe Araujo
CISUC

Dept. of Informatics Engineering
University of Coimbra, Portugal
{defer,filipius}@dei.uc.pt

Patricio Domingues
Research Center for Informatics and Communiations

School of Technology and Management
Polytechnic Institute of Leiria, Leiria, Portugal

patricio@estg.ipleiria.pt

Abstract—BOINC is a client-server desktop grid middleware
that has grown to power very large computational projects.
BOINC clients request computing jobs to a central server and
run them alongside other regular applications. Unfortunately,
this kind of execution causes two kinds of problems. Firstly,
developers must port their application to every single operating
system target, which usually means maintaining several differ-
ent versions of the same application. Secondly, any application
running natively on desktop grid hardware is a potential
security threat to the volunteer client.
During the course of this research we sought an efficient and
generic method for alternative execution of jobs in BOINC
clients. Our approach is strongly guided by the principles
of non-intrusiveness and contains two main components. The
first is a library, libboincexec, which is able to control several
virtual machines monitors. The second is a modified BOINC
wrapper that provides the glue between libboincexec and the
middleware.
Through the use of this solution we are able to effectively
use virtual machines to perform computation on desktop
grids. This computation is inherently safe because virtual
machines provide sandboxing. Additionally, by targeting the
same virtual operating system, the problem of maintaining
different versions of an application does not exist, thereby
solving the heterogeneity problem of desktop grid nodes.

Keywords-boinc; desktop grids; virtualization; sandboxing;

I. INTRODUCTION

The BOINC middleware [1] has been around since the
early 2000’s, to support volunteer computing projects. These
projects consist of many independent jobs that run on worker
nodes that volunteer to compute them, usually for the sake
of scientific topics related to astronomy, medicine or math-
ematics. These worker nodes install the BOINC client soft-
ware, which contacts a centralized infrastructure, the server,
in order to download computational jobs. Upon finishing
these jobs, workers upload results back to the server. This
platform grew to become very popular, with over 5 million
hosts (500,000 active), and approximately 3.6 PetaFLOPs
of computing power, more than any supercomuter as of
November 20101.

1http://boincstats.com/stats/project graph.php?pr=bo.

Unfortunately, running software on hardware donated by
volunteers involves a certain amount of risk. Although
volunteers trust that the project will cause no harm to
their hardware or data, developers may intentionally or not
produce misbehaving applications. Desktop grid appliances
such as BOINC [1] implement security to a certain degree,
based on user permissions. This approach assumes that
the client system is properly configured. Another big issue
is the need to deal with many different architectures and
heterogeneous setups.

Virtualization solves these issues by providing hardware
isolation on virtualized guests by definition [2]. Virtual
machines may also simplify application development by
allowing developers to target one operating system which
runs as a guest.

In this paper we will present libboincexec, a library which
extends BOINC with virtualization support. libboincexec
contributes with a generic plugin-based virtualization ap-
proach which improves the two important BOINC limita-
tions: client security and ortability for application devel-
opers. The work described in this paper also contributes
execution plugins for VirtualBox and VMWare.

This paper is structured as follows: In section II we
discuss related work regarding BOINC virtualization and
execution environments in general; In section III we describe
the libboincexec’s design principles and architecture; Section
IV talks about the several execution plugins we support;
Section V describes how to use libboincexec; Section VI
shows our testing of libboincexec in a simulated environ-
ment; Finally, section VII discusses the contributions and
presents future directions.

II. RELATED WORK

This section discusses other implementations of different
execution environments in grid middlewares as well as
virtualization solutions specific to BOINC.

One of the earliest implementations of provisioning ex-
ecution environments is SoftEnv2. This system configures

2http://www.mcs.anl.gov/hs/software/systems/

a specific environment according to a set of rules so it is
able to perform execution of a target application. The EGEE
middleware also contains similar technologies named pilot
jobs which prepare the machine for the execution of real jobs
[3]. EGEE also contains provisioning for virtualized worker
nodes which lay a custom execution environment based on
virtualization [4].

Several other security-related appliances provide sand-
boxed or limited environments where safe execution can take
place. Vx32 [5] and Google Native Client [6] are examples
of such environments.

On the BOINC front, Gonzales et al. [7] contributed a
method which is able to run virtualized Matlab workunits
using VMWare instances. As a derivative of this work, Ben
Segal3 provided a BOINC wrapper capable of interfacing
with VMWare for application execution. Atilla Marosi pro-
vided a BOINC client modification which is able to delegate
work to a QEMU virtual machine [8].

The solutions discussed above are tied to a specific virtual
machine monitor. Further attempts at generalization can
be found in David Quintas’ work4. This solution provides
an abstraction layer and an architecture based on message
passing and XML-RPC calls. While aiming for generality,
the solution implements only a VirtualBox-specific interface
and requires a set of heavy client-side dependencies such as
a Python interpreter and a message-passing middleware.

III. DESIGN AND ARCHITECTURE OF libboincexec

libboincexec is guided by two main design principles:
make no assumptions about the execution environment and
avoid changing the client in away that makes it backwards
incompatible.

libboincexec is a system composed of three major com-
ponents: a Plugin Manager, a number of Execution Plugins
and a Glue Application. Execution Plugins are specific to
each virtualization middleware and can handle the required
behaviours for execution inside a virtual machine. The
Plugin Manager handles the detection of Execution Plugins
and is responsible for exposing an interface that abstracts
the underlying virtual machine to applications which want
to use libboincexec. A Glue Application calls the interface
provided by the Plugin Manager and exposes its function-
ality to another system such as BOINC. The first two are
described in detail in the following subsections while the
Glue Application for BOINC is discussed in Section III-C.

A. Plugin Manager

The Plugin Manager plays a key role in libboincexec’s
functionality. It is the component that allows applications
such as the BOINC client to use the exposed virtualization
functionality.

3http://boinc.berkeley.edu/track/wiki/VmApps
4http://boinc.berkeley.edu/track/wiki/VirtualBox

Since this component must be distributed to clients along
with applications, either as a separate library or as a statically
linked component, great care was taken to make it portable
across many different operating systems and platforms.
Ideally, this component was to conform to ISO C++ as
a means to attain cross-platform compatibility. We are,
however, dealing with loading software modules in runtime
and operating system specific calls cannot be avoided. Thus,
we brought in a dependency on libltdl5, a lightweight library
which is able to load software modules in various operating
systems. This dependency can be avoided in the future by
having several implementations of this routine and pick the
one we need at compile time.

The Plugin Manager acts as a broker between glue appli-
cations and execution plugins. Its core functionality involves
scanning for available plugins and loading or unloading them
on demand. The functionality exported by the plugin can
then be used by applications that request it. Communication
with glue applications follows the plugin interface described
in the following section.

B. Execution Plugins

Execution Plugins are loadable modules which are able to
manipulate the execution of a BOINC application inside a
virtual machine. Plugins must implement a common abstract
interface that is known both to glue applications and to
the plugin manager. This interface is designed to hide the
virtual-machine specific parts behind an abstract interface so
that it can be treated as a blackbox.

The plugin interface is composed of five functions:
getMetaData: Returns a metadata object filled with
plugin information – name, description and config-
uration options.
prepareForWork: Prepares the target virtual ma-
chine to accept running executables – starts the
virtual machine and waits for its ready state.
copyFile: Provides features to copy files back and
forth between host and guest.
runCommand: Runs a command inside the virtual
machine.
performCheckpoint: Checkpoints the virtual ma-
chine.

The above interface is implemented using a C++ class
with pure virtual methods. In order for the unit to be com-
piled, all pure virtuals must be implemented, assuring that
the module can be loaded by the Plugin Manager. Plugins
are also written in C++, with a possibility of expansion to
other languages being work in progress.

Using this interface we have implemented three fully
functional execution plugins: Local, VMWare and Virtual-
Box. These plugins are described in detail in Section IV.

5http://www.gnu.org/software/libtool/manual/html node/Using-
libltdl.html

C. Glue Applications

As mentioned above, a Glue Application sits between
libboincexec and a final application that uses it, such as the
BOINC client, and calls it as needed in order to perform
execution.

For BOINC integration are two available options. The
first is replacing the fork/exec approach used by BOINC
by the corresponding libboincexec functionality. The second
is using a BOINC wrapper. A wrapper is an application that
facilitates the execution of applications that do not conform
to the BOINC API. While initially used for backwards com-
patibility with legacy applications, the wrapper has found
new uses in state of the art virtualization mechanisms for
BOINC. The wrapper is a thin application that implements
the BOINC API but delegates computation to a third party
application. In the context of virtualization, the wrapper can
be used to delegate computation to libboincexec.

Changing the BOINC client is the cleanest and most
straightforward alternative. If this were to happen, devel-
opers would be able to write third-party plugins for the
BOINC client which suited their needs. While this change
would not bring fundamental changes to the high-level
BOINC architecture, it requires several changes to the core
client and execution workflow. As stated above, BOINC is
massively deployed and these changes would be likely to
break compatibility with older clients.

By using a wrapper, changing the client can be totally
avoided since all necessary functionality can be implemented
as a third party application. As such, we developed a lib-
boincexec wrapper which delegates BOINC execution calls
into libboincexec, allowing applications to be executed using
any Execution Plugin thereby supporting as many virtual
machine targets as libboincexec does.

IV. IMPLEMENTED PLUGINS

A. Local

The purpose of the local plugin is to run an application
directly in the host machine. This plugin serves two pur-
poses: show that libboincexec can be used for any execution
environment, not only virtualization, and provide an initial
test subject for the remaining components.

This straightforward plugin implements the functions de-
scribed above by copying files back and forth to a folder
in the host system and by performing execution using
operating-system dependant calls (such as CreateProcess on
Windows or fork/exec on POSIX-compliant systems).

In the future this plugin might be used as a fallback if
all others fail which can be useful when no virtual machine
hypervisors are present in the client system.

B. VMWare

VMWare was the first virtualization plugin we imple-
mented. This is due to the fact that it possesses a feature-

rich controller library named VIX6. This API provides
several features, the most interesting being: start/stop/pause
the virtual machine, copy files back and forth, execute
a command. These functions map almost directly to our
abstract plugin interface. Due to the completeness of this
API, we managed to quickly create a plugin that exposes
VMWare functionality and enables execution in the BOINC
middleware while using a cross-compatible, portable API
provided by the virtual machine vendor.

This plugin is able to control several VMWare appliances
such as Player, Server and Workstation.

C. VirtualBox

While VMWare provides solid functionality and API
support, we decided to work on a second plugin because
the usage of VMWare brings several licensing issues when
distributing or automatically installing their software or API
packages. Another technical aspect is that most of the virtu-
alization monitors, such as VirtualBox, do not provision for
file copying or execution inside their guest virtual machines.

In order to implement the interface we defined above we
started by adding support to prepare the virtual machine
environment for execution. This task was performed by
writing a wrapping a set of functions around VBoxManage,
a command line tool that controls this hypervisor.

For file copying and execution, however, a more elaborate
solution was needed. Other BOINC virtualization imple-
mentations use custom-written backdoor daemons inside the
virtual machine which provide an interface for file copying
and execution.

After considering the alternatives, we decided to im-
plement these functions over SSH. SSH, the Secure-Shell
Protocol describes a way of accessing remote shells in a safe,
encrypted way. It also supports file copying via the Secure-
Copy extension. The major advantage is that only a standard
SSH server such as OpenSSH or Dropbear is needed inside
the guest virtual machine and a small SSH client library
(which can be distributed through BOINC) in the client.
Using SSH to copy files over might cause a slight overhead
due to its encrypted channel. In the future, these file copying
operations can be modified to use simpler protocols such as
FTP. We implemented SSH support independently from this
plugin so it can be reused by other plugins if there are no
standard copying and execution primitives available.

V. USING LIBBOINCEXEC

In order to use libboincexec with BOINC for virtualization
purposes we need three things: An application compiled
for the target operating system in the virtual machine; A
supported virtual machine in the users’ computers; A job
configuration file.

Since libboincexec and the modified wrapper implement
the BOINC API, applications running using this system do

6http://www.vmware.com/support/developer/vix-api/

<j o b d e s c>
< t a s k>

<a p p l i c a t i o n>worker< / a p p l i c a t i o n>
< i n n e r j o b>p a i r s< / i n n e r j o b>
<vm>ubuntu−vbx< / vm>
<u s e r>vmuser< / u s e r>
<password>vmpassword< / password>
<d a t a d i r> / home / vmuser< / d a t a d i r>
<d a t a>f . i n< / d a t a>
<o u t p u t>f . o u t< / o u t p u t>

< / t a s k>
< / j o b d e s c>

Figure 1. Sample job description file for the modified wrapper

not need to make BOINC-specific calls. Any application that
takes input files, executes and outputs to a set of files works
unmodified. At the moment libboincexec does not deal
with virtual machine deployment and as such projects must
coordinate with users in order to fulfill this requirement.

The final requirement is a simple job configuration file
which describes computation, it contains the same entries
as a regular BOINC job configuration file with some addi-
tions: innerjob: Specifies the binary that contains the actual
application to be run inside the virtual machine; vm: The
virtual machine image that should be started; user/password:
Credentials for authentication in the guest operating system;
data: Input files and libraries that need to be copied to
the guest; output: One or several expected output files. An
example of this configuration file is shown in Figure 1.

The developer can then add our modified BOINC wrapper
as a BOINC application and setup the job description,
innerjob as input files, in addition to the regular input files.
This will make BOINC download all the required data for
execution. When the client requests a unit of work, it will
receive all the associated files and start the wrapper, which
will trigger the virtual environment and produce output files
which can then be sent back to the server.

VI. TESTS

In order to measure how the usage of libboincexec affects
computation of BOINC tasks, we prepared a simulated
testing environment and performed a set of tests on all the
execution plugins we implemented. The following subsec-
tions detail the experiment, we will start by describing the
infrastructure and application, then client configurations, the
application, the methodology and then present results and
analysis.

Our goal with these tests is to measure the effects of
libboincexec on computation. This comparison focus more
on libboincexec than on the performance internals of each
virtualization middleware. There are, however, other studies

that focus on the performance of virtual machine monitors
[9].

A. Infrastructure and Application

The BOINC middleware was installed in a server feature
a Core 2 Quad Processor running at 2.66GHz and 4GiB
of RAM. The operating system of choice was a Linux
distribution, Debian 4.0. We configured a standard BOINC
deployment with the Apache HTTP server and MySQL.

We decided to use one of the BOINC samples as a can-
didate for testing since they are simple, tested applications
that make use of BOINC’s functionality. The application
we picked was uppercase. This application performs the
trivial task of uppercasing each character in the input file.
In order to mimic long execution, this application does each
computation several times and adds delays so that each
execution lasts an average of 13 seconds on our test client.

The application was compiled as a native BOINC exe-
cutable. Another version, stripped of BOINC’s API calls,
was prepared in order to test each execution plugin in
libboincexec. We added both versions of the application to
the project and added several sample workunits for initial
functionality testing.

B. Client

For this testing environment, our client was a Core 2 Duo
processor running at 2.4GHz and featuring 2GiB of RAM.
This client also ran a Linux distribution and a standard
BOINC client.

The BOINC client was configured to use both cores
at all times, thereby discarding the default opportunistic
behaviour. This way it will never stop even if there is some
user interaction or CPU spike caused by other applications.

C. Methodology

We defined a test as a pack of 100 workunits for the
uppercase application. This pack takes long enough for
evaluation of metrics like error rates and differences between
vanilla BOINC execution and execution via libboincexec.
The testing procedure is divided in three phases:

• Collect a timestamp and start the client.
• Wait for the client to finish computation.
• Collect a time stamp and error rates from the server.

Each test was conducted five times in the following
scenarions:

1) Default BOINC execution.
2) BOINC with libboincexec using the Local plugin.
3) BOINC with libboincexec using the VMWare plugin.
4) BOINC with libboincexec using the VirtualBox plu-

gin.

Test R1(s) R2(s) R3(s) R4(s) R5(s) AVG(s) STDEV(s) ERR(%)
1 1723 1691 1630 1725 1658 1685.4 33.7 0
2 1758 1650 1687 1972 1913 1704 34.08 0
3 1901 1863 1896 1972 1913 1882 37.64 0
4 1928 1901 1930 1977 1987 1914.5 38.29 0

Table I
TEST RESULTS FOR THE DIFFERENT SCENARIOS

D. Results and Analysis

Table I shows the results for each of the five runs of batch
tests, averaged values and accumulated error rates.

When using the Local plugin, BOINC shows a run time
which is very close to execution without libboincexec.
Since the Local plugin uses the same fork/exec approach
as the default BOINC execution, these results show that
libboincexec’s plugin manager and wrapper do not introduce
noticeable overhead.

When dealing with the virtual machine plugins, the over-
head becomes noticeable as expected, plugins perform more
work and have to wait longer times in order to transport
files back and forth and start and stop the virtual machines.
This additional work introduces some overhead. Apart from
startup procedures, the fact that computation is being vir-
tualized also increases run time. BOINC with the VMWare
plugin shows a computation time 11% bigger than standard
BOINC, in average.Interestingly, this overhead is similar to
the one measured in other contributions [9].

BOINC with the VirtualBox plugin also shows similar
overhead in computation time, but slightly bigger. As before,
other studies confirm that VirtualBox is slightly slower than
VMWare for CPU-intensive operations.

An interesting observation is that no errors occurred
during computation. Usually, BOINC projects will have
several errors as they grow since they cannot predict the
availability of volunteer machines. In our test the client is
always available in a dedicated fashion. The fact that they
share the same local network also reduces the probability of
network failure stalling the client and causing errors.

These tests are very close to what we expected and
show that for this workload, libboincexec by itself does
not introduce a significant overhead in the total computa-
tion time. Its plugins, however, might introduce additional
expected overhead in virtual machines due to their inherent
implementation.

VII. CONCLUSIONS AND FUTURE WORK

This paper discusses a library capable of controlling and
running BOINC applications inside virtual machines. This
library adds security by sandboxing and may also simplify
deployment for project managers and developers who would
otherwise have to deal with numerous target operating sys-
tems. Through careful study of the design and architecture
of BOINC we managed to integrate our library using a

Wrapper, thus leaving the BOINC infrastructure unmodified.
By making no changes to the client we guarantee backwards-
compatibility.

We discussed other implementations of virtualization
above. libboincexec is different in the sense that no assump-
tion is made on the virtual machine monitor. One of the key
points is also being lightweight, written in the same language
as BOINC and dragging no outstanding dependencies to
the BOINC environment. Our implementation of an SSH
connector also contributes an easy way to interface with
API-lacking virtual machine hypervisors. Finally, we con-
tributed execution of plugins for VMWare and VirtualBox.
This plugin architecture allows transparent execution using
any plugin and BOINC applications are able to run using
any available plugin.

There are, however, some challenges and issues that may
be tackled in the future, namely the deployment of virtual
machine monitors throughout clients. As far as we know, this
is impossible without user intervention, a possible solution
would be to install this middleware during the BOINC client
installation. The plugin collection can also be enriched with
other virtualization middlewares.

ACKNOWLEDGMENT

This work has been partially supported by the project
PTDC/EIA-EIA/102212/2008, High-Performance Comput-
ing over the Large-Scale Internet.

REFERENCES

[1] D. P. Anderson, “Boinc: A system for public-resource com-
puting and storage,” in GRID ’04: Proceedings of the
5th IEEE/ACM International Workshop on Grid Computing.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 4–
10.

[2] G. J. Popek and R. P. Goldberg, “Formal requirements for
virtualizable third generation architectures,” Commun. ACM,
vol. 17, no. 7, pp. 412–421, 1974.

[3] “Egee middleware architecture,” pp. 1–95, 2005. [Online].
Available: http://www.nsc.liu.se/ngssc-grid-05/glite-nixon.pdf

[4] S. Childs, B. Coghlan, and J. McCandless, “Dynamic virtual
worker nodes in a production grid,” in Frontiers of High Perfor-
mance Computing and Networking ISPA 2006 Workshops, ser.
Lecture Notes in Computer Science, G. Min, B. Di Martino,
L. Yang, M. Guo, and G. Ruenger, Eds. Springer Berlin /
Heidelberg, 2006, vol. 4331, pp. 417–426.

[5] B. Ford and R. Cox, “Vx32: Lightweight userlevel sandboxing
on the x86,” in In Proceedings of the USENIX Annual Techni-
cal Conference, 2008.

[6] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar,
“Native client: A sandbox for portable, untrusted x86
native code,” August 2009, pp. 79–93. [Online]. Available:
http://dx.doi.org/10.1109/SP.2009.25

[7] D. L. na González, F. F. de Vega, L. Trujillo, G. Olague,
and B. Segal, “Customizable execution environments with
virtual desktop grid computing,” in Parallel and Distributed
Computing and Systems, PDCS, Porto, Portugal, 2007.

[8] A. Csaba Marosi, P. Kacsuk, G. Fedak, and O. Lodygensky,
“Using virtual machines in desktop grid clients for
application sandboxing,” Institute on Architectural Issues:
Scalability, Dependability, Adaptability, CoreGRID - Network
of Excellence, Tech. Rep. TR-0140, August 2008.
[Online]. Available: http://www.coregrid.net/mambo/images/
stories/TechnicalReports/tr-0140.pdf

[9] P. Domingues, F. Araujo, and L. Silva, “Evaluating the per-
formance and intrusiveness of virtual machines for desktop
grid computing,” in IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 1–
8.

