
A Framework for Classifying and Comparing Software 

Architecture Tools for Quality Evaluation 

Eudisley Anjos, Mário Zenha-Rela 
 

CISUC, Centre for Informatics and Systems 

University of Coimbra, Portugal  

{eudis,mzrela}@dei.uc.pt 

Abstract: Software quality is a crucial factor for system success. Several tools 

have been proposed to support the evaluation and comparison of software 

architecture designs. However, the diversity in focus, approaches, interfaces 

and results leaves the researcher and practitioner wondering what would be the 

most appropriate solution for their specific goals. This paper presents a 

comparison framework that identifies the most relevant features for 

categorizing different architecture evaluation tools according to six different 

dimensions. The results show the attributes that a comprehensive tool should 

support include: the ability to handle multiple modelling approaches, 

integration with the industry standard UML or specific ADL, support for trade-

off analysis of competing quality attributes and, the reuse of knowledge through 

the build-up of new architectural patterns. This comparison is able to, not only 

guide the choice of evaluation, but also promote the development of more 

powerful tools for modeling and analysis of software architectures. 

 

Keywords: software quality challenges; trends for achieving quality objectives; 

architecture evaluation process; software architecture; Affidavit.  

1. Introduction 

In the last years we have witnessed a growing interest in software architecture design 

driven by the unavoidable need to apply it in the development of large and complex 

software systems [1], [2]. The design of Software Architecture (SwA) is one of the 

earliest stages of system development. Ensuring that all requirements are fulfilled 

leads to a better implementation of the system [3]. However, ensuring the correctness 

of software architecture is not simple. Several tools and methods have been proposed 

to help the architects design and evaluate the system requirements right from an early 

architecture model. 

System requirements are collected from stakeholders (e.g. end-users, management, 

marketing, third-parties, and developers) and include functional and nonfunctional 

attributes. Functional requirements typically describe the anticipated behavior of a 

solution or solution components, and a huge body of knowledge and literature on how 

to collect, model, evaluate and verify them exist [4], [5]. Non-functional attributes, on 

the other hand describe properties of the system e.g. maintainability, usability, 

usability, efficiency, portability and reliability, etc [6]. There is no consensus about a 



 

 

standard methodology on how to assess quality in SwA, and the lack of a common 

taxonomy (despite the IEEE std. 1061-1998) also constrains the development of 

widespread evaluation methods and tools. Moreover, architects can define specific 

attributes based on their context, which implies that the supporting methodologies are 

abstract enough to fit into their specific architecture design. So, the architect is 

expected to understand the requirements of stakeholders, assess the quality attributes, 

and choose the best evaluation method and tool to fit in the design process. 

There are several methods in literature to evaluate software architecture quality 

namely: SAAM, Software Architecture Analysis Method [1], [7], with a focus on 

modifiability; ATAM, Architecture Trade-off Analysis Method [1], [8], mainly used 

to modifiability but also applied to other quality attributes evaluation and trade-off 

verification; ARID, Active Reviews for Intermediate Design [9], CBAM, Cost 

Benefits Analysis Method [10], FAAM, Family Architecture Assessment Method 

[11]. Most of these methodologies describe a set of steps that should be followed in 

order to check and evaluate the quality of the architectural design.  

There are an increasing number of alternative approaches all of which make the 

architect’s choice more difficult. Some researchers have proposed a taxonomy 

framework to classify and compare software architecture evaluation techniques, 

selecting key features of each methodology to categorize them. In [12] is proposed a 

framework to compare and assess eight SA evaluation methods (most of the scenario-

based) and demonstrate the use of the framework to discover the similarities and 

differences among these methods. In [13] the authors describe the main activities in 

model checking techniques defining a classification and comparison framework and, 

in [14], the focus is on evaluation of ten models to assess performance, 

maintainability, testability and portability. These works mentioned before focus 

essentially on model checking, simulation-based or scenario-based approaches.  

The architect can use evaluation tools (such as the tools evaluated in section 4 

below) to support the application of methods, reducing the time spent on analysis and 

improving the results of the evaluation process. These tools perform different types of 

evaluation depending on the method used and which design features are the focus of 

assessment. Many architecture evaluation tools have been proposed but most of them 

are limited to a specific purpose (e.g. for deployment only) or propose a generic 

approach but developing only a subset of functionalities for demonstration purposes. 

Still, there is a lack of knowledge about what the relevant features should be 

addressed (e.g. description language used by the tool, quality parameters assessed, 

evaluation method, etc.). This makes difficult to choose the tool that best suits the 

architectural design process. 

Some researchers have tried to assess architecture tools based on the evaluation 

techniques adopted and comparing them across different tools. However, little work 

has been done to classify and compare evaluation tools from a generic perspective, 

describing the main characteristics and assisting the perception of which are the 

relevant features these tools should provide.  

The purpose of this paper is to present a comparison framework that enlights the 

most relevant attributes to help categorize the different architecture evaluation tools. 

We think this goal is relevant to the researchers and practitioners in the area as there 

is a growing number of methods and tools and it is easy to get overwhelmed by the 

seemingly diversity of options, such as ArchKriti [15],  used to support crucial steps 



in architecture-based software development and, Attribute Driven Design method 

(ADD) [16], used to design software architecture of a system or collection of systems 

based on an explicit articulation of the quality attribute goals for the system. 

Moreover, since we are involved in a major international effort (EU/USA) to build a 

comprehensive architectural development support tool (AFFIDAVIT) [17], it is relevant 

to organize the current approaches to identify their major strengths and learn from 

their weaknesses. We do think that proper tools based on sound methodologies will 

bring us closer to the widespread adoption of tools that support architectural design, 

thus leading to an increase in the quality of software. 

The reminder of the paper is organized as follows. In section 2 we present the 

fundamental role of quality attributes in the definition of software architecture and in 

section 3 the current software architecture evaluation categories. In the following 

section we discuss the selected architecture evaluation tools and which attributes were 

considered most relevant. In section 5 we compare the selected tools according to the 

identified relevant attributes and present the major insights and the current work on 

the Affidavit tool. Section 6 closes the paper by presenting some future work. 

2. Quality Attributes and Software Architecture 

The non-functional requirements of a Software Architecture play a key role in terms 

of the specifying the design patterns and deployment architectures of the solution 

being built [18]. For example, poor network connectivity will dictate requirements in 

terms of a centralized vs. decentralized deployment, requirements for resilience may 

dictate a requirement for clustered hardware, etc. To implement these architectural 

decisions and thus to design the whole architecture it is essential that the architect 

knows its most relevant quality attributes (e.g. modifiability, performance, security, 

availability.). 

It is significant to consider that the two most important sources of quality attributes 

and requirements are the stakeholder’s needs and the application domain [19], [20]. 

The architect needs to have a good understanding of these sources and their influence 

on the system to model the correct architecture to support the requirements. However, 

depending on the type of software and its context, different kinds of systems have 

different relevant quality attributes. In a complex long-lived application such as data-

mining and network analysis, maintainability might be the most significant quality 

attribute while in a real-time sophisticated network, performance may drive most of 

the architectural decisions 

It is necessary to ensure the fulfillment of the quality parameters, although they are 

contradictory quite often (e.g. security versus usability, performance versus 

maintainability) [21]. According to Barbacci [22] designers need to analyze trade-offs 

among multiple conflicting attributes to attend the user requirements. The goal is to 

evaluate the interrelationships among quality attributes to get a better overall system 

(the best compromise for a given context). In order to help this kind of analysis, most 

of the evaluation methods include some sort of trade-off analysis. 

So, evaluating the quality of a software architecture is a critical step to ensure that 

the software meets its design objectives in a reliable and predictable fashion. However 

the architect needs support to perform this activity. It is almost impossible for an 



 

 

architect validate manually the whole system model, verifying if the required quality 

attributes are effectively supported by the architecture and assuring that there are no 

conflicts between them. That is why the adoption of several methods, tools and ADLs 

are fundamental to help the architect in designing, specification and analysis of SwA. 

3. Architecture Evaluation Methods 

Any serious software architecture evaluation process needs to consider and categorize 

several different architectural aspects of the system’s requirements (e.g. kind of 

requirements, architectural description, etc.). Depending on how these aspects are 

addressed by the evaluation methods, it is possible to identify different evaluation 

methods categories. Regardless of category, the evaluation methods can be used in 

isolation, but it is also possible and common to combine different methods to improve 

the insight and confidence in the architectural solution to evaluate different aspects of 

the software architecture, if needed. After deciding for a specific evaluation method, 

the architect has to select the Architecture Description Language (ADL), tool and the 

best suited technique to her or his specific project. 

In this work is adopted the architecture evaluation methods’ categorization carried 

in [14] and [23]. The authors consider four evaluation categories: scenario-based, 

formal-modeling, experience-based and simulation based. Other authors (e.g.  [13]), 

use model-checking to address techniques which verify whether architectural 

specifications conform to the expected properties. Since in this paper we consider that 

all presented categories are used to in assess the architectural model, model-checking 

is not inserted as a different evaluation category.  

Below we present a brief characterization of each category: 

• Scenario-Based: Methods in this category use operational scenarios that 

describe the requirements to evaluate the system quality. The scenarios are 

used to validate the software architecture using architectural tactics and the 

results are documented for later analysis including system evolution, 

maintenance and the creation of a product line. There are several scenario-

based evaluation methods namely SAAM [1], [7], ATAM [1], [8], CBAM 

[10], FAAM [11].  

• Formal-Modeling: Uses mathematical proofs for evaluating the quality 

attributes. The main focus of this category is the evaluation of operational 

parameters such as performance. An example of formal-modeling is NOAM 

(Net-based and Object-based Architectural Model) [24]. Usually, the use of 

formal-modeling and simulation-based methods can be joined to estimate the 

fulfillment of specific qualities. 

• Experience-based: The methods in this category use previous experience of 

architects and stakeholders to evaluate the software architecture [25]. The 

knowledge obtained of previous evaluations is maintained as successful 

examples to design new similar solutions and drive further architecture 

refinements. 

• Simulation-based: Uses architectural component implementations to 

simulate the system requirements and evaluate the quality attributes. The 

methods in this category can be combined with prototyping to validate the 



architecture in the same environment of the final system. Examples include 

LQN[26] and RAPIDE [27]. 

It is important to notice that the evaluation categories are not directly linked to the 

evaluation tools. They specify how to apply the theory behind the tools and 

commonly define steps to assess the SwA quality. Some tools support different 

methods to get a better insight. In fact, very few ADLs, like Aesop [28], Unicon [29] 

and ACME [30], provide support for different evaluation processes. They are closely 

serving as an evaluation tool themselves and assist in modeling specific concepts of 

architectural patterns, although unfortunately in most cases these are applicable to 

restricted purposes only.  

4. Architecture Evaluation Tools 

The diversity of techniques focusing on restricted contexts and attributes turns the 

selection of an architectural method into a complex task. Architects typically need to 

adapt several models and languages depending on the attributes they want to evaluate. 

Thus, it is necessary to know different description languages, scenarios specification, 

simulation process, application contexts and others method’s features to make the best 

choice and perform the intended evaluation process. While generic tools do not 

become widespread, we have observed that architects tend to adopt the methods, tools 

and ADL that they have previously been in contact with. 

Many evaluation methods (e.g. ATAM), describe a sequence of manual activities 

that the architect should perform to identify the main issues concerning quality 

assessment. Based on these descriptions or instructions, software tools are used to 

automate only parts of the evaluation process, such as: architectural scenario 

definition, analysis of architectural components relationships and others. Automating 

the whole validation of architectural quality requires the mediation of the architect to 

tailor the model according to the requirements and to solve errors and conflicts 

detected by the tools. 

ADLs also evolved and new features were assembled to aid the architect. 

According to [31] the tools provided by an ADL are the canonical components 

(referred also as ADL toolkit [32]). Among these components we can mention active 

specification, a tool that guides the architect or even suggests wrong behaviors in the 

design and, architectural analysis, which is the evaluation of the system properties 

detecting errors in the architectural phase and reducing costs of corrections during the 

development process. We have take into account that most tools have requirements 

that hamper the use of ADL already known by the architect, forcing the learning of 

new architecture description languages or requiring design the model directly at the 

interface of the tool.  

Many characteristics have to be managed and balanced by the architect, thus 

selecting the best tool is not a simple task. Sometimes, it is necessary that the architect 

knows how the tool works to decide whether is useful in a specific project. The 

system requirements guide the architect about the type of tool to be used but still lack 

of specific information about methods and features or this information is dispersed, 

preventing a sound and informed a-priori evaluation by the architect. 



 

 

There are few studies to assist the architect in the selection of the best tool to 

support the architectural quality evaluation. In [33] for example, the authors compare 

different knowledge management tools to understand SwA knowledge engineering 

and future research trends in this field. The knowledge about how to assess a 

particular kind of system requires that the architect knows what characteristics the 

tool should have.  

In this paper we present a survey of different types of architecture evaluation tools 

and classify them according to the six dimensions presented in Table 1 below. The 

goal is to identify significant dimensions to analyze the applicability of an evaluation 

tool in a particular context to a specific goal. 

Table 1.  Dimensions used for the evaluation of tools. 

Feature Description 

Method The evaluation method used. One tool can support several 

methods. 

ADL 
Assess if the tool has its own ADL, use another know ADL or 

if the architect must describe the architecture manually using 

the tool interface. 
Qualities Indicate which quality attributes are covered by the tool.  

Trade-off 
The ability of the tool to understand and measure the trade-offs 

between two or more quality attributes. 

Stakeholders 
Indicate if the tool supports the participation of stakeholders 

during the architecture evaluation or somewhere during the 

architecture design.  

Knowledge 
Evaluate if the tool preserves the knowledge (e.g. architectural 

patterns) since the last architectural evaluation for performing 

new designs. 

5. Assessment of tools 

During this work we carried out an extensive survey and analysis of the literature to 

identify the most relevant tools and understand their focus. Afterward we selected five 

tools as being more representative and identified six dimensions to present what we 

think is the essence of the current results. In this section is presented an assessment of 

these tools using the selected dimensions.  

We tried to cover the different methods of evaluation supported by the selected 

tools. However, it is important to understand that several tools use multiple methods 

to achieve the proposed objectives. This is especially true when the tool is more 

generic and supports different techniques according to the attribute which is under 

evaluation. The tools selected as most relevant due to their maturity and impact in the 

literature (most are based on research work, even if used in industry) are ArchE 

design assistant [34], Architecture Evaluation Tool (AET) [35], Acme Simulator [36], 

ArcheOpterix [37] and DeSi [38]. We shall now present a brief description of each 

tool, as well as a table summarizing their profile according with the dimensions 

selected.  



5.1. ArchE Design Assistant 

This tool is an Eclipse plug-in that manages reasoning frameworks (RF) to evaluate 

software architectures. The evaluation models are the knowledge sources and the 

Architecture Expert (ArchE) baseline tool manages their interaction. A relevant point 

of this assistant is that a researcher can concentrate on the modeling and 

implementation of a reasoning framework for the quality attribute of interest. The tool 

has no semantic knowledge and consequently supports any reasoning framework. So, 

ArchE is an assistant to explore quality-driven architecture solutions. 

The ArchE receives from each RF a manifesto. The manifesto is a XML file that 

lists the element types, scenarios and structural information handled by the reasoning 

framework. In ArchE many actors collaborate to produce the solution of a problem. In 

this case, the actors are the RF and every other actor can read information provided by 

other RFs. This communication can produce new information useful to some of them.  

The flexibility of ArchE is its major strength but also its major weakness: 

researchers and practitioners are able/forced to develop or adapt their own quality-

attribute model if not already supported. An input conversion for non supported ADLs 

might also be necessary.   

As the ArchE authors state: 

 “ArchE is not intended to perform an exhaustive or optimal search in the design 

space; rather, it is an assistant to the architect that can point out “good directions” 

in that space.”   

Note that ArchE is most useful during the assessment phase of architectural 

development. 

Table 2. Dimensions evaluated for ArchE 

Dimensions ArchE behaviour  

Method This tool uses scenarios-based method but each RF can 

have its own evaluation method. 

ADL There is no specific ADL linked with this tool, only the 

XML file used as manifesto. 

Qualities All quality attributes can be evaluated, depending 

which RF is used  

Trade-Off The trade-off among different RFs uses a 'traffic-light' 

metaphor to indicate potential scenario improvements 

when applying different tactics. 

Stakeholders It is an architect-focused tool; other stakeholders are 

only involved when scenarios are identified. 

Knowledge ArchE does not build knowledge from past evaluation 

(architectural patterns) to apply in new projects. 

5.2.Architecture Evaluation Tool (AET) 

AET is a research tool developed at BOSCH to support the evaluation team in 

documenting results and managing information during an architecture review. AET 

has two databases to assist the architect with the information management: General, 

(i.e. static data) and Project (i.e. dynamic data) databases. This tool is present during 



 

 

the gathering of quality attributes information and architectural scenarios. So, the 

information obtained from stakeholders is stored in AET databases. The information 

is used in the current project and storage in the general database for new architectural 

projects. Although this tool was initially developed to evaluate performance and 

security, the project is still under development to include more attributes. This tool is 

focused in the initial phases of requirements gathering and quality attributes trade-off 

analysis. 

 

Table 3.  Dimensions evaluated for AET. 

Dimensions AET behaviour  

Method This tool use scenarios as main method for evaluation. 

It uses both dynamic and static (experience-based) 

evaluation types. 

ADL There is no ADL linked with this tool. The data is 

inserted directly using the tool interface. 

Qualities All quality attributes can be evaluated as it is a mostly 

manual processing.     

Trade-Off The trade-off is performed based on the data 

introduced by the architect and stakeholders during the 

achievement of quality attributes and scenarios. The 

tool combines this information to guide the architect 

showing the risks and the impact of changes.  

Stakeholders In the initial steps of data gathering, the tool requires 

that stakeholders participate to fill the quality 

requirements (scenarios). 

Knowledge The knowledge (experience repository) is stored in 

database as input to new evaluations. 

 

5.3.Acme Simulator 

This tool is an extension of AcmeStudio (a plug-in of the Eclipse Framework) and 

uses its existing features for defining architectural models. Also provides specific 

architectural styles to specify relevant properties and topology to the kind of analysis.  

The Acme simulator as originally developed provides security and performance 

analysis using Monte Carlo simulation to evaluate the properties under certain 

assumptions about their stochastic behaviour. Since the simulator is written in 

AcmeStudio framework, the Eclipse allows flexible extensions and the tool uses 

Acme as design ADL to model the software architectures. This tool is clearly focused 

on architectural assessment. 

5.4.ArcheOpterix 

This tool provides a framework to implement evaluation techniques and optimization 

heuristics for AADL (Architecture Analysis and Description Language) based 

specifications. The algorithms should follow the principle of model-driven 



engineering, allowing reason about quality attributes based on an abstract architecture 

model. The focus of ArcheOpterix is embedded and pervasive systems.  

The quality evaluation is represented using AttributeEvaluator modules that 

implements an evaluation method and provides metrics for a given architecture. This 

tool can evaluate all quality attributes as long as there are suitable evaluation 

algorithms. The two initial attribute evaluators use mathematical methods to measure 

the goodness of a given deployment, data transmission reliability and communication 

overhead. Thus, this tool was classified as formal, although the AttributeEvaluator 

may use different methods. 

Table 4.  Dimensions evaluated for Acme Simulator 

Dimensions Acme Simulator behaviour  

Method Essentially a Monte-Carlo simulation using 

specifically designed scenarios (behavior model trees) 

for evaluation. 

ADL Acme Simulator is linked with AcmeStudio and Acme 

ADL is necessary to model the architecture design 

before the evaluation. 

Qualities Initially performance and security were evaluated 

using a Monte Carlo simulation. The approach is 

general enough to be extended to other quality 

attributes.  

Trade-Off The trade-off is presented as a table; the comparison is 

realized manually with the information provided by the 

tool. The authors plan to support the comparison 

directly. 

Stakeholders The stakeholders do not participate during the use of 

this tool. 

Knowledge No knowledge is explicitly preserved to new projects. 

 

Table 5.  Dimensions evaluated for ArcheOpterix 

Dimensions ArcheOpterix behaviour  

Method Although the tool uses formal modeling to evaluate the 

attributes, the AttributeEvaluator which contains the 

algorithm can adopt other methods. 

ADL Uses the AADL standard to describe the architecture to 

be evaluated. 

Qualities All quality attributes can be evaluated as long an 

algorithm exists. Currently two quality attributes have 

been evaluated: data transmission reliability and 

communication overhead. 

Trade-Off The tool uses an architecture optimization module to 

solve multi-objective optimization problems using 

evolutionary algorithms.  

Stakeholders The stakeholders do not participate using this tool. 

Knowledge ArcheOpterix does not preserve the knowledge of 

evaluations to be used in new projects. 



 

 

5.5. DeSi 

DeSi is an environment that supports flexible and tailored specification, manipulation 

visualization and re-estimation of deployment architectures for large-scale and highly 

distributed systems. Using this tool it is possible to integrate, evaluate and compare 

different algorithms improving system availability in terms of feasibility, efficiency 

and precision.  

This tool was implemented in the Eclipse platform.  Its architecture is flexible 

enough to allow exploration to other system characteristics (e.g., security, fault-

tolerance, etc.). DeSi was inspired in tools for visualizing system deployment as UML 

improving support to specifying, visualizing and analyzing different factors that 

influence the quality of a deployment. 

Table 6.  Dimensions evaluated for DeSi. 

Dimensions DeSi behaviour  

Method Formal, DeSi uses algorithms to improve system 

availability 

ADL The data is input directly in DeSi interface and the tool 

does not use any ADL. 

Qualities Availability. Although depending on the taxonomy, 

some features could be classified as security and 

performance. Moreover, the tool allows the use of new 

algorithms to explore different attributes. 

Trade-Off There is no trade-off function. DeSi simply provides a 

benchmarking capability to compare the performance of 

various algorithms. 

Stakeholders Stakeholders participation is not present. 

Knowledge No knowledge is preserved for future evaluations. 

5.6. General overview 

In the Table 7, we assembled a summary of results for the selected tools. A rapid 

analysis provides a synthesis of the most relevant dimensions that are required to 

assess its nature, applicability and usefulness for a specific goal.  

As can be seen, although every tool claims to be devoted to architectural 

assessment their focus can be very distinct. While ArchE, AET and ArcheOpterix 

goals cover every quality attribute (depending on whether the corresponding models 

are implemented), AcmeSimulator and DeSi have a specific focus. On the other hand, 

while ArchE, AET and AcmeSimulator support human guided trade-off analysis, 

Archepterix and DeSi provide absolute assessment metrics. As such there is no ‘best’ 

tool, as it depends on the usage envised by the architect to face a specific problem in a 

specific context.  

6. Conclusions and further work 

It is difficult to classify and compare architectural assessment tools that use different 

methods and techniques. The large amount of features and attributes that can be 



questioned hampers this process and demonstrate that generic tools that can be 

tailored to the architect needs are required. The more flexibility and features available 

the more it is customizable to the specific architect needs. 

Using the assessment insight provided by our approach (Table 7) is possible not 

only improve the selection of the more appropriate tool for a specific context, but also 

serve as a powerful driver for building an advanced integrated tool to support 

architectural modeling and analysis as it shows the attributes that such a 

comprehensive tool should support. The features presented here are essentially: the 

ability to handle multiple modelling approaches, integration with the industry 

standard UML, but also specific ADL whenever needed, support of trade-off analysis 

of multiple competing quality attributes and, of utmost importance, the possibility to 

reuse knowledge through the reuse and build-up of new architectural solutions.  

This is part of our contribution to a major international effort (USA/EU) in 

developing a tool (AFFIDAVIT) to promote the widespread adoption of sound 

architectural practices in the software engineering community, consequently, aiming 

to increase global software quality. Our specific focus is on maintainability 

addressing methods to assess this attribute in software architectures, and metrics to 

assess the level of maintenance during the architectural design.  

As future work we intend to improve this analysis including with more dimensions 

(e.g. application domain, flexibility, open-source, etc.) and publish this framework on 

Web to be used by researchers and practitioners. Furthermore, in the context of our 

work, an evaluation of maintainability properties assessed by these tools should be 

done.  

Table 7.  Overview of tools according to the relevant dimensions  

 ArchE AET 
Acme 

Simulator 
ArcheOpterix DeSi Affidavit 

Method Scenarios Scenarios Simulation Formal Formal All 

ADL   �  �   �  

Q.A. All All 
Performance 

Security 
All Availability All 

Trade-off �  �  �    �  

Stakeholders  �     �  

Knowledge  �     �  

References 

[1]  P. Clements, R. Kazman, and M. Klein, Evaluating Software Architectures: Methods 

and Case Studies. Addison-Wesley Professional, 2001. 

[2]  H. Yang and D. M. Ward, Successful evolution of software systems. Artech House, 

2003. 

[3]  R. Pressman and R. Pressman, Software Engineering: A Practitioner’s Approach, 6th 

ed. McGraw-Hill Science/Engineering/Math, 2004. 

[4]  J. H. Hausmann and R. Heckel, Detection of Conflicting Functional Requirements in 

a Use Case-Driven Approach - A static analysis technique based on graph transformation, ICSE 



 

 

2002, pág. 105--115, 2002. 

[5]  H. Post, C. Sinz, F. Merz, T. Gorges, and T. Kropf, Linking Functional 

Requirements and Software Verification, in Requirements Engineering, IEEE International 

Conference on, Los Alamitos, CA, USA, 2009, pages. 295-302. 

[6]  L. Chung and J. do Prado Leite, On Non-Functional Requirements in Software 

Engineering», in Conceptual Modeling: Foundations and Applications, vol. 5600, Springer 

Berlin / Heidelberg, 2009, pages. 363-379-379. 

[7]  R. Kazman, L. Bass, G. Abowd, and M. Webb, SAAM: A Method for Analyzing the 

Properties of Software Architectures, 1994. 

[8]  M. R. Barbacci et al., Steps in an Architecture Tradeoff Analysis Method: Quality 

Attribute Models and Analysis, Software Engineering Institute, Carnegie Mellon University, 

pages. 219--230, 1998. 

[9]  P. C. Clements, Active Reviews for IntermediateDesigns. SEI: Carnegie Mellon 

University, 2000. 

[10]  M. Klein, with R. Kazman, Jai Asundi, Quantifying the costs and benefits of 

architectural decisions, in Software Engineering, 2001. ICSE 2001. Proceedings of the 23rd 

International Conference on, 2001, pages. 297-306. 

[11]  Dolan, Wortmann and Hammer, and , Technische Universiteit Eindhoven, 

Architecture assessment of information-system families : a practical perspective», Technische 

Universiteit Eindhoven, 2001. 

[12]  M. A. Babar, L. Zhu, and R. Jeffery, A Framework for Classifying and Comparing 

Software Architecture Evaluation, In: Proceedings Australian Software Engineering 

Conference (ASWEC). vol. 2004, pages. 309--318, 2004. 

[13]  P. Zhang, H. Muccini, and B. Li, A classification and comparison of model checking 

software architecture techniques, Journal of Systems and Software, vol. 83, nº. 5, pages. 723-

744, May. 2010. 

[14]  M. Mattsson, H. Grahn, and F. Mårtensson, Software Architecture Evaluation 

Methods for Performance, Maintainability, Testability, and Portability, presented at the Second 

International Conference on the Quality of Software Architectures (QoSA 2006), 2006. 

[15]  V. Vallieswaran and B. Menezes, ArchKriti : A Software Architecture Based Design 

and Evaluation Tool Suite, in Information Technology, 2007. ITNG  ’07. Fourth International 

Conference on, 2007, pages. 701-706. 

[16]  F. Bachmann and L. Bass, Introduction to the attribute driven design method, in 

Proceedings of the 23rd International Conference on Software Engineering, Washington, DC, 

USA, 2001, pages. 745–746. 

[17] «Affidavit Project», Feb-2011. [Online]. Available: http://affidavit.dei.uc.pt/. 

[18]  A. J. Department and A. Jansen, Software Architecture as a Set of Architectural 

Design Decisions», In Proceedings Of WICSA 5, pages. 109--120, 2005. 

[19]  T. Al-Naeem, I. Gorton, M. A. Babar, F. Rabhi, and B. Benatallah, A quality-driven 

systematic approach for architecting distributed software applications, in Proceedings of the 

27th international conference on Software engineering, St. Louis, MO, USA, 2005, pages. 244-

253, 2005. 

[20]  E. Niemelä, Strategies of Product Family Architecture Development, in Software 

Product Lines, 2005, pages. 186-197. 

[21]  K. Henningsson and C. Wohlin, Understanding the Relations between Software 

Quality Attributes - A Survey Approach, presented at the 12th International Conference for 

Software Quality, Ottawa - Canada, 2002. 

[22]  M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock, Quality Attributes: 

Technical Report. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA., 

1995. 

[23]  J. Bosch, Design and Use of Software Architectures: Adopting and Evolving a 

Product-Line Approach. Addison-Wesley Professional, 2000. 



[24]  Y. Deng, S. Lu, and M. Evangelist, A Formal Approach for Architectural Modeling 

and Prototyping of Distributed Real-Time Systems, presented at the Thirtieth Hawaii 

International Conference Digital on System Sciences, 1997. 

[25]  C. Rosso, Continuous evolution through software architecture evaluation: a case 

study, Journal of Software Maintenance and Evolution: Research and Practice, vol. 18, nº. 5, 

2006. 

[26]  F. Aquilani, S. Balsamo, and P. Inverardi, Performance analysis at the software 

architectural design level, Performance Evaluation, vol. 45, nº. 2-3, pages. 147-178, Jul. 2001. 

[27]  D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W. Mann, 

«Specification and analysis of system architecture using Rapide, IEEE Transactions on 

Software Engineering, vol. 21, nº. 4, pages. 336-354, 1995. 

[28]  D. Garlan, R. Allen, and J. Ockerbloom, Exploiting Style in Architectural Design 

Environments, 1994. 

[29]  M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young, and G. Zelesnik, 

Abstractions for Software Architecture and Tools to Support Them, IEEE Transactions On 

Software Engineering, vol. 21, pages. 314--335, 1995. 

[30]  D. Garlan, R. Monroe, and D. Wile, Acme: an architecture description interchange 

language, in CASCON First Decade High Impact Papers, New York, NY, USA, 2010, pages. 

159–173. 

[31]  N. Medvidovic and R. N. Taylor, A Classification and Comparison Framework for 

Software Architecture Description Languages, IEEE Trans. Softw. Eng., vol. 26, nº. 1, pages. 

70-93, 2000. 

[32]  D. Garlan, J. Ockerbloom, and D. Wile, Towards an ADL Toolkit, presented at the 

EDCS Architecture and Generation Cluster, 2008. 

[33]  A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar, A comparative study 

of architecture knowledge management tools, Journal of Systems and Software, vol. 83, nº. 3, 

pages. 352-370, Mar. 2010. 

[34]  A. Diaz-Pace, H. Kim, L. Bass, P. Bianco, and F. Bachmann, Integrating Quality-

Attribute Reasoning Frameworks in the ArchE Design Assistant, Proceedings of the 4th 

International Conference on Quality of Software-Architectures: Models and Architectures, 

pages. 171–188, 2008. 

[35]  Steffan Thiel, Andreas Hein and Heiner Engelhardt and Robert Bosch, Tool Support 

for Scenario-Based Architecture Evaluation, presented at the 25 th International Conference on 

Software Engineering, 2003. 

[36]  Bradley Schmerl, Shawn Butler and David Garlan, Architecture-based Simulation 

for Security and Performance, 2006. 

[37]  A. Aleti, S. Bjornander, L. Grunske, and I. Meedeniya, ArcheOpterix: An extendable 

tool for architecture optimization of AADL models, in Model-Based Methodologies for 

Pervasive and Embedded Software, International Workshop on, Los Alamitos, CA, USA, 2009, 

vol. 0, pages. 61-71. 

[38] Marija Mikic-rakic, Sam Malek and Nels Beckman and Nenad Medvidovic, A 

Tailorable Environment for Assessing the Quality of Deployment Architectures in Highly 

Distributed Settings, presented at the Working Conf. on Component Deployment, 2004, pages. 

1-17. 

 

  

  


