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ABSTRACT

Video-streaming services are nowadays one of the
biggest contributors to Internet traffic. Due to the real-
time characteristic of video-streaming, very low failure de-
tection and recovery delays are required. Proactive recov-
ery in face of performance degradation is a prominent area
to explore. Current performance analysis work in video-
streaming focuses mostly on capacity planning and session
admission through complex workload and resource model-
ing. These models have limited application when degrada-
tion is not explained by client workload (e.g., dynamic re-
source reallocation, software faults and misconfiguration).

We explore server-side monitoring of performance
degradations in video-streaming servers, based on statis-
tical analysis of server metrics and client-server interaction
messages. Statistical analysis of event logs show that an-
alyzed metrics can be used as symptoms of failures to an-
ticipate them and thus enabling proactive recovery. Excep-
tion is server overloading caused by streaming of unpopular
videos, which are exposed by metrics when QoS degrada-
tion is close to accepted quality thresholds.
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1 Introduction

Streaming services are overwhelming the Internet with TV,
VoD and music contents. Studies show a large increase
of video-streaming traffic in the Internet in the last years
[1]. High definition IPTV and services like Youtube [2] and
Joost [3] are high contributors to such exponential increase
of traffic [4][5].

Zero downtime is desirable in streaming services.
Streaming newcomers are traditional TV consumers, a
class of people that soak up decades of TV quality and
availability patterns. Due to the importance of these mas-
sified utility services in the day by day of people’s life,

consumers put high expectations on patterns of quality and
continuity during watching periods.

The realtime characteristic of streaming demands a
monitoring apparatus extremely efficient to avoid service
disruption. Proactive techniques fit the requirement of
achieving zero downtime, by anticipating session and ser-
vice failures. Notwithstanding, detection of server instabil-
ity to trigger repair actions before the occurrence of fail-
ures is a desirable achievement. To anticipate hard failures,
the failure detector should implement the fail-stutter fail-
ure model [6] to address performance failures on top of the
traditional fail-stop model.

Prediction of server performance resorts mostly to
complex workload and resource modeling. Despite its ef-
fectiveness in predicting system overcapacity conditions, it
fails in detecting other common causes of performance fail-
ures, as software aging, overloading and misconfiguration
[7][8][9]. Moreover, it requires frequent model rebuilding
in dynamic systems. The growing acceptance of virtual-
ized environments to deploy applications also accelerates
model deprecation, as virtual resources can be adjusted dy-
namically in runtime.

1.1 Approach Overview and Contributions

We propose a performance monitoring approach based on
analysis of server metrics and client-server interaction met-
rics. Those metrics were selected to circumvent complex
modeling, allowing their use in dynamic systems.

The validity of our approach depends on the existence
of singularities in interaction and server metrics which en-
able their use as symptoms of performance failures. Our
approach is validated by the following hypotheses:

• Accuracy. During performance degradation periods
the chosen metrics presents abnormal values.

• Timeliness. Performance failures are detected before
clients start to experience service quality degradation.



The rational behind the use of interaction metrics is
that during faulty periods the server struggles to process
new messages, leading to large server-side message queues
and processing time delays. Server metrics cover session
traversal monitoring, such as throughput and packet delays
sent by server. These metrics uncover server’s states of
degradation affecting all or part of the current sessions set.

This paper has the following contributions:

• Application level performance monitoring approach
of streaming-servers;

• Analysis of accuracy and anticipation abilities of
server and client-server interaction metrics for detec-
tion of QoS failures.

1.2 Assumptions

Our work is based on the following assumptions. We ad-
dress only VoD streaming. Failures are caused by perfor-
mance degradation and the server should be able to process
failure detection routines during resource exhaustion peri-
ods.

1.3 Paper Structure

This paper is structured as follows. Section 2 presents re-
lated work. Section 3 describes our failure detection ap-
proach. Section 4 presents the experimental methodology
followed to validate our work. Section 5 presents results
and analysis of experimental work. Section 6 presents con-
clusions.

2 Related Work and Alternative Approaches

Performance analysis work in video servers is prominently
focused on admission control, capacity determination and
overcapacity failure prediction.

Vin et al [10] proposed an admission control algo-
rithm to guarantee statistical performance levels of stream-
ing services. Prediction of performance degradation resorts
to analysis of variation in the access times of media blocks
from disk. A new client request is only accepted if the time
spent retrieving a media block from disk after accepting the
client maintains stable. Simulations show that the proposed
algorithm doubles the number of clients serviced simul-
taneously, when compared with deterministic algorithms
constraining the number of clients admitted.

Arias et. al. [11] studied overcapacity prediction
in media servers through analysis of the relationship be-
tween server metrics (i.e., throughput and resources’s us-
age) and quality of service specifications. Results of ex-
perimental work using the Darwin Streaming Server show
that the server response time increases with the number of
users connected and packet losses increase with the num-
ber of users, until reaching a throughput stabilization point.

The server drops packets to maintain throughput at a cer-
tain level, even if resources’s usage is below its respective
saturation levels.

Cherkasova et. al. work [12] [13] address capacity
determination of media servers for utility-aware streaming
media services. Server capacity is specified by its maxi-
mum bandwidth and the number of connections when sub-
jected to a workload mix characterized by popularity and
encoding bit rate. The cost of each session (representing
the resources required by that session) is calculated for each
streaming type. Experimental results using several work-
load mixes demonstrated very low prediction errors. The
approach requires session classification by popularity type.
Such classification is not straightforward to obtain, intro-
ducing practical difficulties.

Covell et. al. [14] propose a modeling approach to
predict overloading failures. Client metrics-to-resource and
server measurements-to-resource models are proposed for
prediction. Total least squares is used to model resource
utilization and server measurements are represented using
order filters. Model calibration requires labeled training
data representative of pure workloads that lead to server
saturation. Models are assessed for self-prediction (i.e.,
prediction of the current state) and cross-prediction (i.e.,
prediction of a given workload different from the actual).
Results show that the saturation states used for validation
were correctly predicted by the approach.

Seo et. al. [15] presented a performance study in two
popular video-streaming services. Observations shown that
Startup delay can be used as a client-side load predictor for
Darwin Streaming Server. By contrast, CPU usage has low
server-side prediction power in both servers.

3 Approach

We propose a monitoring approach for performance fail-
ures in video-streaming servers. We focus on performance
degradation leading to QoS failures. By detecting per-
formance degradation we expect to anticipate failures, en-
abling proactive recovery of server.

Our performance analysis concerns identification of
singularities in client-server interaction metrics and server
metrics, interpreted as symptoms of performance degra-
dation that explain fail-stuttering scenarios. All metrics
are collected and analyzed server-side to allow fast server
adaption during performance degradation periods.

3.1 Failure Model

We address failure modes defined for the fail-stutter model
[6]. Video servers are resource intensive, which means that
variations in resource usage may impact considerably the
QoS experienced by clients. Thus, resources are key com-
ponents that should be monitored.

Our failure model encloses session failures, packet
losses, late packets and high interaction delays. We ad-



dress failures caused by server overloading and resource
overloading. Server overloading usually occurs when the
server exceeds its normal capacity. It originates in one of
the server resources or in the interaction between several
resources. Resource overloading concerns exhaustion of
individual resources (i.e., CPU, memory and I/O) caused
by server overcapacity and other fault types - e.g., software
faults and misconfiguration.

3.2 Monitoring

We built a Darwin Streaming Server [16] module to log
server and interaction data server-side. Table 1 shows met-
rics considered for logging.

Type Collected Metrics
Streaming Server Throughput

Number of connections
Packets send delay

Processing Delays Describe
Setup
Play
Teardown

Inter-request delay Describe - Setup
Setup - Setup
Setup - Play

Table 1. Performance metrics.

We minimize interference of network and client fac-
tors by ensuring their stability through the use of a session
generator (Figure 1) located in the server’s local network.
The generator restricts client configuration to a single client
specification with stable behavior and controlled network
placement. Interaction metrics are collected server-side
only for the sessions established with that generator.

Darwin Streaming Server

Monitoring Module

Probing Sessions GeneratorStreaming Clients

Local Network

Figure 1. Monitoring Architecture

3.3 Analysis Window

Analysis of monitored data is performed continuously dur-
ing server operation. We divide such data into time win-
dows for analysis. The time-window size should be chosen
carefully, as too large windows comprise detection time
and too small windows introduce false positives during
non-faulty periods.

3.4 Server Metrics

We consider high-level server metrics for performance
analysis (Table 1). Number of connections and through-
put are two important server performance metrics. We de-
fine performance degradation as the state where throughput
(measured in kbps) and number of connections variation
change unproportionally. We correlate both metrics to de-
termine degradation levels.

Packet send delay metric measures the timespan be-
tween the specified packet send timestamp and the effective
send time. Each packet has an assigned send timestamp that
is used by the server to control the time each packet should
be send. During faulty states, two scenarios can occur:

• Positive delays. The server struggles to send pack-
ets, leading to effective sent times later than the ones
appearing in the timestamp;

• Negative delays. The server detects the gap between
the packet sent timestamp and the effective time and
start sending packets in advance to avoid packet de-
lays.

The scenarios presented before are opposite between
each other. Although, they can both help detect a faulty
scenario, as the gap between the recorded and effective sent
time grows in one direction (i.e., negative or positive) dur-
ing faulty periods.

3.5 Interaction Metrics

The RTSP state machine is presented in Figure 2. It shows
the sequence of states and corresponding RTSP commands
that triggers state transition.

Client-server interaction metrics captures the time
spent processing RTSP commands and inter-command de-
lays (e.g., SETUP-PLAY). As RTSP commands are issued
sequently by clients, inter-command delays capture queu-
ing delays caused by the server inability in processing re-
quests.

RTSP command processing times are calculated as
the difference between command pre-processing times
(i.e., the time server receives a given request) and post-
processing times (i.e., the time server sends the response to
client). Our monitoring module intercepts both events and
logs them for further analysis. Inter-command time metrics
capture the time window between a RTSP response and the
server’s reception of the next RTSP command. These met-
rics provide information about the time that a given request
is stored in TCP and streaming server queues, assuming
stable client-side and network delays.

3.5.1 Baseline

Interaction performance analysis demands a reference
baseline of request processing and inter-request times.
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Figure 2. Client RTSP State Machine

Anomalies are determined as deviations from values of ref-
erence.

We classify performance degradation periods as the
ones where interaction times exceeds normal values.
Thresholds separating outliers from normal values are cal-
culated according to Equation 1, a typical method for out-
lier detection in statistics [17][18].

max(3Q+
−1.5IQR, 3Q(1 + 1/3)) (1)

The IQR is calculated as the difference between the
first and the third quartile. The second parameter of max is
used when variance is close to zero.

4 Experimental Methodology

This section describes the experimental methodology fol-
lowed to validate our approach. Further, we present the
architecture and workload used for validation.

Our experimental methodology is described as fol-
lows. We launch short term sessions using a probing client
located in the server’s network, stress the server and in-
dividual resources and finally, perform statistical analysis
to evaluate metrics’s ability in predicting QoS failures ob-
served by the client.

Validation comprises assessing the accuracy and an-
ticipation ability of our failure prediction approach. Basi-
cally, we want to answer the following questions:

• Do predicted failure scenarios explain client experi-
enced failures?

• Can QoS failures be predicted in advance?

To answer the previous questions, we compare server
performance metrics with streaming QoS metrics observed
by the probing client.

4.1 Workload

Validation of our approach for server overloading requires
covering all workload type space. Streaming workload type
in VoD is often characterized by its popularity, bit rate and
number of connections [15][12][14]. We add inter-session
request time to enclose the impact of transient states of
bursty session arrivals. Table 2 presents the list of work-
load parameters and respective levels.

Popularity is an ambiguous metric, as location of a
given object in the memory hierarchy is difficult to deter-
mine. Object access sequences and caching policies exhibit
its location in a given moment. We generate a pure work-
load for each test to guarantee that we are streaming a spe-
cific workload type. Popular workloads are generated by
streaming the same file on each session. By contrast, un-
popular workloads are generated by allocating a different
file for each stream.

Parameter Levels
Number of connections Up to its maximum capacity.
Encoding bit rate 300 Kbps

1000 Kbps
2000 Kbps

Popularity Popular
Unpopular

Inter-session request delay Fast (200ms delay)
Medium (500ms delay)
Slow (2 seconds)

Table 2. Workload Parameters

4.2 Fault Injection

To evaluate prediction capabilities of our metrics we induce
server overloading and exhaustion of individual resources.

Server overloading is induced by bringing server to its
limit for each workload type. Number of connections vary
from zero (idle) to 120% (overloading) of server capacity,
for each bit rate and popularity level. Server workload limit
is determined by observing the maximum number of con-
nections admitted by the server without impacting QoS at
clients.

Stress tool [19] forces exhaustion of individual re-
sources by creating several processes consuming memory,
CPU or I/O. Those processes are launched some time after
server starts streaming a predefined workload.



4.3 QoS Analysis

QoS analysis aims to evaluate the ability of server-side cap-
tured metrics in predicting QoS degradation. We relate
QoS collect at clients with server-metrics for several server
states, during normal, overcapacity and resource overload-
ing induced periods.

We launch one streaming session each 5 seconds, af-
ter which a TEARDOWN is issued. Sample frequency is
multiplied using several probing clients. The client collects
for each streaming session, the startup delay, packet losses,
late packets, session length, and session size.

We define the following QoS thresholds to separate
normal QoS from QoS failures:

• Startup Delay: 200% of normal value.

• Session time and session size: 120% of normal value.

• Packet losses/Late packets: 3%.

Association between QoS parameter values and client
experienced failures is extremely complex due to inherent
subjectivity of video content [20][21]. We establish reason-
able values for QoS thresholds according to experimental
work observations and previous QoS studies [20][21].

5 Experimental Work

This section presents the results and respective analysis of
experimental work. To ensure statistical validity of results
when evaluating prediction capabilities of metrics we re-
peat all tests 10 times for each configuration of parame-
ters. Results obtained are coherent for all tests and thus,
we present one representative graph for each configuration.

5.1 Testbed Configuration

Our server is configured with a Intel(R) Pentium(R) D CPU
3.00GHz, 1Gb RAM, running a Linux 2.6.18-92.1.22.el5
Kernel. The other machines have similar characteristics.
All computers are connected by a Gigabit Ethernet Net-
work.

To emulate a wide area network connecting players
and servers, we use the Netem [22] for traffic shaping. We
chose reasonable parameters for WAN emulation [23].

5.2 Selection of Representative Metrics

A pre-selection of server metrics through visual inspection
of graphs discards processing times as metrics, due to their
low prediction accuracy for several workload types.

We assessed the use of correlation between through-
put and number of connections as performance metric. It
showed low prediction precision due to fluctuations on
throughput during normal server operation (Figure 3).
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Figure 3. Normalized Number of Connections and
Throughput during normal and disk I/O stressed periods.

Command’s processing times are also discarded in our
analysis. In our experiments, inter-command metrics show
higher accuracy over processing time metrics. Low pre-
diction accuracy of processing times has origin in packet
dropping policy implemented by server to maintain low
packet delays during overloading [11]. Furthermore, they
are redundant in cases where prediction accuracy of inter-
command and processing times are similar.

5.3 Overcapacity Analysis

We evaluate the ability of interaction and server metrics in
capturing anomalies caused by server overloading for dif-
ferent workload types.

5.3.1 Interaction Metrics

Figure 4 shows deviations from the normality threshold for
the more accurate interaction metric. Performance anoma-
lies appear as vertical lines in the graphs. High amplitudes
of interaction times appear before performance anomalies,
which enable prediction of failures before their occurrence.

Unpopular videos are less CPU demanding than pop-
ular videos. Workload is disk-intensive for this streaming
type, freeing CPU to process new command requests. Pre-
diction timeliness for unpopular videos is reduced when
compared with the popular counterpart. Failures precede
abnormal inter-command times for high encoding bit rates,
avoiding failure prediction in advance. Such phenomena is
explained by the low number of client-server interactions
due to the small number of sessions allowed by the server
for this workload type.

5.3.2 Server Metrics

Figure 5 presents the cumulative difference between the
send time timestamp established by the server and the effec-
tive send time for popular videos (see Section 3.4). During
overloading periods we can observe a negative slope for the



0 1000 2000 3000 4000
0
50

15
0

25
0

Time between SETUP and PLAY

time in seconds

D
ev
ia
tio
n

Packet loss
Failure/Error
Startup
Size
Time

0 1000 2000 3000 4000

0.
0

0.
4

0.
8

time in seconds

# 
C

on
ne

ct
io

ns
/T

hr
ou

gh
pu

t

# of Connections
Mbits per second

0 1000 2000 3000 4000

-1
.0

0.
0

0.
5

1.
0

Correlation Between # Connections and Throughput

time in seconds

C
oe
ffi
ci
en
t

Correlation estimate
Confidence Interval

(a) Popular 300 Kbps

0 1000 2000 3000 4000

0
50

15
0

25
0

Time between SETUP and PLAY

time in seconds

D
ev
ia
tio
n

Packet loss
Failure/Error
Startup
Size
Time

0 1000 2000 3000 4000

0.
0

0.
4

0.
8

time in seconds

# 
C

on
ne

ct
io

ns
/T

hr
ou

gh
pu

t

# of Connections
Mbits per second

0 1000 2000 3000 4000

-1
.0

0.
0

0.
5

1.
0

Correlation Between # Connections and Throughput

time in seconds

C
oe
ffi
ci
en
t

Correlation estimate
Confidence Interval

(b) Popular 1000 Kbps

0 1000 2000 3000 4000

0
20

40
60

80

Time between SETUP and PLAY

time in seconds

D
ev
ia
tio
n

Packet loss
Failure/Error
Startup
Size
Time

0 1000 2000 3000 4000

0.
0

0.
4

0.
8

time in seconds

# 
C

on
ne

ct
io

ns
/T

hr
ou

gh
pu

t

# of Connections
Mbits per second

0 1000 2000 3000 4000

-1
.0

0.
0

0.
5

1.
0

Correlation Between # Connections and Throughput

time in seconds

C
oe
ffi
ci
en
t

Correlation estimate
Confidence Interval

(c) Popular 2000 Kbps

0 1000 2000 3000 4000

0
20

60
10
0

Time between SETUP and PLAY

time in seconds

D
ev
ia
tio
n

Packet loss
Failure/Error
Startup
Size
Time

0 1000 2000 3000 4000

0.
0

0.
4

0.
8

time in seconds

# 
C

on
ne

ct
io

ns
/T

hr
ou

gh
pu

t

# of Connections
Mbits per second

0 1000 2000 3000 4000
-1
.0

0.
0

0.
5

1.
0

Correlation Between # Connections and Throughput

time in seconds

C
oe
ffi
ci
en
t

Correlation estimate
Confidence Interval

(d) Unpopular 300 Kbps

0 500 1000 1500 2000

0
5
10

20

Time between SETUP and PLAY

time in seconds

D
ev
ia
tio
n

Packet loss
Failure/Error
Startup
Size
Time

0 500 1000 1500 2000

0.
0

0.
4

0.
8

time in seconds

# 
C

on
ne

ct
io

ns
/T

hr
ou

gh
pu

t

# of Connections
Mbits per second

0 500 1000 1500 2000

-1
.0

0.
0

0.
5

1.
0

Correlation Between # Connections and Throughput

time in seconds

C
oe
ffi
ci
en
t

Correlation estimate
Confidence Interval

(e) Unpopular 1000 Kbps

0 500 1000 1500

0
20

60
10
0

Time between SETUP and PLAY

time in seconds

D
ev
ia
tio
n

Packet loss
Failure/Error
Startup
Size
Time

0 500 1000 1500
0.
0

0.
4

0.
8

time in seconds

# 
C

on
ne

ct
io

ns
/T

hr
ou

gh
pu

t

# of Connections
Mbits per second

0 500 1000 1500

-1
.0

0.
0

0.
5

1.
0

Correlation Between # Connections and Throughput

time in seconds

C
oe
ffi
ci
en
t

Correlation estimate
Confidence Interval
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Figure 4. Inter-command time deviations above the outlier threshold for popular and unpopular videos. Each graph shows
responses for loads with inter-command times of 2, 1 and 0.2 seconds, in such order.

cumulative values, as the effective send time is higher than
the packet send timestamp. As soon as the server detects
overloading, it starts to send packets in advance to reduce
the impact of overloading, causing a positive slope. Both
positive and negative slopes are symptoms of performance
degradation.

Packet send delay metric is less sensible to overload-
ing caused by streaming of unpopular videos, compromis-
ing prediction accuracy of this metric.

5.4 CPU overloading

We generate a constant workload of 80 sessions of unpopu-
lar videos encoded at 300 Kbps and stress the server using
the stress tool after 200 seconds. All metrics are sensible to
CPU exhaustion as expected (Figure 6) caused by inability
of CPU in processing new command requests and assuring
timely delivery of packets.

5.5 I/O overloading

Disk I/O overloading is generated by the stress tool using
several processes spinning on sync(). Interaction parame-
ters are less sensitive to disk I/O overloading than to CPU
overloading, as observable in Figure 7. Although, both in-
teraction and server metrics capture failures before their oc-
currence.
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Figure 6. Interaction metrics and server metrics during
CPU overloading

5.6 Memory overloading

The stress tool spawns several processes allocating and
dirtying memory to generate a memory overloading condi-
tion. As observed in Figure 8, interaction metrics are sen-
sible to performance degradation caused by memory over-
loading. By contrast, the packet send delay is less sensitive,
uncovering failures several seconds after QoS degradation.
Carefully analysis show that the metric is unable to cap-
ture failures when QoS degradation is close to its threshold,
which separates normality from failure states. Although,
the metric start to expose failures as degradation distanti-
ates from respective QoS thresholds.
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Figure 5. Cumulated difference between packets send timestamp and their effective send time for popular and unpopular videos.
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Figure 7. Interaction metrics and server metrics during I/O
overloading

5.7 Analysis of Results

We evaluated interaction and server metrics in the context
of prediction of QoS performance degradation. We exe-
cuted all tests 10 times, for each workload and fault type,
to ensure statistical representativeness of results.

Table 3 summarizes the ability of each metric in cap-
turing failure scenarios and its timeliness. Observed results
show that interaction and server metrics predict failures
for most workload parameter configurations during server
overloading and resource overloading conditions. When in-
teraction and server metrics are used together, failures are
predicted for all workload configurations.

All metrics have timeliness problems capturing over-
loading conditions for high bit-rate unpopular videos. Such
observation can be explained by lower CPU usage due to
the reduced number of connections supported by server, all
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Figure 8. Interaction metrics and server metrics during
memory overloading

of them streamed from disk.

6 Conclusion

We propose a performance degradation monitoring ap-
proach for video-streaming servers. Monitoring resorts
to outlier detection of client-server interaction times and
server parameters representative of QoS failures.

Our approach accurately and timely predicts perfor-
mance failures caused by excess of workload and other
faults compromising resources’ availability. Exception is
server overloading caused by streaming unpopular videos,
which have limited anticipation of QoS failures. Thor-
oughly analysis show that only server states causing QoS
degradation close to thresholds are ignored by our metrics.
As QoS thresholds are defined below the ideal limit (which



!"#$%"&$'' ()$*"+,"-& !"#$%"&$'' ()$*"+,"-& !"#$%"&$'' ()$*"+,"-&
.(/ ! ! ! ! ! !
01 ! ! ! ! !
2$#-)3 " ! ! ! ! !

4556 ! ! ! ! ! !
75556 ! ! ! ! ! !
89 ! ! ! ! ! !
4556 ! ! ! ! ! !
75556 "" "" "" ! "" !
89 "" "" "" ! "" !

" #$%&'()*+),%-*./()0%1'./(2),'+2()*+)*3/(23+'4 ""))5+6)%,,./%,7

:$,;<=:$,;< :$,;<=(%>3?",@
A>,$

A$'-;)+$

:$)B$)@
1B$)%->*"&C@
D(-<;%>)E
:$)B$)@
1B$)%->*"&C@
D/&<-<;%>)E

:$&*@9$%>3

Table 3. Metrics’ ability to capture failure states and met-
rics’ timeliness

depend on video characteristics - e.g., format and encod-
ing bit rate) we believe that we could attain timeliness in
real-world systems.

Online server adaption is allowed by low computa-
tional demanding detection and abstinence of communica-
tion due to server-side collected metrics.

We believe that our metrics are generic enough to be
used in other streaming servers through a similar analysis
of server collected metrics vs QoS metrics. The depen-
dence of metrics undertaken with respect to server imple-
mentation makes conclusions taken in performance stud-
ies hard to extrapolate between servers. Although, it is
expected deviations on packet send delays and interac-
tion times during performance degradation periods in other
servers as well. These deviations are used as symptoms for
QoS failures.

As future work, we will perform a thorough study to
uncover timeliness values for prediction. Due to the num-
ber of workload combinations, the number of tests required
to attain statistical significant values is considerably high.
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