
Application of a Self-Healing Video-Streaming
Architecture to RTSP Servers

Carlos A S Cunha
Centre for Informatics and Systems

University of Coimbra
Portugal

ccunha@dei.uc.pt

Luis Moura e Silva
Centre for Informatics and Systems

University of Coimbra
Portugal

ccunha@dei.uc.pt

Abstract— Streaming media is now one of the killer applications
on the Internet. Availability in streaming services is a critical
concern, as consumer expectations are drawn around decades of
traditional TV experience. Server performance has particular
importance in streaming, as its sensitiveness to delays makes it
vulnerable to performance anomalies. Current work on server-
level performance analysis fails to cope with performance failures
not explained by the workload. We propose a self-healing
architecture for streaming servers sustained by a biological
metaphor of heart that explores proactive server recovery by
anticipating performance failures through detection of
arrhythmias (transmission delays of streaming content) and
session probing. We evaluated the approach in RTSP streaming
through experimental work in several resource exhaustion
scenarios. Results have shown that our approach is able to
predict and localize service failures several seconds before their
occurrence for most failure scenarios.

Keywords- self-healing; video-streaming; dependability

I. INTRODUCTION
Video streaming is a popular class of Internet services

gaining an increasing acceptance in the last years [1][2][3][4].
Streaming users put high expectations on quality, as they are
traditional TV consumers, a class of people that soak up
decades of TV quality and availability patterns. For that reason,
handling the fail-stutter failure model [5] at network and server
levels is mandatory because performance anomalies may
impact considerably streaming services due to their
sensitiveness to delay jitter.

Research on graceful service degradation techniques to
overcome network anomalies in streaming is extensive.
Adaptive streaming delivery techniques (e.g., HTTP Adaptive
streaming [6]) dominate this area by allowing dynamic
switching of streaming quality levels to adapt to network
service degradations. At server level, performance degradation
has been studied to predict resource exhaustion [7][8][9], a
typical cause of performance failures [10][11][12]. These
works address capacity determination in streaming systems, but
only captures failure states explained by the workload.

The ability to handle resource variability and system faults
is a software requisite with increasing importance. Actual
virtualization infrastructures potentiate dynamic allocation of
resources to optimize their utilization. Cloud infrastructures in

particular will have an important role in reducing hardware
costs [13] due to the streaming traffic profile: it is resource
intensive and varies significantly by the time-of-day, day-of-
week and in the long-term [14]. Thus, companies can reduce
costs significantly by allocating resources on-demand on third-
party clouds for particular time periods.

Considering the streaming characteristics and the
dynamicity of infrastructures, we devise in this paper a
streaming architecture for monitoring, localization and repair
of failures with the following requirements: strict recovery
delays (below client buffering capacity), infrastructure
agnosticism (no assumption about the system nominal
capacity) and application-level awareness. To implement these
requirements, we explore the use of self-healing, a software
property that enables a system to perceive that it is not
operating correctly and with or without limited human
intervention, make the necessary adjustments to restore itself to
normalcy [15][16]. Our contributions unveil the ability of
anticipating failure scenarios and identify the resources
exhausted during such periods in RTSP (Real-time Streaming
Protocol) streaming.

This paper is structured as follows. Section II presents the
related work. Section III describes our self-healing architecture.
Section IV explains the application of our architecture to RTSP
streaming. Section V presents results of the experimental work.
Section VI discusses results. Section VII concludes.

II. RELATED WORK
Previous work on fault-tolerance of streaming servers is

classified at external, architectural and server levels.

Proxies are external components that create a level of
indirection between clients and server for independent
monitoring and failover. Jeon et al [20] proposed a proxy-based
mechanism for monitoring and failover of streaming servers.
Monitoring is performed through analysis of RTP packet inter-
arrival times, using dynamic thresholds.

Architectural configurations can support fault-tolerant
streaming servers. Layered coding was explored for graceful
degradation during server failures. Nakatogawa et al [21]
propose a decentralized video-streaming fault recovery
architecture. Video is encoded into data layers with different
quality placed in separated nodes. A desirable quality is

obtained through combination of several layers. The Yima
media server [22] is implemented over a scalable real-time
streaming architecture. If a server fails, the system reassigns
their sessions to another server without disruption in data
delivery. Maharana et al [23] present RSerPool fault tolerant
architecture for video on demand. Nodes providing a given
service are grouped into a pool and registered into a name
server. Name servers monitor the health of their nodes using
heartbeats. Clients assist failure recovery using a local copy of
the server's session state to support its resumption during
failover.

Performance analysis in video servers at system level has
been explored for server capacity determination. Vin et al [8]
proposed an admission control algorithm based on analysis of
variation in the access times of media blocks from disk. Covell
et al. [7] propose a resource modeling approach to predict
failures caused by saturation of streaming servers. Cherkasova
et al. work [9] address capacity determination of media servers
for utility-aware streaming media services, by creating a model
to calculate the cost of each session for each streaming type.

III. PARADIGM AND APPROACH
The cardiovascular system is a blood streaming system

controlled by the heart. Blood streaming is pumped by heart at
a given pace through electrical stimulus regulated through heart
receptors. Abnormal paces are referred as arrhythmias and are
manifested by slower (i.e., bradycardia), faster (i.e.,
tachycardia) and irregular pace frequencies. Effects of
abnormal blood flows due to arrhythmias are propagated
through the cardiovascular system, causing malfunction of
other organs.

Video-streaming systems have similarities with the
cardiovascular system. Streaming systems have their own heart
(i.e., the server) that precisely pumps frame blocks at a given
pace to clients. Server activity is regulated by VCR-like
protocols (e.g., the popular RTSP) through channels
functionally equivalent to heart receptors. During faulty states,
abnormal paces occur when the server struggles to timely send
the frames precisely scheduled in advance, resulting in a
condition equivalent to heart arrhythmias.

We propose a self-healing architecture for streaming
servers that has roots on the heart metaphor. The server has
sensors that measure anomalous states, which will feed the
analysis process developed by a pacemaker equivalent
component. After detection of anomalies the pacemaker is
responsible to restore the system to normalcy by injecting
repair stimulus that returns the server to normalcy.

A. Self-healing Architecture
The self-healing architecture is shown in Fig. 1. It is

comprised by four main components: performance analyzer,
repair planner, sensors and effectors.

The performance analyzer takes: (1) server performance
parameters collected by sensors to detect performance
degradation; and (2) service parameters collected from
synthetic sessions established with the server. It detects
performance degradation and pinpoints the resources
responsible for these anomalous states. The repair planner

takes notifications issued by the performance analyzer, decides
the best repair action to be executed (e.g., session migration
[17][18] and protocol-level redirection of sessions [19]) and
plans the repair to be executed by effectors.

Sensors are responsible for collecting performance
parameters. Two types of sensors are devised server-side: (1)
pace sensors; and (2) resource sensors. Pace sensors capture
delays on accomplishment of scheduling of video content. The
unit of scheduled work depends on server implementations and
streaming protocols. In RTSP streaming the packet is the unit
of work to be scheduled and transmitted. Other video standards
require coarse-grain performance metrics at server: HTTP
Streaming and HTTP Adaptive streaming [24]. They fragment
video objects into slices that are selectively requested by clients
and downloaded similarly to other web objects.

B. First-level Monitoring: Server Performance Degradation
Performance analysis resumes to the search of anomalous

time windows, defined as those having a mean transmission
delay higher than !, defined as follows.

 !"#$!"#$% = !
!

!"#$%!!
!!! (1)

Being n the number of segments transmitted since the last
computation of (1), !"#$%! the accumulated transmission
delays of video-segments in the same period and ! adjusted to
the server implementation (Section IV).

C. Second-level Monitoring: Service Failures
Detection of service failures uncovers unpredicted failures and
assesses the effectiveness of repair actions after being
executed.

1) Data Gathering Method - We use synthetic sessions
established periodically by the monitor to assess service
quality to provide: (1) isolation from network and client
interference (sessions served over a network providing stable
delay and jitter parameters and single client configuration; (2)
Manageable data volume (performance metrics collected only
for synthetic sessions); and (3) Time constrains (the number,
length and encoding bitrate are carefully specified).

Figure 1. Self-healing Architecture for Video-Streaming

Streaming Server

Pace Sensor
Delays on

Scheduled Work
Streaming

Interaction Requests

Streaming
Clients

Repairing Stimulus
Effector

CPU,MEM, I/O,NIC
Resource Sensor

Packet Send
Times Analyzer

Performance Analyzer Module

QoS Analysis

Connection
Time

Buffering
Time

Session
Error

First Level
(Performance
Degradation)

Second Level
(Service Failures)

Synthetic
Sessions

Repair Planner

Repair PoliciesStimulus
Dispatcher

Pacemaker

Resource
Utilization Analyzer

2) Definition of Failure - We adopt the Keynote StreamQ
[25], a leading industry standard metric to measure quality of
video-streams. To assess degradation of service quality we
capture both session errors and QoS degradation metrics
(Table I).

D. Localization of Degradation
We calculate the utilization of each resource using the

median resource utilization within the time window marked as
anomalous, as in (2).

 !! = !"#$%& !! , ! − ! < ! ≤ ! (2)

The !! is the median resource utilization during the time
window of size w that precedes the time i. The !! is the
resource utilization read for the resource analyzed at time j.

E. Repair Planner
The repair planner schedules execution of proactive and repair
actions to bring the server to a non-degraded state. Mapping
between events and actions are defined in the form of rules-e.g.

“Performance degradation caused by memory exhaustion
leads to failover of the server instance.”

Notifications issued by the performance analyzer carry the
anomaly profile describing its type (e.g., server performance
slowdown or QoS failure), predicted localization (e.g.,
memory, I/O) and other relevant parameters.

IV. RTSP PERFORMANCE ANALYSIS
Performance analysis is the most complex part of our

architecture. In this section we present its application to RTSP
streaming [19] using the Darwin Streaming Server [26], a
popular streaming server.

A. Representativeness of Synthetic Sessions
Representativeness of synthetic sessions is assessed through

comparison of our default configuration (2 sessions of
300Kbps issued each 10 seconds) with each configuration
presented in Table II. The alternative configurations explore
the impact of the number of sessions, bitrate and popularity of
videos on the representativeness of synthetic sessions. Results
have shown the same values for all configurations, validating
the assumption of representativeness of the default
configuration.

V. EXPERIMENTAL WORK
The experimental methodology developed to evaluate the

performance analyzer component is described as follows: (1)
generate monitoring stimulus; (2) stress the server and log
parameters; and (3) statistical analysis.

TABLE I. QOS METRICS ANALYZED FOR SYNTHETIC SESSIONS

Parameter Description
Connection
Time

Time spent since the client sends a session establishment
request until it receives the first media packet.

Buffering
Time

Total time spent by the client doing buffering (before
playing) and rebuffering (when the client is forced to stop
due to absence of frames received).

Session Error Session failure caused by a unresponsive server or error.

TABLE II. WORKLOAD COMBINATION USED TO ASSESS THE
REPRESENTATIVENESS OF SESSIONS. EACH ALTERNATIVE SCENARIO IS

EXECUTED IN PARALLEL WITH OUR DEFAULT CONFIGURATION (I.E., 2 SESSIONS
OF 300KBPS).

Configuration

Alternative Scenarios
(Number of Parallel Sessions)

Popularity Encoding
Bitrate

1. Number 2. Bit
Rate

3. Popularity

Popular 300k 2, 4, 6
1000k 1

Unpopular 300k 1
1000k 1 1

Our failure model encloses server overloading explained by
workload and exhaustion of individual resources, namely,
CPU, Memory and I/O. We induce individual resource
exhaustion using the Stress tool [27]. The experimental tests
are repeated 10 times for statistical significance.

A. Testbed Configuration
Our testbed encloses three machines connected by a 100Mbps
Ethernet Network: the server, the workload generator and the
synthetic sessions generator. All machines are configured with
an Intel(R) Pentium(R) D CPU 3.00GHz, 1GB RAM, running
a Linux 2.6.18-92.1.22.el5 Kernel.

B. Overloading Detection
Server overloading occurs when the server is brought to its

limit for each workload type - characterized by its popularity,
bit rate and number of connections [7][9]. We selected
representative encoding bit-rates used for streaming of video
on the Internet [28]. Streaming the same video object in all
sessions generates popular workloads. The unpopular workload
counterpart requires a different video object for each session to
force reading the video from the disk. A ramp-up workload
with an inter-session creation time of 2 seconds drives data
gathering of anticipation times of application-level metrics over
service failures.

1) Overloading by Popular Workloads – Popular
workloads are network-bound in our server configuration.
Application-level performance degradation is observed for
300Kbps videos 14.5 seconds (median) before its
manifestation as a service failure (Table III). That degradation
coincides with exhaustion of the network interface resource.
Popular 1000Kbps videos were not captured as packet send
delays. A deep analysis of this metric atributted this
phenomenon to negative delays (i.e., packets are sent in
advance), justified by an adaptive behavior activated by the
server for this workload type.

2) Overloading by Unpopular Workloads – Unpopular
workloads are disk-bound. The server performance starts
struggling when the disk I/O and CPU reach their limit. In the
1000Kbps configuration, the bootleneck is the CPU,
accompanied later by the memory. The median anticipation
times for 300 Kbps and 1000 Kbps are 40 seconds and 15
seconds, respectively.

C. Resource exhaustion not explained by workload
The Stress tool recreates failure scenarios where

performance failures have origin in exhaustion of individual
resources, not caused by excess of server nominal capacity.

TABLE III. ANTICIPATION TIMES

Fault Type Exhausted
Resources

Anticipation Times
Min Median Max

Overload 300 Kbps Popular Network 9 14.5 30
Overload 1000 Kbps Popular Network (*) (*) (*)
Overload 300 Kbps
Unpopular

Disk I/O, CPU,
Memory

20 40 60

Overload 1000Kbps
Unpopular

CPU, Memory 10 15 90

CPU Stress CPU, Memory 56 60 65
I/O Stress CPU, Memory 8 10 12
Memory Stress CPU,, Memory 18 20 21

(*) Unpredicted as the server sends packets in advance

The server is subjected to a workload of 50% of its nominal
capacity before start stressing resources. We injected three fault
types: (1) CPU Stress by spinning on sqrt(); (2) I/O Stress by
spinning on sync(); (3) Memory Stress by spinning on
malloc(). The medians calculated for anticipation times of
predictions are 60 seconds, 10 seconds and 20 seconds for
CPU, I/O and memory, respectively (Table III).

VI. CONCLUSIONS
This paper proposes a self-healing architecture for video-

streaming servers and validates its application to RTSP
streaming. Experimental results validated the application of the
arrhythmia concept to RTSP streaming. Several lessons can be
taken from the analysis of results: (1) application-level
performance analysis anticipates service failures dozens of
seconds before the client experiences service failures, except in
overloading conditions for high bitrate popular videos; and (2)
identification of resources responsible for the failures is blurred
by exhaustion of other dependent resources. This observation is
especially aberrant in resource exhaustion scenarios where the
server load is below its nominal capacity. Thus, performance
analysis and resource localization are unattainable through
simple analysis of individual resources.

As future work, we plan to diagnose performance failures
by breaking down failures caused by transient faults [29] from
workload-related failures. This separation is important for
recovery, as the former can be resolved through allocation of
new resources, but the latter is usually corrected automatically
or through rejuvenation techniques.

ACKNOWLEDGMENT
This work was partially supported by FCT-Portugal under

grant SFRH/BD/35784/2007 and CISUC (Centre for
Informatics and Systems of University of Coimbra).

REFERENCES
[1] “IGI Forecast 2010,” highbeam.com.
[2] H. Schulze and K. Mochalski, “IPOQUE Internet Study 2008/2009,”

ipoque.com.
[3] “Allot Global Mobile Broadband Traffic Report 2009,” allot.com.
[4] J. Careless, “The State of Streaming Media and Entertainment 2011,”

streamingmedia.com.
[5] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, “Fail-stutter fault

tolerance,” in Hot Topics in Operating Systems, 2001. Proceedings of
the Eighth Workshop on, 2001, p. 33-38.

[6] T. Stockhammer, “Dynamic adaptive streaming over HTTP --: standards
and design principles,” in Proceedings of the second annual ACM
conference on Multimedia systems, New York, NY, USA, 2011, p. 133-
144.

[7] M. Covell et al., “Calibration and prediction of streaming-server
performance,” HP Labs Tecnical Report HPL-2004-206, 2004.

[8] H. Vin, P. Goyal, and A. Goyal, “A statistical admission control
algorithm for multimedia servers,” in MULTIMEDIA '94: Proceedings
of the second ACM international conference on Multimedia, New York,
NY, USA, 1994, p. 33-40.

[9] L. Cherkasova and L. Staley, “Building a Performance Model of
Streaming Media Applications in Utility Data Center Environment,” in
CCGRID '03: Proceedings of the 3st International Symposium on
Cluster Computing and the Grid, Washington, DC, USA, 2003, p. 52.

[10] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why do internet
services fail, and what can be done about it?,” in Proceedings of the 4th
conference on USENIX Symposium on Internet Technologies and
Systems - Volume 4, Berkeley, CA, USA, 2003, p. 1-1.

[11] S. Pertet and P. Narasimhan, “Causes of Failure in Web Applications,”
Technical Report PDL-CMU-05-109, Carnegie Mellon University,
2005.

[12] J. Gray, “Why Do Computers Stop and What Can Be Done About It?,”
in Symposium on Reliability in Distributed Software and Database
Systems, 1986, p. 3-12.

[13] P. Csathy, “Industry Perspectives: Enterprise Video Encoding---The
Power and Promise of the Cloud in 2011,” streamingmedia.com.

[14] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic
characterization: a view from the edge,” in Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, New York, NY, USA,
2007, p. 15-28.

[15] Y. Brun et al., “Engineering Self-Adaptive Systems through Feedback
Loops,” in Software Engineering for Self-Adaptive Systems, vol. 5525,
B. Cheng, R. de Lemos, H. Giese, P. Inverardi, and J. Magee, Eds.
Springer Berlin / Heidelberg, 2009, p. 48-70.

[16] P. Koopman, “Elements of the Self-Healing System Problem Space,”
WADS Workshop on Software Architectures for Dependable Systems,
2003.

[17] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode, “Migratory TCP:
Connection Migration for Service Continuity in the Internet,” in
Proceedings of the 22 nd International Conference on Distributed
Computing Systems (ICDCS'02), Washington, DC, USA, 2002, p. 469-
469.

[18] A. C. Snoeren, D. G. Andersen, and H. Balakrishnan, “Fine-grained
failover using connection migration,” in Proceedings of the 3rd
conference on USENIX Symposium on Internet Technologies and
Systems - Volume 3, Berkeley, CA, USA, 2001, p. 19-19.

[19] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Streaming
Protocol (RTSP),” 1998.

[20] S. Jeon, J. Lee, H. Cha, and R. Ha, “Proxy-based failure detection in
multimedia streaming environments,” Int. J. Commun. Syst., vol. 20, no.
2, p. 131-145, 2007.

[21] Y. Nakatogawa, Y. Jiang, M. Kanda, K. Mori, R. Takanuki, and Y.
Kuba, “Autonomous Fault Recovery Technology for Achieving Fault-
Tolerance in Video on Demand System,” in Proceedings of the Eighth
IEEE International Symposium on Multimedia, Washington, DC, USA,
2006, p. 113-120.

[22] C. Shahabi, R. Zimmermann, K. Fu, and S. D. Yao, “Yima: A Second-
Generation Continuous Media Server,” Computer, vol. 35, no. 6, p. 56-
64, 2002.

[23] A. Maharana and G. N. Rathna, “Fault-tolerant Video on Demand in
RSerPool Architecture,” Advanced Computing and Communications,
2006. ADCOM 2006. International Conference on, p. 534-539, Dec.
2006.

[24] T. Stockhammer, “Dynamic adaptive streaming over HTTP --: standards
and design principles,” in Proceedings of the second annual ACM
conference on Multimedia systems, New York, NY, USA, 2011, p. 133-
144.

[25] “Keynote Streaming Perspective StreamQ,” keynote.com.
[26] “Darwin Streaming Server,” dss.macosforge.org.
[27] “Stress Project,” weather.ou.edu.
[28] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic

characterization: a view from the edge,” in Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, New York, NY, USA,
2007, p. 15-28.

[29] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1, p. 11-33, jan.-
march. 2004.

