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Abstract— Streaming media is now one of the killer applications 
on the Internet. Availability in streaming services is a critical 
concern, as consumer expectations are drawn around decades of 
traditional TV experience. Server performance has particular 
importance in streaming, as its sensitiveness to delays makes it 
vulnerable to performance anomalies. Current work on server-
level performance analysis fails to cope with performance failures 
not explained by the workload. We propose a self-healing 
architecture for streaming servers sustained by a biological 
metaphor of heart that explores proactive server recovery by 
anticipating performance failures through detection of 
arrhythmias (transmission delays of streaming content) and 
session probing. We evaluated the approach in RTSP streaming 
through experimental work in several resource exhaustion 
scenarios. Results have shown that our approach is able to 
predict and localize service failures several seconds before their 
occurrence for most failure scenarios. 
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I.  INTRODUCTION 
Video streaming is a popular class of Internet services 

gaining an increasing acceptance in the last years [1][2][3][4]. 
Streaming users put high expectations on quality, as they are 
traditional TV consumers, a class of people that soak up 
decades of TV quality and availability patterns. For that reason, 
handling the fail-stutter failure model [5] at network and server 
levels is mandatory because performance anomalies may 
impact considerably streaming services due to their 
sensitiveness to delay jitter.  

Research on graceful service degradation techniques to 
overcome network anomalies in streaming is extensive. 
Adaptive streaming delivery techniques (e.g., HTTP Adaptive 
streaming [6]) dominate this area by allowing dynamic 
switching of streaming quality levels to adapt to network 
service degradations. At server level, performance degradation 
has been studied to predict resource exhaustion [7][8][9], a 
typical cause of performance failures [10][11][12]. These 
works address capacity determination in streaming systems, but 
only captures failure states explained by the workload. 

The ability to handle resource variability and system faults 
is a software requisite with increasing importance. Actual 
virtualization infrastructures potentiate dynamic allocation of 
resources to optimize their utilization. Cloud infrastructures in 

particular will have an important role in reducing hardware 
costs [13] due to the streaming traffic profile: it is resource 
intensive and varies significantly by the time-of-day, day-of-
week and in the long-term [14]. Thus, companies can reduce 
costs significantly by allocating resources on-demand on third-
party clouds for particular time periods. 

Considering the streaming characteristics and the 
dynamicity of infrastructures, we devise in this paper a 
streaming architecture for monitoring, localization and repair 
of failures with the following requirements: strict recovery 
delays (below client buffering capacity), infrastructure 
agnosticism (no assumption about the system nominal 
capacity) and application-level awareness. To implement these 
requirements, we explore the use of self-healing, a software 
property that enables a system to perceive that it is not 
operating correctly and with or without limited human 
intervention, make the necessary adjustments to restore itself to 
normalcy [15][16]. Our contributions unveil the ability of 
anticipating failure scenarios and identify the resources 
exhausted during such periods in RTSP (Real-time Streaming 
Protocol) streaming. 

This paper is structured as follows. Section II presents the 
related work. Section III describes our self-healing architecture. 
Section IV explains the application of our architecture to RTSP 
streaming. Section V presents results of the experimental work. 
Section VI discusses results. Section VII concludes. 

II. RELATED WORK 
Previous work on fault-tolerance of streaming servers is 

classified at external, architectural and server levels. 

Proxies are external components that create a level of 
indirection between clients and server for independent 
monitoring and failover. Jeon et al [20] proposed a proxy-based 
mechanism for monitoring and failover of streaming servers. 
Monitoring is performed through analysis of RTP packet inter-
arrival times, using dynamic thresholds.  

Architectural configurations can support fault-tolerant 
streaming servers. Layered coding was explored for graceful 
degradation during server failures. Nakatogawa et al [21] 
propose a decentralized video-streaming fault recovery 
architecture. Video is encoded into data layers with different 
quality placed in separated nodes. A desirable quality is 



obtained through combination of several layers. The Yima 
media server [22] is implemented over a scalable real-time 
streaming architecture. If a server fails, the system reassigns 
their sessions to another server without disruption in data 
delivery. Maharana et al [23] present RSerPool fault tolerant 
architecture for video on demand. Nodes providing a given 
service are grouped into a pool and registered into a name 
server. Name servers monitor the health of their nodes using 
heartbeats. Clients assist failure recovery using a local copy of 
the server's session state to support its resumption during 
failover. 

Performance analysis in video servers at system level has 
been explored for server capacity determination. Vin et al [8] 
proposed an admission control algorithm based on analysis of 
variation in the access times of media blocks from disk. Covell 
et al. [7] propose a resource modeling approach to predict 
failures caused by saturation of streaming servers. Cherkasova 
et al. work [9] address capacity determination of media servers 
for utility-aware streaming media services, by creating a model 
to calculate the cost of each session for each streaming type.  

III. PARADIGM AND APPROACH 
The cardiovascular system is a blood streaming system 

controlled by the heart. Blood streaming is pumped by heart at 
a given pace through electrical stimulus regulated through heart 
receptors. Abnormal paces are referred as arrhythmias and are 
manifested by slower (i.e., bradycardia), faster (i.e., 
tachycardia) and irregular pace frequencies. Effects of 
abnormal blood flows due to arrhythmias are propagated 
through the cardiovascular system, causing malfunction of 
other organs.  

Video-streaming systems have similarities with the 
cardiovascular system. Streaming systems have their own heart 
(i.e., the server) that precisely pumps frame blocks at a given 
pace to clients. Server activity is regulated by VCR-like 
protocols (e.g., the popular RTSP) through channels 
functionally equivalent to heart receptors. During faulty states, 
abnormal paces occur when the server struggles to timely send 
the frames precisely scheduled in advance, resulting in a 
condition equivalent to heart arrhythmias.    

We propose a self-healing architecture for streaming 
servers that has roots on the heart metaphor. The server has 
sensors that measure anomalous states, which will feed the 
analysis process developed by a pacemaker equivalent 
component. After detection of anomalies the pacemaker is 
responsible to restore the system to normalcy by injecting 
repair stimulus that returns the server to normalcy. 

A. Self-healing Architecture 
The self-healing architecture is shown in Fig. 1. It is 

comprised by four main components: performance analyzer, 
repair planner, sensors and effectors.  

The performance analyzer takes: (1) server performance 
parameters collected by sensors to detect performance 
degradation; and (2) service parameters collected from 
synthetic sessions established with the server. It detects 
performance degradation and pinpoints the resources 
responsible for these anomalous states.  The repair planner 

takes notifications issued by the performance analyzer, decides 
the best repair action to be executed  (e.g., session migration 
[17][18] and protocol-level redirection of sessions [19]) and 
plans the repair to be executed by effectors. 

Sensors are responsible for collecting performance 
parameters. Two types of sensors are devised server-side:  (1) 
pace sensors; and (2) resource sensors. Pace sensors capture 
delays on accomplishment of scheduling of video content. The 
unit of scheduled work depends on server implementations and 
streaming protocols. In RTSP streaming the packet is the unit 
of work to be scheduled and transmitted. Other video standards 
require coarse-grain performance metrics at server: HTTP 
Streaming and HTTP Adaptive streaming [24]. They fragment 
video objects into slices that are selectively requested by clients 
and downloaded similarly to other web objects.  

B. First-level Monitoring: Server Performance Degradation 
Performance analysis resumes to the search of anomalous 

time windows, defined as those having a mean transmission 
delay higher than !, defined as follows. 

   !"#$  !"#$% =    !
!

!"#$%!!
!!!   (1) 

Being n the number of segments transmitted since the last 
computation of (1), !"#$%!  the accumulated transmission 
delays of video-segments in the same period and ! adjusted to 
the server implementation (Section IV).  

C. Second-level Monitoring: Service Failures   
Detection of service failures uncovers unpredicted failures and 
assesses the effectiveness of repair actions after being 
executed.  

1) Data Gathering Method - We use synthetic sessions 
established periodically by the monitor to assess service 
quality to provide: (1) isolation from network and client 
interference (sessions served over a network providing stable 
delay and jitter parameters and single client configuration; (2) 
Manageable data volume (performance metrics collected only 
for synthetic sessions); and (3) Time constrains (the number, 
length and encoding bitrate are carefully specified).  

 
Figure 1.  Self-healing Architecture for Video-Streaming 
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2) Definition of Failure - We adopt the Keynote StreamQ 
[25], a leading industry standard metric to measure quality of 
video-streams. To assess degradation of service quality we 
capture both session errors and QoS degradation metrics 
(Table I).  

D. Localization of Degradation 
We calculate the utilization of each resource using the 

median resource utilization within the time window marked as 
anomalous, as in (2). 

 !! =   !"#$%&   !!   ,        ! − ! < ! ≤ ! (2) 

The !! is the median resource utilization during the time 
window of size w that precedes the time i. The !!  is the 
resource utilization read for the resource analyzed at time j.  

E. Repair Planner   
The repair planner schedules execution of proactive and repair 
actions to bring the server to a non-degraded state. Mapping 
between events and actions are defined in the form of rules-e.g. 

“Performance degradation caused by memory exhaustion 
leads to failover of the server instance.”   

Notifications issued by the performance analyzer carry the 
anomaly profile describing its type (e.g., server performance 
slowdown or QoS failure), predicted localization (e.g., 
memory, I/O) and other relevant parameters.   

IV. RTSP PERFORMANCE ANALYSIS 
Performance analysis is the most complex part of our 

architecture. In this section we present its application to RTSP 
streaming [19] using the Darwin Streaming Server [26], a 
popular streaming server.  

A. Representativeness of Synthetic Sessions 
Representativeness of synthetic sessions is assessed through 

comparison of our default configuration (2 sessions of 
300Kbps issued each 10 seconds) with each configuration 
presented in Table II. The alternative configurations explore 
the impact of the number of sessions, bitrate and popularity of 
videos on the representativeness of synthetic sessions. Results 
have shown the same values for all configurations, validating 
the assumption of representativeness of the default 
configuration. 

V. EXPERIMENTAL WORK   
The experimental methodology developed to evaluate the 

performance analyzer component is described as follows: (1) 
generate monitoring stimulus; (2) stress the server and log 
parameters; and (3) statistical analysis. 

TABLE I.  QOS METRICS ANALYZED FOR SYNTHETIC SESSIONS 

Parameter Description 
Connection 
Time 

Time spent since the client sends a session establishment 
request until it receives the first media packet. 

Buffering 
Time 

Total time spent by the client doing buffering (before 
playing) and rebuffering (when the client is forced to stop 
due to absence of frames received). 

Session Error Session failure caused by a unresponsive server or error.  

TABLE II.  WORKLOAD COMBINATION USED TO ASSESS THE 
REPRESENTATIVENESS OF SESSIONS. EACH ALTERNATIVE SCENARIO IS 

EXECUTED IN PARALLEL WITH OUR DEFAULT CONFIGURATION (I.E., 2 SESSIONS 
OF 300KBPS). 

Configuration 
  

Alternative Scenarios 
(Number of Parallel Sessions) 

Popularity Encoding 
Bitrate 

1. Number 2. Bit 
Rate 

3. Popularity 

Popular 300k 2, 4, 6   
1000k  1  

Unpopular 300k    1 
1000k  1 1 

Our failure model encloses server overloading explained by 
workload and exhaustion of individual resources, namely, 
CPU, Memory and I/O. We induce individual resource 
exhaustion using the Stress tool [27]. The experimental tests 
are repeated 10 times for statistical significance. 

A. Testbed Configuration   
Our testbed encloses three machines connected by a 100Mbps 
Ethernet Network: the server, the workload generator and the 
synthetic sessions generator. All machines are configured with 
an Intel(R) Pentium(R) D CPU 3.00GHz, 1GB RAM, running 
a Linux 2.6.18-92.1.22.el5 Kernel.  

B. Overloading Detection   
Server overloading occurs when the server is brought to its 

limit for each workload type - characterized by its popularity, 
bit rate and number of connections [7][9]. We selected 
representative encoding bit-rates used for streaming of video 
on the Internet [28]. Streaming the same video object in all 
sessions generates popular workloads. The unpopular workload 
counterpart requires a different video object for each session to 
force reading the video from the disk. A ramp-up workload 
with an inter-session creation time of 2 seconds drives data 
gathering of anticipation times of application-level metrics over 
service failures.  

1) Overloading by Popular Workloads – Popular 
workloads are network-bound in our server configuration. 
Application-level performance degradation is observed for 
300Kbps videos 14.5 seconds (median) before its 
manifestation as a service failure (Table III). That degradation 
coincides with exhaustion of the network interface resource. 
Popular 1000Kbps videos were not captured as packet send 
delays. A deep analysis of this metric atributted this 
phenomenon to negative delays (i.e., packets are sent in 
advance), justified by an adaptive behavior activated by the 
server for this workload type.  

2) Overloading by Unpopular Workloads – Unpopular 
workloads are disk-bound. The server performance starts 
struggling when the disk I/O and CPU reach their limit. In the 
1000Kbps configuration, the bootleneck is the CPU, 
accompanied later by the memory. The median anticipation 
times for 300 Kbps and 1000 Kbps are 40 seconds and 15 
seconds, respectively. 

C. Resource exhaustion not explained by workload 
The Stress tool recreates failure scenarios where 

performance failures have origin in exhaustion of individual 
resources, not caused by excess of server nominal capacity.  



TABLE III.  ANTICIPATION TIMES 

Fault Type Exhausted 
Resources 

Anticipation Times 
Min Median Max 

Overload 300 Kbps Popular Network 9 14.5 30 
Overload 1000 Kbps Popular Network (*) (*) (*) 
Overload 300 Kbps 
Unpopular  

Disk I/O, CPU, 
Memory 

20 40 60 

Overload 1000Kbps 
Unpopular 

CPU, Memory 10 15 90 

CPU Stress CPU, Memory 56 60 65 
I/O Stress CPU, Memory 8 10 12 
Memory Stress CPU,, Memory 18 20 21 

(*) Unpredicted as the server sends packets in advance 

The server is subjected to a workload of 50% of its nominal 
capacity before start stressing resources. We injected three fault 
types: (1) CPU Stress by spinning on sqrt(); (2) I/O Stress by 
spinning on sync(); (3) Memory Stress by spinning on 
malloc(). The medians calculated for anticipation times of 
predictions are 60 seconds, 10 seconds and 20 seconds for 
CPU, I/O and memory, respectively (Table III).  

VI. CONCLUSIONS 
This paper proposes a self-healing architecture for video-

streaming servers and validates its application to RTSP 
streaming. Experimental results validated the application of the 
arrhythmia concept to RTSP streaming. Several lessons can be 
taken from the analysis of results: (1) application-level 
performance analysis anticipates service failures dozens of 
seconds before the client experiences service failures, except in 
overloading conditions for high bitrate popular videos; and (2) 
identification of resources responsible for the failures is blurred 
by exhaustion of other dependent resources. This observation is 
especially aberrant in resource exhaustion scenarios where the 
server load is below its nominal capacity. Thus, performance 
analysis and resource localization are unattainable through 
simple analysis of individual resources. 

As future work, we plan to diagnose performance failures 
by breaking down failures caused by transient faults [29] from 
workload-related failures. This separation is important for 
recovery, as the former can be resolved through allocation of 
new resources, but the latter is usually corrected automatically 
or through rejuvenation techniques. 
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