
Using Partial Dynamic FPGA Reconfiguration to
Support Real-Time Dependability

José Luís Nunes, João Carlos Cunha
Polytechnic Institute of Coimbra / CISUC – ISEC/DEIS

3030-199 Coimbra, Portugal

{jnunes, jcunha}@isec.pt

Raul Barbosa, Mário Zenha-Rela
University of Coimbra / CISUC – DEI

3030-290 Coimbra, Portugal

{rbarbosa, mzrela}@dei.uc.pt

ABSTRACT
Field Programmable Gate Arrays (FPGAs), are being
increasingly used in custom systems requiring fast time-to-market
delivery due to their flexibility; being reprogrammable in the field
is a real value for long unattended operation and whenever on-
site maintenance is costly as is the case in many remote data
acquisition stations. The most powerful FPGAs are based in
SRAM technology which is particularly prone to transient faults.
Fault-tolerance is therefore mandatory and this can be done by
simply reprogramming the FPGA, thus repairing the corrupted
configuration. Recent advances in FPGA technology allow the
configuration of just a portion of the FPGA, which lowers
significantly the time overhead, while the remaining parts are
running. This truly dynamic partial FPGA reconfiguration can be
used to provide fault-tolerance for hard real-time applications,
guaranteeing high reliability in long missions. This short paper
addresses the technological aspects of partial dynamic
reconfigurable FPGAs, presents some of most important threats
to dependability of these devices, and identifies some research
areas to investigate in order to increase dependability.

Categories and Subject Descriptors
B.8.1 [Hardware]: Performance and Reliability – Reliability,
Testing, and Fault-Tolerance.

General Terms
Reliability.

Keywords
FPGA reconfiguration, dependability.

1. INTRODUCTION
The ubiquitous usage of embedded devices in today’s
technological society is an unquestionable fact. Actually, 98% of
computing devices are embedded in all sort of electronic devices
and machines. Although the large majority of these devices are
low-cost high-volume products, a significant number of
applications require reconfigurability after deployment, in order to
accommodate new functionalities, upgrades or even corrections.

In this scenario, the number of embedded systems using Field
Programmable Gate Arrays (FPGA) is increasing, as they allow
fast time-to-market delivery by offering the possibility of being
upgraded after deployment. Pushed by demand and technological

advances, these devices are becoming increasingly flexible and
powerful [1].

Some of the most recent FPGAs are based in SRAM technology,
which has the dual benefit of fast reprogramability and high
density. However these advantages come at the cost of being
particularly prone to transient faults, especially radiation induced
[5], which may affect the configurable logic elements, thus the
correct functioning of the device. Some sort of fault-tolerance is
therefore mandatory on most applications to achieve a desired
level of dependability [8].

Recent advances in FPGA technology allow the configuration of
just a portion of the FPGA lowering significantly the time
overhead for this operation which, in some situations, can be
performed between different stages of system computation. It is
thus fast enough to stop the system, reconfigure the FPGA, and
resume operation without interfering with its functional behavior,
as perceived by the outside world [2]. However, this operation is
only feasible whenever the application dynamics allows it, which
is not the case in many applications requiring high reliability, and
truly uninterrupted service, such as in many hard real-time
systems.

In some scenarios it is possible to partially reconfigure the FPGA,
while the remaining parts are running [6]. This truly dynamic
partial FPGA reconfiguration can be used to provide fault-
tolerance and hard real-time behavior under both transient and
permanent faults, thus ensuring high reliability even in long
missions where the use of TMR is not feasible.

2. FPGA RECONFIGURATION
State-of-the-art SRAM-based FPGAs are composed by a matrix of
Configurable Logic Blocks (CLB) interconnected by routing
resources, with I/O capabilities and special blocks of RAM. The
device comprises a SRAM, named configuration memory, for
implementing the logic and necessary routing. Every time the
device starts, the configuration memory is programmed with a
bitstream, usually stored in a flash device, generated by a design
tool using a graphical or a programming language approach.

To reduce programming times, manufacturers first introduced the
capability of partial reconfiguration in SRAM-based FPGAs,
allowing the reconfiguration of the device by programming just a
fraction of the FPGA configuration memory. Then, dynamic
partial reconfiguration was added to support the partial
reconfiguration while a static module is running inside de device.
In this case, an external port is used to reprogram the device.
Finally, dynamic partial self-reconfiguration led to the
introduction of ICAP, an internal port that allows a module
running inside the FPGA to reprogram the configuration memory,
and thus the device functionality.

Dynamic partial reconfiguration, using either an internal or
external port opens the possibility of 1) changing the device

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EWDC '11, May 11-12, 2011, Pisa, Italy
Copyright © 2011 ACM 978-1-4503-0284-5/11/05... $10.00

functionality during execution time, thus reducing FPGA
footprint, as usually not all modules need to be running at the
same time and can be “loaded” as needed [7]; and 2) recover
faulty modules affected by transient faults by “reloading” the
module’s bitstream from permanent storage [2].

3. FPGA FAULT MODEL
Given that our goal is to ensure the dependability of systems that
use FPGAs as the final solution, we must consider the threats to
which such circuits are exposed after deployment. The main
concerns are faults affecting the configuration memory. Thus, we
focus on faults affecting SRAM-based memory.
A transient fault affecting the configuration bits, which define the
circuit's static logic, causes an error that will remain until the
corresponding bitstream is reloaded (i.e., it will be permanent
unless one recovers from it). An example is a Single Event Upset
(SEU), which is typically a transient disturbance, but that may
cause a permanent error in the system if the affected bits are not
corrected. Since the configuration bits dominate the FPGA usage
[3], we regard transient faults affecting configuration bits as the
most relevant threat.

In addition to transient faults, we also consider permanent faults
affecting the configuration memory, e.g., due to hardware aging.
Such faults cause permanent damage to SRAM cells and
reloading the bitstream is unlikely to correct the resulting errors.
There is a need to circumvent the permanently damaged portion of
the circuit. Thus, in summary, our focus is on how to recover from
transient faults in the configuration bits, as well as permanent
faults in the entire configuration memory.

4. HIGH RELIABILITY IN REAL-TIME
From the previous sections we observed that transient faults
affecting the configuration bits, which define the circuit’s static
logic and routing inside the FPGA, although leading to a
permanent error, may be easily tolerated by reloading the
bitstream into the SRAM, thus dynamically reconfiguring the
FPGA. This is a kind of time redundancy which has the advantage
of having no spatial overhead and minimum power consumption.
However, this time overhead may be unfeasible for more time
sensitive applications. Even the use of partial reconfiguration,
which reduces significantly this overhead, allowing a short
suspension of the computation during reconfiguration, is not
acceptable in hard real-time applications. In such cases, hardware
redundancy must be used to ensure strict timely behavior.

To guarantee a high level of reliability without delaying or
suspending the service, the redundant modules must be kept
working, such as in the case of a TMR or a standby-spare in hot
standby. This assures an uninterrupted service in case one of the
active modules fails, leaving the system in a degraded system
dependability level. This can be achieved with a single FPGA,
containing the multiple replicas [4].

This is where partial dynamic reconfigurability of FPGAs plays
an important role. In order to recover system dependability, thus
providing high-reliability, the failed module may be dynamically
repaired, either by reloading the bitstream in the FPGA frames
that contained the failed module or, if the fault was permanent, by
moving the module into other free frames of the FPGA.
This dynamic FPGA reconfiguration poses, however, some
challenges. First of all, during partial reconfiguration, the active
module execution must not be suspended or delayed. This is really
a challenge since connecting the recovered module to the voter or

switch while this one is executing is not trivial: the modules must
be connected to a common bus and some redundant hardware
arbitration must be in place. Another important issue regards
recovering the state of this module, since it must execute in
parallel with the active module(s). This must be done using
forward error recovery and, by the end of the recovery process, it
must run in synchrony with the active module(s). Finally, power
consumption should be also a concern when targeting embedded
systems, since using active redundant modules may more than
triplicate the increase of power consumption.

5. CONCLUSIONS AND CURRENT
WORK
In this paper we addressed a novel approach to guarantee hard
real-time performance under the occurrence of both permanent
and transient faults using hardware reconfiguration. This is only
possible due to recent advances in FPGA technology that allows
dynamic reconfiguration of parts of the IC while other parts keep
working in parallel, unaffected by the reconfiguration. This is a
major technological breakthrough in programmable hardware that
can be used for dependability purposes. At the very least it
becomes possible to recover from transient faults by simply
reloading the original bitstream, or from permanent faults by
relocating it into another area of the FPGA.

We are currently investigating the applicability of this approach in
the development of real-time embedded controllers, requiring high
reliability in long-term missions.

6. REFERENCES
[1] Rana, V., Santambrogio, M., and Sciuto, D. 2007. Dynamic

Reconfigurability in Embedded System Design. IEEE
International Symposium on Circuits and Systems (New
Orleans, LA, May 2007).

[2] Bolchini, C., Quarta, D., and Santambrogio, M. D. 2007.
SEU Mitigation for SRAM-Based FPGAs through Dynamic
Partial Reconfiguration. In Proceedings of the 17th ACM
Great Lakes symposium on VLSI, ACM, NY, USA, 55-60.

[3] Asadi, H., Tahoori, M. B., Mullins, B., Kaeli, D., and
Granlund, K. 2007. Soft Error Susceptibility Analysis of
SRAM-Based FPGAs in High-Performance Information
Systems. In IEEE Transactions on Nuclear Science (Dec.
2007), vol. 54, no. 6, pp. 2714–2726.

[4] Bolchini, C., Miele, A., and Santambrogio, M. 2007. TMR
and Partial Dynamic Reconfiguration to mitigate SEU faults
in FPGAs. 2007. International Symposium on Defect and
Fault-Tolerance in VLSI Systems (Rome, Italy, Sep. 2007).

[5] Baumann, R. 2005. Soft errors in advanced computer
systems. IEEE Design & Test of Computers (May–June
2005), 258–266.

[6] Blodget, B., James-Roxby, P., Keller, E., McMillan, S., and
Sundararajan, P. 2003. A Self-reconfiguring Platform. Field-
Programmable Logic and Applications (Lisbon, Sep 2003).
565-574

[7] Upegui, A., and Sanchez, E. 2005. Evolving hardware by
dynamically reconfiguring Xilinx FPGAs. Evolvable
Systems: From Biology to Hardware, vol. 3637/2005, 56–65.

[8] Cheatham, J., Emmert, J., and Baumgart, S. 2006. A survey
of fault tolerant methodologies for FPGAs. ACM Trans. Des.
Autom. Electron. Syst. 11, 2 (April 2006), 501-533.

