
1

A CONTINUOUS DATA INTEGRATION METHODOLOGY FOR
SUPPORTING REAL-TIME DATA WAREHOUSING

Ricardo Jorge Santos (1) and Jorge Bernardino (1, 2)
(1) CISUC – Centre of Informatics and Systems of the University of Coimbra - University of Coimbra

(2) ISEC – Superior Engineering Institute of Coimbra – Polytechnic Institute of Coimbra
lionsoftware.ricardo@gmail.com, jorge@isec.pt

Keywords: real-time and active data warehousing, continuous data integration, refreshment loading process

Abstract: A data warehouse provides information for analytical processing, decision making and data mining tools. As the
concept of real-time enterprise evolves, the synchronism between transactional data and data warehouses,
statically implemented, has been reviewed. Traditional data warehouse systems have static structures of their
schemas and relationships between data, and therefore are not able to support any dynamics in their structure
and content. Their data is only periodically updated because they are not prepared for continuous data
integration. For these purposes, real-time data warehouses seem to be very promising. In this paper we present a
methodology on how to adapt data warehouse schemas and user-end OLAP (On-Line Analytical Processing)
queries for efficiently supporting real-time data integration. To accomplish this, we use techniques such as table
structure replication and query predicate restrictions for selecting data, managing to enable continuous data
integration in the data warehouse with minimum impact in query execution time. We demonstrate the
functionality of the method by analyzing its impact in query performance using benchmark TPC-H executing
query workloads while simultaneously performing continuous data integration at various insertion time rates.

1 INTRODUCTION

A data warehouse (DW) collects data from multiple
heterogeneous operational source (OLTP – On-Line
Transaction Processing) systems and stores integrated
information in a central repository, used by analytical
applications (OLAP – On-Line Analytical
Processing) with different user requirements. The
common form of getting decision making information
is using OLAP tools (Chaudhuri, 1997). The data
source for these tools is the DW data area, where
records are updated periodically using ETL
(Extraction, Transformation and Loading) tools. ETL
processes identify and extract relevant data from
OLTP source systems, cleaning and molding it into an
adequate integrated format and finally, loading the
final formatted data into the DW’s database (DB).

Executing this update periodically implies that
most recent OLTP source records are not included
into the data area, being excluded from the results

supplied by OLAP tools. It has been assumed that
data in the DW can lag at least a day if not a week or
a month behind the actual operational data in the
OLTP systems (Zurek, 2001). This has been based on
the notion that business decisions do not require up-
to-date information, but only the (recent) history. This
still holds for a wide range of traditional businesses
such as traditional retailing. However, advents like e-
business, online telecommunications and health
systems, for instance, information should be delivered
as fast as possible to knowledge workers and decision
systems which rely on it to react in a near real-time
manner, according to the most recent data captured by
an organization’s information system (Inmon, 2001).
In many health systems, all new data must be
analyzed and coped with as a continuous data stream.
It has to be immediately processed in order to trigger
responses to knowledge workers and decision makers.
In most cases, update delays greater than a few
seconds may jeopardise the usefulness of the whole
system. When using DWs in this kind of systems,

2

supporting real-time data warehousing (RTDW) is a
vital issue. These scenarios suggest that the time
between the moment operational data is recorded and
the moment it is required for analytical purposes is
dramatically reduced, making RTDW support a
critical issue. Additionally, the real-time enterprise
requires data to be always up to date.

DW refreshment (integration of new data) is
traditionally performed in off-line fashion, implying
that while processes for updating the data area are
executed, OLAP users and applications cannot access
any data. This set of activities takes place in a loading
time window, usually during the night, in a daily,
weekly or even monthly basis, to avoid overloading
the operational OLTP source systems with the extra
workload of this workflow. Active Data Warehousing
refers a new trend where DWs are updated as
frequently as possible, due to high demands of users
for fresh data. Real-Time Data Warehousing
(RTDW) is also referred for that reason in (White,
2002). The conclusions presented from a knowledge
exchange network formed by major technological
partners in Denmark (Pederson, 2004) refer that all
partners agree real-time enterprise and continuous
data availability is considered a short term priority for
all business and general data-based advents.

In a nutshell, accomplishing near zero latency
between OLTP and OLAP systems consists in
insuring continuous data integration from the first
type of systems to the other. To make this feasible,
several issues need to be taken under consideration:
(1) Operational OLTP systems are designed to meet
well-specified (short) response time requirements,
meaning that a RTDW scenario would have to cope
with the overhead implied in those OLTP systems; (2)
The DW tables directly related with transactional
records (commonly named as fact tables) are usually
huge in size, and therefore, addition of new data and
consequent operations such as index updating would
certainly have impact in OLAP systems’ performance
and data availability. Our work focuses on the DW
perspective, presenting an efficient methodology for
continuous data integration ETL loading process and
techniques on how to adapt the DW’s schemas for
supporting continuous data integration and adapting
OLAP queries for using all the integrated data.

The remainder of this paper is as follows. In
section 2, we refer background and related work in
real-time data warehousing. Section 3 explains our
methodology, and in section 4 we present an
experimental evaluation and demonstrate its
functionality. The final section contains concluding
remarks and future work.

2 RELATED WORK

The DW needs to be updated continuously to reflect
source data updates. DW users are often not only
interested in monitoring current information, but also
in analyzing the history to predict future trends.
Therefore, real-world DWs are often temporal, but
their temporal support is implemented in an ad doc
manner that is difficult to automate. In practice, many
operational source systems are nontemporal, i.e., they
store only the current state of their data, not the
complete history. So far, research has mostly focused
on the problem of maintaining the warehouse in its
traditional periodically update setup (Yang, 2001B)
(Labio, 2000). In a different line of research, data
streams (Abadi, 2003) (Babu, 2001) (Lomet, 2003)
(Srivastava, 2004) appear as a potential solution.
Nevertheless, research in data streams has focused on
topics concerning the front-end, such as on-the-fly
computation of queries without a systematic treatment
of the issues raised at the back-end of a DW
(Karakasidis, 2005). Much of the recent work
dedicated to RTDW is focused on conceptual ETL
modelling (Vassiliadis, 2001) (Bruckner, 2002A)
(Bouzeghoub, 1999) (Simitsis, 2005), lacking the
presentation of specific extraction, transformation and
loading algorithms along with their consequent OLTP
and OLAP performance issues. Our contribution is
the presentation of a methodology which efficiently
enables continuous data integration in the DW and
aims to minimize its negative impact in OLAP end
user query workload executions. The issues focused
in this paper concern the DW end of the system,
referring how to perform the loading processes of
ETL procedures and the DW’s data area usage for
efficiently supporting continuous data integration.
Extracting and transforming of operational (OLTP)
source systems data are not the focus of this paper.

In (Bouzeghoub, 1999) the authors describe an
approach which clearly separates the DW refreshment
process from its traditional handling as a view
maintenance or bulk loading process. They provide a
conceptual model of the process, treated as a
composite workflow, but they do not describe how to
efficiently propagate the date. In (Vassiliadis, 2001),
authors describe ARKTOS ETL tool, capable of
modeling and executing practical ETL scenarios by
providing explicit primitives for capturing common
tasks (such as data cleaning, scheduling and data
transformations). ARKTOS uses a declarative
language, offering graphical and declarative features
for defining DW transformations optimizes execution
of complex sequences for transformation and

3

cleansing tasks. Recently, (Kuhn, 2003) presents a
zero-delay DW with Gong, which assists in providing
confidence in the data available to every branch of the
organization. Gong, a Tecco product (Binder, 2003),
offers data uni/bi-directional replication between
homogeneous and heterogeneous distributed DBs.
Gong enables zero-delay business, assisting in daily
running and decision making in the organization.

3 OUR METHODOLOGY

The main problems in maximizing functionality of
a RTDW are related with ETL processes needed for
integrating new data. These processes lead to two
major problems: (1) a significant amount of
processing time is necessary for extracting and
transforming OLTP data, that affects the processing
speed and availability of the OLTP source systems;
(2) DW updating operations are complex and time
consuming, lowering its availability to OLAP
applications and end users. The major issue is how to
enable continuous data integration, assuring that it
minimizes negative impact in main characteristics of
the system, such as:

• OLAP analytical most recent data availability;
• OLAP analytical environments’ response time;
• OLTP operational systems’ response time.
Therefore, we are motivated by the following

requirements in real-time data warehousing:
• Maximizing the freshness of DW data by

efficiently and rapidly integrating most recent
OLTP data, preferably with continuous data
integration;

• Minimizing OLAP instructions response time
while simultaneously performing continuous
data integration;

From the DW side, updating huge tables and
related structures (such as indexes, materialized views
and other integrated components) makes executing
OLAP query workloads simultaneously with
continuous data integration a very difficult task. Our
methodology shows how to minimize the processing
time and workload required for update processes. We
also present how to adapt those OLAP workloads in
order to take advantage of all the most recent data and
minimize the impact caused by its integration in its
execution time. Finally, our methodology allows to
facilitate the DW off-line update time window,
because the extraction and transformation issues are
no longer present at that moment, for the data already
lies within the DW and all ETL data extraction and/or
transformation routines have been executed during

the continuous data integration. Furthermore, the data
structure of the replicated tables is exactly the same
as the original DW schema. This minimizes the time
window for packing the data area, since its update
represents a one step process by resuming itself as a
cut-and-paste operation from the temporary tables to
the original ones, as we shall demonstrate further on.

Our methodology is focused on four major areas:
(1) data warehouse schema adaptation; (2) ETL
loading procedures; (3) OLAP query adaptation; and
(4) DW database packing and reoptimization.

3.1 Adapting the DW Schema

For the area concerning DW schema adaptation,
we adopt the method presented in Figure 2. By
supplying empty or small sized tables without any
kind of constraint or attached physical file related to it
for supporting the record insertion operations inherent
to continuous data integration, we guarantee the
simplest and fastest logical and physical support for
achieving our goals (Kimball, 2005). Transactional
OLTP records should be loaded into the DW
sequentially. The unique sequential identifier attribute
present in each temporary table will allow discarding
the rows which have been replaced for the identified
OLTP transaction, as we shall demonstrate further on.

Data warehouse schema adaptation method for
supporting real-time data warehousing: Creation of
an exact structural replica of all the tables of the data
warehouse that could eventually receive new data.
These tables (referred from now on as temporary
tables) are to be created empty of contents, with no
defined indexes, primary key, or constraints of any kind,
including referential integrity. For each table, an extra
attribute must be created, for storing a unique sequential
identifier related to the insertion of each row within the
temporary tables.

Figure 2. Method for adapting the data warehouse’s schema
for supporting our real-time methodology.

3.2 ETL Loading Procedures

To refresh the DW, once the ETL application has
extracted and transformed the OLTP data into the
correct format for loading the data area, it shall
proceed immediately in inserting that record as a new
row in the correspondent temporary table, filling the
unique sequential identifier attribute with the
autoincremented number. This number starts at 1 for
the first record to insert in the DW after executing the
packing and reoptimizing technique (explained in
section 3.4), and then autoincremented by one unit for
each record insertion. The algorithm for continuous
data integration by the ETL tool is similar to Figure 3.

4

Trigger for each new record in OLTP system
 Extract new record from OLTP system
 Clean and transform the OLTP data, shaping it into

the data warehouse destination table’s format
 Increment record insertion unique counter
 Create a new record in the data warehouse

temporary destination table
 Insert the data in the temporary destination table’s

new record, along with the value of the record
insertion unique counter

End_Trigger

Figure 3. Continuous data integration algo in ETL tool.

3.3 OLAP Query Adaptation

Suppose a sales data warehouse has the schema
illustrated in Figure 4, with two dimensional tables
(Store and Customer, representing business descriptor
entities) and one fact table (Sales, storing business
measures aggregated from transactions). This DW
stores sales value per store, per customer, per day.

Figure 4. Sample sales data warehouse schema.

Consider the OLAP query presented in Figure 5,
used for calculating the total revenue per store in the
last seven days.
SELECT S_StoreKey,
 Sum(S_Value) AS Last7DaysSaleVal
FROM Sales
WHERE S_Date>=Date()-7
GROUP BY S_StoreKey

Figure 5. OLAP query for calculating the total revenue per
store in last seven days.

Figure 6. Sample sales data warehouse schema modified for
supporting real-time data warehousing.

The modified schema for supporting RTDW
based on our methodology is illustrated in Figure 6.
To take advantage of our schema modification
method and include most recent data in the OLAP
query response, the queries should be rewritten taking
under consideration the following rule: the FROM
clause should join all rows from the required
original and temporary tables with relevant data,
excluding all fixed restriction predicate values from
the WHERE clause whenever possible. The
modification for the instruction presented in Figure 5
is illustrated in Figure 7, respecting our methods.

SELECT S_StoreKey,
 Sum(S_Value) AS Last7DaysSaleVal
FROM (SELECT S_StoreKey,
 S_Value FROM Sales
 WHERE S_Date>=Date()-7)
 UNION ALL
 (SELECT STmp_StoreKey,
 STmp_Value FROM SalesTmp
 WHERE STmp_Date>=Date()-7)
GROUP BY S_StoreKey

Figure 7. OLAP query for calculating the total revenue per
store in last seven days.

It can be seen that the relevant rows from both
issue tables are joined for supplying OLAP query
answer, filtering the rows in the resulting dataset
according to its restrictions in the original instruction.

3.4 Packing and Reoptimizing the DW

Since the data is integrated within tables without
access optimization of any kind that could speed up
querying, such as indexes, it is obvious that it implies
a decrease of performance. Due to the volume of
occupied physical space, after many insertions the
performance becomes too poor to be considered
acceptable. To regain performance optimization it is
necessary to execute a pack routine for updating the
original DW schema tables using the records in the
temporary tables, and recreate those temporary tables
empty of contents, along with rebuilding original
tables’ indexes and materialized views, so maximum
processing speed is obtained once more.

For updating the original DW tables, the rows in
the temporary tables should be aggregated according
to the original tables’ primary keys, maintaining the
rows with highest unique counter attribute value for
possible duplicate values, for they represent the most
recent records. The time needed for executing these
procedures represents the only period of time in
which the DW in unavailable to OLAP tools and end
users, for they need to be executed exclusively. The
appropriate moment for doing this may be determined
by the DW Administrator, or automatically,

Customer

C_CustKey
C_Name
C_Address
C_PostalCode
C_Phone
C_EMail

Sales

S_StoreKey
S_CustomerKey
S_Date
S_Value

Store

St_StoreKey
St_Description
St_Address
St_PostalCode
St_Phone
St_EMail
St_Manager

Customer

C_CustKey
C_Name
C_Address
C_PostalCode
C_Phone
C_EMail

Sales

S_StoreKey
S_CustomerKey
S_Date
S_Value

Store

St_StoreKey
St_Description
St_Address
St_PostalCode
St_Phone
St_EMail
St_Manager

CustomerTmp

CTmp_CustKey
CTmp_Name
CTmp_Address
CTmp_PostalCode
CTmp_Phone
CTmp_EMail
CTmp_Counter

SalesTmp

STmp_StoreKey
STmp_CustomerKey
STmp_Date
STmp_Value
STmp_Counter

StoreTmp

StTmp_StoreKey
StTmp_Description
StTmp_Address
StTmp_PostalCode
StTmp_Phone
StTmp_EMail
StTmp_Manager
StTmp_Counter

5

considering parameters such as a fixed number of
records in temporary tables, the amount of physically
occupied space, or yet a predefined period of time.
The definition of this moment is not object of
discussion in this paper.

3.5 Final Remarks on Our Methodology

Notice that only record insertions are used for
updating the DW for all related transactions in the
OLTP source systems. Since this operation does not
require record locking (except for the new appended
record itself) nor search operations for previously
stored data, the time required to do it is minimal. The
issue of record locking is strongly enforced by the
fact that the referred tables do not have any indexes
or primary keys, implying no record locking, except
for the appended record itself. Since they do not have
constraints of any sort, including referential integrity
and primary keys, there is no need to execute time
consuming tasks such as index updating or referential
integrity cross checks. This allows us to state that the
data update time window is minimal for insertion of
new data, maximizing its availability, and
contributing to increase the DW’s global availability
and minimize negative impact in its performance.

The amount of “information buckets” which the
data passes through in the ETL Area is also minimal,
for temporary storage is almost not needed. Instead of
extracting a large amount of OLTP data, what
happens in “traditional” DW bulk loading, the volume
of extracted and transformed real-time data is very
reduced (few dozen bytes), since it consists of only
one transaction per execution cycle, so we may
assume that the extraction and transformation phase
will be cleaner and more time efficient.

4 EXPERIMENT EVALUATION

Recurring to TPC-H decision support benchmark
(TPC-H) we tested our methodology creating 5GB,
10GB and 20GB size DWs in ORACLE 10g RDBMS
(Oracle, 2005). We also tested the system’s response
executing 1, 2, 4, 8 and 16 simultaneous query
workloads to see how it reacted according to the
number of simultaneous users executing those
workloads. We used an Intel Celeron 2.8GHz with
2GB of SDRAM and a 7200rpm 160GB hard disk.
The modified schema according to our methodology
can be seen in Figure 8. Tables Region and Nation
are not included as temporary tables because they are
fixed-size and therefore do not receive new data.

Figure 8. TPC-H schema modified for supporting RTDW.

The selected query workloads, TPC-H queries 1,
8, 12 and 20 (TPC-H), were executed in random
order for each simultaneous user. The time interval
between transactions (Transac. Interval) for each
scenario is illustrated in tables 1 to 3. Each new
transaction represents insertion of an average of four
records in LineItemTmp and one row in each of the
other temporary tables, continuously integrated for a
period of 8 hours. Supporting RTDW capability in all
scenarios is somewhat between 6.9% and 28.6% of
query workload execution time, as shown in figures 9
to 11, reporting percentage of workloads execution
overtime using RTDW, relatively to execution against
standard workload without continuous integration.

Table 1. TPC-H 5GB data warehouse transaction real-time
integration characteristics.
 TPC-H 5GB Data Warehouse
 Scenario A Scenario B Scenario C
Transactions 3.072 6.205 12.453
Transac. Interval 9,38 sec 4,64 sec 2,31 sec

Table 2. TPC-H 10GB data warehouse transaction real-time
integration characteristics.
 TPC-H 10GB Data Warehouse
 Scenario A Scenario B Scenario C
Transactions 6.192 12.592 25.067
Transac. Interval 4,65 sec 2,29 sec 1,15 sec

Table 3. TPC-H 20GB data warehouse transaction real-time
integration characteristics.
 TPC-H 20GB Data Warehouse
 Scenario A Scenario B Scenario C
Transactions 12.416 25.062 50.237
Transac. Interval 2,32 sec 1,15 sec 0,57 sec

CustomerTmp

CT_CustKey
CT_Name
CT_NationKey
Other Attributes
CT_Counter

SupplierTmp

ST_SuppKey
ST_Name
ST_NationKey
Other Attributes
ST_Counter

PartTmp

PT_PartKey
PT_Name
Other Attributes
PT_Counter

PartSuppTmp

PST_PartKey
PST_SuppKey
Other Attributes
PST_Counter

OrdersTmp

OT_OrderKey
OT_CustKey
Other Attributes
OT_Counter

LineItemTmp

LT_OrderKey
LT_LineNumber
LT_PartKey
LT_SuppKey
Other Attributes
LT_Counter

Customer

C_CustKey
C_Name
C_NationKey
Other Attributes

Supplier

S_SuppKey
S_Name
S_NationKey
Other Attributes

Part

P_PartKey
P_Name
Other Attributes PartSupp

PS_PartKey
PS_SuppKey
Other Attributes

Nation

N_NationKey
N_Name
N_RegionKey
Other Attributes

Region

R_RegionKey
R_Name
Other Attributes

Orders

O_OrderKey
O_CustKey
Other Attributes

LineItem

L_OrderKey
L_LineNumber
L_PartKey
L_SuppKey
Other Attributes

6

TPC-H 10GB Data Warehouse

7,6 8,2 8,8 8,7 9,2
12,6 13,3 12,7 13,6 14,415,4 17,2 16,4

18,7 19,3

0

5

10

15

20

25

1 User 2 Users 4 Users 8 Users 16 Users

%
 R

TD
W

 O
ve

rti
m

e

Scenario A Scenario B Scenario C
Figure 9. TPC-H 5GB DW overtime percentages

TPC-H 10GB Data Warehouse

9,2 9,7 9,9 9,7 10,1

14,2
16,1 15,2 15,4 15,9

18,7 17,4
21,3 20,6

22,7

0

5

10

15

20

25

1 User 2 Users 4 Users 8 Users 16 Users

%
 R

TD
W

 O
ve

rti
m

e

Scenario A Scenario B Scenario C
Figure 10. TPC-H 10GB DW overtime percentages

TPC-H 5GB Data Warehouse

11,2 12,3
8,2 6,9 7

18,8 17,9 17,2 16,1 17,4

26,9 25,4
28,6

24,2 24,8

0
5

10
15
20
25
30
35

1 User 2 Users 4 Users 8 Users 16 Users

%
 R

TD
W

 O
ve

rti
m

e

Scenario A Scenario B Scenario C

Figure 11. TPC-H 20GB DW overtime percentages

5 CONCLUSIONS

This paper refers the requirements for RTDW and
presents a methodology for supporting it by enabling
continuous data integration while minimizing impact
in query execution on the DW end. This is done by
data structure replication and adapting query
instructions to take advantage of the new real-time
data warehousing schemas.

We have shown its functionality, recurring to a
simulation using the TPC-H benchmark, performing
continuous data integration at various time rates
against the execution of various simultaneous query
workloads, for DWs with different scale sizes. All
scenarios show that it is possible to achieve real-time
data warehousing performance in exchange for an
average increase of ten to thirty percent in query
execution time. This should be considered the price to
pay for real-time capability within the DW.

As future work we intend to develop an ETL tool
integrating this methodology. There is also a huge
space of research for optimizing query instructions
used.

6 REREFENCES

Abadi, D. J., Carney, D., et al., 2003. “Aurora: A New

Model and Architecture for Data Stream
Management”, The VLDB Journal, 12(2), pp. 120-139.

Babu, S., Widom, J., 2001. “Continuous Queries Over
Data Streams”, SIGMOD Record 30(3), pp. 109-120.

Binder, T., 2003. Gong User Manual, Tecco Software
Entwicklung AG.

Bouzeghoub, M., Fabret, F., Matulovic, M., 1999.
“Modeling Data Warehouse Refreshment Process as a
Workflow Application”, Intern. Workshop on Design
and Management of Data Warehouses (DMDW).

Bruckner, R. M., List, B., Schiefer, J., 2002 A. “Striving
Towards Near Real-Time Data Integration for Data
Warehouses”, International Conference on Data
Warehousing and Knowledge Discovery (DAWAK).

Chaudhuri, S., Dayal, U., 1997. “An Overview of Data
Warehousing and OLAP Technology”, SIGMOD
Record, Volume 26, Number 1, pp. 65-74.

Inmon, W. H., Terdeman, R. H., Norris-Montanari, J.,
Meers, D., 2001. Data Warehousing for E-Business, J.
Wiley & Sons.

Karakasidis, A., Vassiliadis, P., Pitoura, E., 2005. “ETL
Queues for Active Data Warehousing”, IQIS’05.

Kuhn, E., 2003. “The Zero-Delay Data Warehouse:
Mobilizing Heterogeneous Databases”, International
Conference on Very Large Data Bases (VLDB).

Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom,
J., 2000. “Performance Issues in Incremental
Warehouse Maintenance”, (VLDB).

Lomet, D., Gehrke, J., 2003. Special Issue on Data Stream
Processing, IEEE Data Eng. Bulletin, 26(1).

Oracle Corporation, 2005. www.oracle.com
Pedersen, T. N., 2004. “How is BI Used in Industry?”, Int.

Conf. on Data W. and Knowledge Discov. (DAWAK).
Simitsis, A., Vassiliadis, P., Sellis, T., 2005. “Optimizing

ETL Processes in Data Warehouses”, International
Conference on Data Engineering (ICDE).

Srivastava, U., Widom, J., 2004. “Flexible Time
Management in Data Stream Systems”, PODS.

TPC-H decision support benchmark, Transaction
Processing Council, www.tpc.com.

Vassiliadis, P., Vagena, Z., Skiadopoulos, S.,
Karayannidis, N., Sellis, T., 2001. “ARKTOS: Towards
the Modelling, Design, Control and Execution of ETL
Processes”, Information Systems, Vol. 26(8).

White, C., 2002. “Intelligent Business Strategies: Real-
Time Data Warehousing Heats Up”, DM Preview,
www.dmreview.com/article_sub_cfm?articleId=5570.

Yang, J., 2001. “Temporal Data Warehousing”, Ph.D.
Thesis, Dpt. Computer Science, Stanford University.

Yang, J., and Widom, J., 2001B. “Temporal View Self-
Maintenance”, 7th International Conference on
Extending Database Technology (EDBT).

Zurek, T., Kreplin, K., 2001. “SAP Business Information
Warehouse – From Data Warehousing to an E-
Business Platform”, (ICDE).

