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Abstract:  A data warehouse provides information for analytical processing, decision making and data mining tools. As the 
concept of real-time enterprise evolves, the synchronism between transactional data and data warehouses, 
statically implemented, has been reviewed. Traditional data warehouse systems have static structures of their 
schemas and relationships between data, and therefore are not able to support any dynamics in their structure 
and content. Their data is only periodically updated because they are not prepared for continuous data 
integration. For these purposes, real-time data warehouses seem to be very promising. In this paper we present a 
methodology on how to adapt data warehouse schemas and user-end OLAP (On-Line Analytical Processing) 
queries for efficiently supporting real-time data integration. To accomplish this, we use techniques such as table 
structure replication and query predicate restrictions for selecting data, managing to enable continuous data 
integration in the data warehouse with minimum impact in query execution time. We demonstrate the 
functionality of the method by analyzing its impact in query performance using benchmark TPC-H executing 
query workloads while simultaneously performing continuous data integration at various insertion time rates.

1  INTRODUCTION 

A data warehouse (DW) collects data from multiple 
heterogeneous operational source (OLTP – On-Line 
Transaction Processing) systems and stores integrated 
information in a central repository, used by analytical 
applications (OLAP – On-Line Analytical 
Processing) with different user requirements. The 
common form of getting decision making information 
is using OLAP tools (Chaudhuri, 1997). The data 
source for these tools is the DW data area, where 
records are updated periodically using ETL 
(Extraction, Transformation and Loading) tools. ETL 
processes identify and extract relevant data from 
OLTP source systems, cleaning and molding it into an 
adequate integrated format and finally, loading the 
final formatted data into the DW’s database (DB).  

Executing this update periodically implies that 
most recent OLTP source records are not included 
into the data area, being excluded from the results 

supplied by OLAP tools. It has been assumed that 
data in the DW can lag at least a day if not a week or 
a month behind the actual operational data in the 
OLTP systems (Zurek, 2001). This has been based on 
the notion that business decisions do not require up-
to-date information, but only the (recent) history. This 
still holds for a wide range of traditional businesses 
such as traditional retailing. However, advents like e-
business, online telecommunications and health 
systems, for instance, information should be delivered 
as fast as possible to knowledge workers and decision 
systems which rely on it to react in a near real-time 
manner, according to the most recent data captured by 
an organization’s information system (Inmon, 2001). 
In many health systems, all new data must be 
analyzed and coped with as a continuous data stream. 
It has to be immediately processed in order to trigger 
responses to knowledge workers and decision makers. 
In most cases, update delays greater than a few 
seconds may jeopardise the usefulness of the whole 
system. When using DWs in this kind of systems, 
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supporting real-time data warehousing (RTDW) is a 
vital issue. These scenarios suggest that the time 
between the moment operational data is recorded and 
the moment it is required for analytical purposes is 
dramatically reduced, making RTDW support a 
critical issue. Additionally, the real-time enterprise 
requires data to be always up to date. 

DW refreshment (integration of new data) is 
traditionally performed in off-line fashion, implying 
that while processes for updating the data area are 
executed, OLAP users and applications cannot access 
any data. This set of activities takes place in a loading 
time window, usually during the night, in a daily, 
weekly or even monthly basis, to avoid overloading 
the operational OLTP source systems with the extra 
workload of this workflow. Active Data Warehousing 
refers a new trend where DWs are updated as 
frequently as possible, due to high demands of users 
for fresh data. Real-Time Data Warehousing 
(RTDW) is also referred for that reason in (White, 
2002). The conclusions presented from a knowledge 
exchange network formed by major technological 
partners in Denmark (Pederson, 2004) refer that all 
partners agree real-time enterprise and continuous 
data availability is considered a short term priority for 
all business and general data-based advents. 

In a nutshell, accomplishing near zero latency 
between OLTP and OLAP systems consists in 
insuring continuous data integration from the first 
type of systems to the other. To make this feasible, 
several issues need to be taken under consideration: 
(1) Operational OLTP systems are designed to meet 
well-specified (short) response time requirements, 
meaning that a RTDW scenario would have to cope 
with the overhead implied in those OLTP systems; (2) 
The DW tables directly related with transactional 
records (commonly named as fact tables) are usually 
huge in size, and therefore, addition of new data and 
consequent operations such as index updating would 
certainly have impact in OLAP systems’ performance 
and data availability. Our work focuses on the DW 
perspective, presenting an efficient methodology for 
continuous data integration ETL loading process and 
techniques on how to adapt the DW’s schemas for 
supporting continuous data integration and adapting 
OLAP queries for using all the integrated data. 

The remainder of this paper is as follows. In 
section 2, we refer background and related work in 
real-time data warehousing. Section 3 explains our 
methodology, and in section 4 we present an 
experimental evaluation and demonstrate its 
functionality. The final section contains concluding 
remarks and future work. 

2  RELATED WORK 

The DW needs to be updated continuously to reflect 
source data updates. DW users are often not only 
interested in monitoring current information, but also 
in analyzing the history to predict future trends. 
Therefore, real-world DWs are often temporal, but 
their temporal support is implemented in an ad doc 
manner that is difficult to automate. In practice, many 
operational source systems are nontemporal, i.e., they 
store only the current state of their data, not the 
complete history. So far, research has mostly focused 
on the problem of maintaining the warehouse in its 
traditional periodically update setup (Yang, 2001B) 
(Labio, 2000). In a different line of research, data 
streams (Abadi, 2003) (Babu, 2001) (Lomet, 2003) 
(Srivastava, 2004) appear as a potential solution. 
Nevertheless, research in data streams has focused on 
topics concerning the front-end, such as on-the-fly 
computation of queries without a systematic treatment 
of the issues raised at the back-end of a DW 
(Karakasidis, 2005). Much of the recent work 
dedicated to RTDW is focused on conceptual ETL 
modelling (Vassiliadis, 2001) (Bruckner, 2002A) 
(Bouzeghoub, 1999) (Simitsis, 2005), lacking the 
presentation of specific extraction, transformation and 
loading algorithms along with their consequent OLTP 
and OLAP performance issues. Our contribution is 
the presentation of a methodology which efficiently 
enables continuous data integration in the DW and 
aims to minimize its negative impact in OLAP end 
user query workload executions. The issues focused 
in this paper concern the DW end of the system, 
referring how to perform the loading processes of 
ETL procedures and the DW’s data area usage for 
efficiently supporting continuous data integration. 
Extracting and transforming of operational (OLTP) 
source systems data are not the focus of this paper. 

In (Bouzeghoub, 1999) the authors describe an 
approach which clearly separates the DW refreshment 
process from its traditional handling as a view 
maintenance or bulk loading process. They provide a 
conceptual model of the process, treated as a 
composite workflow, but they do not describe how to 
efficiently propagate the date. In (Vassiliadis, 2001), 
authors describe ARKTOS ETL tool, capable of 
modeling and executing practical ETL scenarios by 
providing explicit primitives for capturing common 
tasks (such as data cleaning, scheduling and data 
transformations). ARKTOS uses a declarative 
language, offering graphical and declarative features 
for defining DW transformations optimizes execution 
of complex sequences for transformation and 
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cleansing tasks. Recently, (Kuhn, 2003) presents a 
zero-delay DW with Gong, which assists in providing 
confidence in the data available to every branch of the 
organization. Gong, a Tecco product (Binder, 2003), 
offers data uni/bi-directional replication between 
homogeneous and heterogeneous distributed DBs. 
Gong enables zero-delay business, assisting in daily 
running and decision making in the organization. 

3  OUR METHODOLOGY 

The main problems in maximizing functionality of 
a RTDW are related with ETL processes needed for 
integrating new data. These processes lead to two 
major problems: (1) a significant amount of 
processing time is necessary for extracting and 
transforming OLTP data, that affects the processing 
speed and availability of the OLTP source systems; 
(2) DW updating operations are complex and time 
consuming, lowering its availability to OLAP 
applications and end users. The major issue is how to 
enable continuous data integration, assuring that it 
minimizes negative impact in main characteristics of 
the system, such as: 

• OLAP analytical most recent data availability; 
• OLAP analytical environments’ response time; 
• OLTP operational systems’ response time. 
Therefore, we are motivated by the following 

requirements in real-time data warehousing: 
• Maximizing the freshness of DW data by 

efficiently and rapidly integrating most recent 
OLTP data, preferably with continuous data 
integration; 

• Minimizing OLAP instructions response time 
while simultaneously performing continuous 
data integration; 

From the DW side, updating huge tables and 
related structures (such as indexes, materialized views 
and other integrated components) makes executing 
OLAP query workloads simultaneously with 
continuous data integration a very difficult task. Our 
methodology shows how to minimize the processing 
time and workload required for update processes. We 
also present how to adapt those OLAP workloads in 
order to take advantage of all the most recent data and 
minimize the impact caused by its integration in its 
execution time. Finally, our methodology allows to 
facilitate the DW off-line update time window, 
because the extraction and transformation issues are 
no longer present at that moment, for the data already 
lies within the DW and all ETL data extraction and/or 
transformation routines have been executed during 

the continuous data integration. Furthermore, the data 
structure of the replicated tables is exactly the same 
as the original DW schema. This minimizes the time 
window for packing the data area, since its update 
represents a one step process by resuming itself as a 
cut-and-paste operation from the temporary tables to 
the original ones, as we shall demonstrate further on. 

Our methodology is focused on four major areas: 
(1) data warehouse schema adaptation; (2) ETL 
loading procedures; (3) OLAP query adaptation; and 
(4) DW database packing and reoptimization. 

3.1 Adapting the DW Schema 

For the area concerning DW schema adaptation, 
we adopt the method presented in Figure 2. By 
supplying empty or small sized tables without any 
kind of constraint or attached physical file related to it 
for supporting the record insertion operations inherent 
to continuous data integration, we guarantee the 
simplest and fastest logical and physical support for 
achieving our goals (Kimball, 2005). Transactional 
OLTP records should be loaded into the DW 
sequentially. The unique sequential identifier attribute 
present in each temporary table will allow discarding 
the rows which have been replaced for the identified 
OLTP transaction, as we shall demonstrate further on. 

Data warehouse schema adaptation method for 
supporting real-time data warehousing: Creation of 
an exact structural replica of all the tables of the data 
warehouse that could eventually receive new data. 
These tables (referred from now on as temporary 
tables) are to be created empty of contents, with no 
defined indexes, primary key, or constraints of any kind, 
including referential integrity. For each table, an extra 
attribute must be created, for storing a unique sequential 
identifier related to the insertion of each row within the 
temporary tables. 

Figure 2. Method for adapting the data warehouse’s schema 
for supporting our real-time methodology. 

3.2  ETL Loading Procedures 

To refresh the DW, once the ETL application has 
extracted and transformed the OLTP data into the 
correct format for loading the data area, it shall 
proceed immediately in inserting that record as a new 
row in the correspondent temporary table, filling the 
unique sequential identifier attribute with the 
autoincremented number. This number starts at 1 for 
the first record to insert in the DW after executing the 
packing and reoptimizing technique (explained in 
section 3.4), and then autoincremented by one unit for 
each record insertion. The algorithm for continuous 
data integration by the ETL tool is similar to Figure 3. 



4 

Trigger for each new record in OLTP system 
   Extract new record from OLTP system 
   Clean and transform the OLTP data, shaping it into 

the data warehouse destination table’s format 
   Increment record insertion unique counter 
   Create a new record in the data warehouse 

temporary destination table 
   Insert the data in the temporary destination table’s 

new record, along with the value of the record 
insertion unique counter 

End_Trigger 

Figure 3. Continuous data integration algo in ETL tool. 

3.3  OLAP Query Adaptation 

Suppose a sales data warehouse has the schema 
illustrated in Figure 4, with two dimensional tables 
(Store and Customer, representing business descriptor 
entities) and one fact table (Sales, storing business 
measures aggregated from transactions). This DW 
stores sales value per store, per customer, per day.  

 

 

 

 

Figure 4. Sample sales data warehouse schema. 

Consider the OLAP query presented in Figure 5, 
used for calculating the total revenue per store in the 
last seven days. 
SELECT S_StoreKey,  
       Sum(S_Value) AS Last7DaysSaleVal 
FROM Sales 
WHERE S_Date>=Date()-7  
GROUP BY S_StoreKey 

Figure 5. OLAP query for calculating the total revenue per 
store in last seven days. 

 
 

 

 

 

 

 

 

Figure 6. Sample sales data warehouse schema modified for 
supporting real-time data warehousing. 

The modified schema for supporting RTDW 
based on our methodology is illustrated in Figure 6. 
To take advantage of our schema modification 
method and include most recent data in the OLAP 
query response, the queries should be rewritten taking 
under consideration the following rule: the FROM 
clause should join all rows from the required 
original and temporary tables with relevant data, 
excluding all fixed restriction predicate values from 
the WHERE clause whenever possible. The 
modification for the instruction presented in Figure 5 
is illustrated in Figure 7, respecting our methods. 

SELECT S_StoreKey, 
       Sum(S_Value) AS Last7DaysSaleVal 
FROM (SELECT S_StoreKey, 
             S_Value FROM Sales 
      WHERE S_Date>=Date()-7)  
      UNION ALL 
     (SELECT STmp_StoreKey, 
             STmp_Value FROM SalesTmp 
             WHERE STmp_Date>=Date()-7) 
GROUP BY S_StoreKey 

Figure 7. OLAP query for calculating the total revenue per 
store in last seven days. 

It can be seen that the relevant rows from both 
issue tables are joined for supplying OLAP query 
answer, filtering the rows in the resulting dataset 
according to its restrictions in the original instruction. 

3.4  Packing and Reoptimizing the DW 

Since the data is integrated within tables without 
access optimization of any kind that could speed up 
querying, such as indexes, it is obvious that it implies 
a decrease of performance. Due to the volume of 
occupied physical space, after many insertions the 
performance becomes too poor to be considered 
acceptable. To regain performance optimization it is 
necessary to execute a pack routine for updating the 
original DW schema tables using the records in the 
temporary tables, and recreate those temporary tables 
empty of contents, along with rebuilding original 
tables’ indexes and materialized views, so maximum 
processing speed is obtained once more.  

For updating the original DW tables, the rows in 
the temporary tables should be aggregated according 
to the original tables’ primary keys, maintaining the 
rows with highest unique counter attribute value for 
possible duplicate values, for they represent the most 
recent records. The time needed for executing these 
procedures represents the only period of time in 
which the DW in unavailable to OLAP tools and end 
users, for they need to be executed exclusively. The 
appropriate moment for doing this may be determined 
by the DW Administrator, or automatically, 
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considering parameters such as a fixed number of 
records in temporary tables, the amount of physically 
occupied space, or yet a predefined period of time. 
The definition of this moment is not object of 
discussion in this paper. 
 
3.5  Final Remarks on Our Methodology 
 
Notice that only record insertions are used for 
updating the DW for all related transactions in the 
OLTP source systems. Since this operation does not 
require record locking (except for the new appended 
record itself) nor search operations for previously 
stored data, the time required to do it is minimal. The 
issue of record locking is strongly enforced by the 
fact that the referred tables do not have any indexes 
or primary keys, implying no record locking, except 
for the appended record itself. Since they do not have 
constraints of any sort, including referential integrity 
and primary keys, there is no need to execute time 
consuming tasks such as index updating or referential 
integrity cross checks. This allows us to state that the 
data update time window is minimal for insertion of 
new data, maximizing its availability, and 
contributing to increase the DW’s global availability 
and minimize negative impact in its performance. 

The amount of “information buckets” which the 
data passes through in the ETL Area is also minimal, 
for temporary storage is almost not needed. Instead of 
extracting a large amount of OLTP data, what 
happens in “traditional” DW bulk loading, the volume 
of extracted and transformed real-time data is very 
reduced (few dozen bytes), since it consists of only 
one transaction per execution cycle, so we may 
assume that the extraction and transformation phase 
will be cleaner and more time efficient. 

4   EXPERIMENT EVALUATION 

Recurring to TPC-H decision support benchmark 
(TPC-H) we tested our methodology creating 5GB, 
10GB and 20GB size DWs in ORACLE 10g RDBMS 
(Oracle, 2005). We also tested the system’s response 
executing 1, 2, 4, 8 and 16 simultaneous query 
workloads to see how it reacted according to the 
number of simultaneous users executing those 
workloads. We used an Intel Celeron 2.8GHz with 
2GB of SDRAM and a 7200rpm 160GB hard disk. 
The modified schema according to our methodology 
can be seen in Figure 8. Tables Region and Nation 
are not included as temporary tables because they are 
fixed-size and therefore do not receive new data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. TPC-H schema modified for supporting RTDW. 

The selected query workloads, TPC-H queries 1, 
8, 12 and 20 (TPC-H), were executed in random 
order for each simultaneous user. The time interval 
between transactions (Transac. Interval) for each 
scenario is illustrated in tables 1 to 3. Each new 
transaction represents insertion of an average of four 
records in LineItemTmp and one row in each of the 
other temporary tables, continuously integrated for a 
period of 8 hours. Supporting RTDW capability in all 
scenarios is somewhat between 6.9% and 28.6% of 
query workload execution time, as shown in figures 9 
to 11, reporting percentage of workloads execution 
overtime using RTDW, relatively to execution against 
standard workload without continuous integration.  

Table 1. TPC-H 5GB data warehouse transaction real-time 
integration characteristics. 
 TPC-H 5GB Data Warehouse 
 Scenario A Scenario B Scenario C 
# Transactions 3.072 6.205 12.453 
Transac. Interval 9,38 sec 4,64 sec 2,31 sec 

Table 2. TPC-H 10GB data warehouse transaction real-time 
integration characteristics. 
 TPC-H 10GB Data Warehouse 
 Scenario A Scenario B Scenario C 
# Transactions 6.192 12.592 25.067 
Transac. Interval 4,65 sec 2,29 sec 1,15 sec 

Table 3. TPC-H 20GB data warehouse transaction real-time 
integration characteristics. 
 TPC-H 20GB Data Warehouse 
 Scenario A Scenario B Scenario C 
# Transactions 12.416 25.062 50.237 
Transac. Interval 2,32 sec 1,15 sec 0,57 sec 
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Figure 9. TPC-H 5GB DW overtime percentages 
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Figure 10. TPC-H 10GB DW overtime percentages 
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Figure 11. TPC-H 20GB DW overtime percentages 

5  CONCLUSIONS 

This paper refers the requirements for RTDW and 
presents a methodology for supporting it by enabling 
continuous data integration while minimizing impact 
in query execution on the DW end. This is done by 
data structure replication and adapting query 
instructions to take advantage of the new real-time 
data warehousing schemas.  

We have shown its functionality, recurring to a 
simulation using the TPC-H benchmark, performing 
continuous data integration at various time rates 
against the execution of various simultaneous query 
workloads, for DWs with different scale sizes. All 
scenarios show that it is possible to achieve real-time 
data warehousing performance in exchange for an 
average increase of ten to thirty percent in query 
execution time. This should be considered the price to 
pay for real-time capability within the DW.  

As future work we intend to develop an ETL tool 
integrating this methodology. There is also a huge 
space of research for optimizing query instructions 
used. 

6  REREFENCES 
 
Abadi, D. J.,  Carney, D., et al., 2003. “Aurora: A New 

Model and Architecture for Data Stream 
Management”, The VLDB Journal, 12(2), pp. 120-139. 

Babu, S., Widom, J., 2001. “Continuous Queries Over 
Data Streams”, SIGMOD Record 30(3), pp. 109-120. 

Binder, T., 2003. Gong User Manual, Tecco Software 
Entwicklung AG. 

Bouzeghoub, M., Fabret, F., Matulovic, M., 1999. 
“Modeling Data Warehouse Refreshment Process as a 
Workflow Application”, Intern. Workshop on Design 
and Management of Data Warehouses (DMDW). 

Bruckner, R. M., List, B., Schiefer, J., 2002 A. “Striving 
Towards Near Real-Time Data Integration for Data 
Warehouses”, International Conference on Data 
Warehousing and Knowledge Discovery (DAWAK). 

Chaudhuri, S., Dayal, U., 1997. “An Overview of Data 
Warehousing and OLAP Technology”, SIGMOD 
Record, Volume 26, Number 1, pp. 65-74. 

Inmon, W. H., Terdeman, R. H., Norris-Montanari, J., 
Meers, D., 2001. Data Warehousing for E-Business, J. 
Wiley & Sons. 

Karakasidis, A., Vassiliadis, P., Pitoura, E., 2005. “ETL 
Queues for Active Data Warehousing”, IQIS’05. 

Kuhn, E., 2003. “The Zero-Delay Data Warehouse: 
Mobilizing Heterogeneous Databases”, International 
Conference on Very Large Data Bases (VLDB). 

Labio, W., Yang, J., Cui, Y., Garcia-Molina, H., Widom, 
J., 2000. “Performance Issues in Incremental 
Warehouse Maintenance”, (VLDB). 

Lomet, D., Gehrke, J., 2003. Special Issue on Data Stream 
Processing, IEEE Data Eng. Bulletin, 26(1). 

Oracle Corporation, 2005. www.oracle.com 
Pedersen, T. N., 2004. “How is BI Used in Industry?”, Int. 

Conf. on Data W. and Knowledge Discov. (DAWAK). 
Simitsis, A., Vassiliadis, P., Sellis, T., 2005. “Optimizing 

ETL Processes in Data Warehouses”, International 
Conference on Data Engineering (ICDE). 

Srivastava, U., Widom, J., 2004. “Flexible Time 
Management in Data Stream Systems”, PODS. 

TPC-H decision support benchmark, Transaction 
Processing Council, www.tpc.com. 

Vassiliadis, P., Vagena, Z., Skiadopoulos, S., 
Karayannidis, N., Sellis, T., 2001. “ARKTOS: Towards 
the Modelling, Design, Control and Execution of ETL 
Processes”, Information Systems, Vol. 26(8). 

White, C., 2002. “Intelligent Business Strategies: Real-
Time Data Warehousing Heats Up”, DM Preview, 
www.dmreview.com/article_sub_cfm?articleId=5570. 

Yang, J., 2001. “Temporal Data Warehousing”, Ph.D. 
Thesis, Dpt. Computer Science, Stanford University. 

Yang, J., and Widom, J., 2001B. “Temporal View Self-
Maintenance”, 7th International Conference on 
Extending Database Technology (EDBT). 

Zurek, T., Kreplin, K., 2001. “SAP Business Information 
Warehouse – From Data Warehousing to an E-
Business Platform”, (ICDE). 


