
1

PIN: A Partitioning & Indexing Optimization Method for OLAP

Ricardo Jorge Santos (1) and Jorge Bernardino (1, 2)
(1) CISUC – Centre of Informatics and Systems of the University of Coimbra - University of Coimbra

(2) ISEC – Superior Engineering Institute of Coimbra – Polytechnic Institute of Coimbra
lionsoftware.ricardo@gmail.com, jorge@isec.pt

Keywords: optimizing, partitioning, indexing, data warehouse

Abstract: Optimizing the performance of OLAP queries in relational data warehouses (DW) has always been a major
research issue. There are various techniques that can be used to achieve its goals, such as data partitioning,
indexing, data aggregation, data sampling, redefinition of database (DB) schemas, among others. In this paper
we present a simple and easy to implement method which links partitioning and indexing based on the features
present in predefined major decision making queries to efficiently optimize a data warehouse’s performance. The
evaluation of this method is also presented using the TPC-H benchmark, comparing it with standard partitioning
and indexing techniques, demonstrating its efficiency with single and multiple simultaneous user scenarios.

1 INTRODUCTION

Performance optimization in data warehousing
(DWH) is always an important research issue. There
are various techniques which can be used for OLAP
performance optimization of relational databases such
as, among others: 1) Partitioning (Bellatreche, 2000),
which reduces the data to scan for each OLAP query;
2) Materialized Views (Agrawal, 2000), (Baralis,
1997) (Gupta, 1999), which store summarized data
and pre-calculated attributes, also aiming to reduce
the data to be scanned and reducing time consumption
for calculating aggregate functions; 3) Indexing
(Chaudhuri, 1997) (Chee-Yong, 1999) (Gupta, 1997),
which speeds up processes such as accessing and
filtering data; 4) Data Sampling (Furtado, 2002),
giving approximate answers to queries based on
representative samples of subsets of data instead of
having to scan the entire data; 5) Redefinition of DB
schemas (Vassiliadis, 1999) (Bizarro, 2002), trying to
improve data distribution and/or access by seeking
efficient table balancing; 6) Hardware optimization,
such as memory and CPU upgrading, distributing data
through several physical drives, etc.
In our opinion, sampling should not be preferred, for
it has an implicit statistical error margin attached and

almost never supplies an accurate answer according
to whole original data. Using materialized views is
often considered as a good technique, but it has a big
disadvantage. Since they consist on aggregating the
data to a certain level, they have limited generic usage
and each materialized view is usually built for
speeding up one or two queries instead of the whole
set of usual decision or ad-hoc queries. Furthermore,
they may take up much physical space and increase
DB maintenance efforts. Hardware improvements for
optimization issues is not part of the scope of this
paper, neither is changing the data structures in the
DW’s schema(s). Although much work has been done
with these techniques separately, few have focused on
their combination (Bellatreche, 2004) (Bellatreche,
2002). The author in (Sanjay, 2004) states that
decision making OLAP queries which are executed
periodically at regular intervals is by far the most
used form of obtaining decision making information.
This implies that this type of information is based
almost always on the same regular SQL instructions.

In this work we present an efficient alternative
method for a partitioning and indexing schema aiming
to optimize the DW’s global performance. This
method is based on analyzing the existing features
within the SQL OLAP queries which are assumed as
the DW’s main decision making queries. The rest of

2

this paper is organized as follows. In section 2, we
refer issues and existing solutions related to relational
DW performance optimization using partitioning
and/or indexing. In section 3 we present our
optimization method. In section 4 we illustrate an
experimental evaluation of our method using the
TPC-H benchmark, and the final section contains
concluding remarks and future work.

2 RELATED WORK

DWH technology uses the relational data schema for
modeling the data in a warehouse. The data can be
modeled either using the star schema or the snowflake
schema. In this context, OLAP queries require
extensive join operations between fact and dimension
tables (Bellatreche, 2004). Several optimization
techniques have been proposed to improve query
performance, such as materialized views (Agrawal,
2000) (Baralis, 1997) (Bellatreche, 2000B) (Gupta,
1999), advanced indexing techniques using
bitmapped indexes, join and projection indexes
(Agrawal, 2000) (Chaudhuri, 1997) (Chee-Yong,
1999) (Gupta, 1997) (O’Neil, 1997), and data
partitioning (Bellatreche, 2000) (Bellatreche, 2002)
(Kalnis, 2001) (Sanjay, 2004), among others.

The authors in (Agrawal, 2000) automatically
choose an appropriate set of materialized views and
consequent indexes from the workload experienced
by the system. This solution is integrated within the
Microsoft SQL Server 2000 DBMS’s tuning wizard.
In (Gupta, 1999) a maintenance-cost based selection
is presented for selecting which materialized views
should be built. In (Chaudhuri, 1997) (Chee-Yong,
1999) (Gupta, 1997) authors illustrate features on
which types of indexing should be performed based
on system workload, attribute cardinality and other
data characteristics. The work in (Bellatreche, 2005)
presents a genetic algorithm for schema fragmentation
selection, focused on how to fragment the fact table
based on the dimension table’s partitioning schemas.
Fragmenting the DW as a way of speeding up multi-
way joins and reducing query execution cost is
another possible optimization method, as shown in
(Bellatreche, 2000). In (Sanjay, 2004) the authors
propose novel techniques for designing a scalable
solution as how to adequately incorporate partitioning
with DB design. In (Bellatreche, 2004) the authors
obtain tuning parameters for better use of data
partitioning, join indexes and materialized views to
optimize the cost in a systematic usage form.

As stated previously, we discard materialized
views because of their poor general application for a
considerably large set of major queries, hence the
number of necessary materialized views is
proportional to the number of different queries.
Furthermore, the significant amount of space they
might take up in the DB is also a negative aspect,
along with increase of maintenance costs. Therefore,
we focus our work on two major performance
techniques for an alternative optimization schema:
partitioning and indexing. Considering that the most
efficient techniques rely on those which minimize the
amount of data to be scanned for producing each
major query’s response, our method proposes how to
implement an efficient partitioning schema and
consequent best practice indexing based on the
features presented in that set of the DW’s major
queries. Our method also minimizes DB maintenance
effort by defining an efficient number of partitions
per table, for an excessive amount of partitions may
result in poor performance (Bellatreche, 2005).

3 PIN OPTIMIZATION METHOD

In order to guarantee data validation and integrity, we
advise maintaining the DB schema’s primary keys
and referential integrity constraints. Our PIN
(Partitioning and INdexing) method aims for
determining the best fragmentation attribute for each
table and how many fragments should be defined,
according to an overall ratio that combines all the
major OLAP query restriction predicates and
execution time, as well as all attribute’s cardinality.
This will accelerate OLAP queries having restriction
predicates on that attribute.

3.1 Defining the Partitioning Attributes

The first type of performance measurement we need
for our method is to evaluate the percentage for the
total number of records in each table in relation to the
total number of records which exist in the DW, which
will be used as a ratio for our method. Consider cTk as
the number of existing records within table Tk and
ΣcTk as the total number of existing records within the
DW. The percentage of records for Tk in the DW
(ratio RPITk) is given by:

 cTk
ΣcTk

RPITk =

3

Another type of performance measure to consider
for our method is the impact of each isolated query
execution time in the total time needed for executing
a workload with all of the major queries. Consider tQi
as the average execution time for each main DW
query Qi, and ΣtQj as the average execution time of
the workload with all the selected major queries. To
obtain the percentage of time corresponding to the
execution of query Qi compared with the time spent in
the execution of all queries, representing another ratio
for our method, we can calculate the total time
percentage impact for each query (ratio TIPQi) by:

tQi
ΣtQj

We also need to know the impact given by the
number of records to be scanned related to each
attribute filtered values defined in the WHERE clause
of each OLAP query instruction. For example,
suppose a common sales table with a record data
structure (Sale_ID, Sale_Customer_ID, Sale_Date,
Sale_Amount) and an OLAP query in which we
needed to filter the sales records only with attribute
Sale_Date between [1-1-2006; 31-1-2006] in order to
produce the query’s answer. If the sales table has a
total of 100.000 records and there are 1.000 records
which comply with the filtered Sale_Date desired
values, then the percentage of interesting records
within the sales table would be equal to 1.000 /
100.000 = 0,01 in this particular OLAP query.
Consider an attribute Aj belonging to a table Tk
existing in the WHERE clause of a query Qi defining
an interval of absolute values [Ia; Ib] for including
records in that query’s processing. Consider cTk as the
total number of records of Tk and fcTk as the number
of records in Tk where the recorded values of Aj match
the interval [Ia; Ib]. The percentage of non-interesting
records in Tk given the Aj values filter which would
not need to be scanned for query Qi (NIPQiTkAj) is
given by:

cTk - fcTk
 cTk

For our method, we calculate an attribute interest
ratio for each attribute Aj of table Tk in each query Qi
(AIRQiTkAj) present in the WHERE clause of those
queries, given by:

 AIRQiTkAj = RPITk x TIPQi x NIPQiTkAj
This calculus combines the impact produced by

data filtering due to the existing features of the
attributes present in the WHERE clause of all major
queries with the impact due to the execution time of
each query, resulting in an overall ratio for each
referred attribute. Our intention with this is to present

a balanced evaluation of the importance of each
attribute in the set of major OLAP queries and its real
individual impact in those queries’ performance.

After these ratios are calculated, we summarize
the values grouping them per individual attribute.
Thus, the final ratio for each attribute Aj (FRAj) is the
sum of all calculated ratios for AIRQiTkAj:

FRAj = ΣAIRQiTkAj

Then, we consider the attribute Aj of table Tk with
the highest value of FRAj as the attribute that will be
used for partitioning that table:

Partitioning attribute (PAj) for Tk is Aj with
max(FRAj)

If a table Tk does not have any of its attributes
involved as a restriction predicate in the whole set of
OLAP major queries, or if Tk is insignificantly small
in size (holding less than 0,1% of the database’s total
number of records), then Tk will not be partitioned.

3.2 Defining the Partitioning Schema

We shall now explain how the partitioning schema is
implemented, based on the features of the previously
defined fragmentation attributes. Data partitioning of
databases can be divided into two major types:
horizontal and vertical. Horizontal partitioning allows
data sets such as tables, indexes and materialized
views to be partitioned into disjoint sets of rows that
are stored and accessed separately. On the other hand,
vertical partitioning allows a table to be partitioned
into disjoint sets of columns. In our method, we
implement horizontal partitioning, for it is usually the
most efficient form of DW partitioning (Bellatreche,
2005). Several work and commercial systems show its
utility and impact in optimizing OLAP queries
(Bellatreche, 2000) (Bellatreche, 2004) (Kalnis,
2001) (Sanjay, 2004), but few have formalized the
problem of selecting a horizontal partitioning schema
which would speed up a set of queries, except for the
proposed in (Bellatreche, 2005).

There are several types of horizontal partitioning:
(1) Range partitioning, where the rows are grouped
according to defined intervals of the partitioning
attributes’ values; (2) List partitioning, where each
partition fragment contains rows that are grouped
according to a defined set of absolute values for the
partitioning attributes; (3) Hash partitioning, in
which rows are grouped into bundles where each has
approximately the same number of records, that are
accessed through a generated hash key when they are
needed; (4) Mixed partitioning, which combines more
than one of the previous techniques.

NIPQiTkAj =

TIPQi =

4

Our method proposes to set the fragmentation
schema on range and list partitioning, depending each
table on its partitioning attribute’s cardinality as a
restriction predicate in the set of OLAP queries. The
existence of up to 100 partitions has been proven
efficient for most general cases (Bellatreche, 2000).
Therefore, we define the following partitioning rule:
If the cardinality of the partitioning attribute is
relatively high (more than 100 different atomic
values exist in the table for that attribute) range
partitioning is applied, otherwise list partitioning is
used. After defining the type of partition for each
table according to their partition attribute’s
cardinality, we determine the values to use for range
or list partitioning, attending the following rules:

a) If list partitioning is to be used in accordance
with the first rule we mentioned, the data will
be partitioned creating one fragment per each
partitioning attribute’s value;

b) If range partitioning is to be used, a definition
of a set of intervals that will define each
fragment must be determined. Consider a
partitioning attribute PAj for a table Tk, where
min(PAj) is the minimum atomic value for PAj
within Tk and max(Aj) as the same attribute’s
maximum atomic value in the same table.
Secondly, the major OLAP queries should be
analyzed, isolating the instructions holding PAj
in their WHERE clause. For this subset of
queries, hold the smallest defined interval of
values for PAj in their WHERE clause, within
all those queries. The cardinality of this
interval and of interval [min(PAj); max(PAj)]
gives us the measure that defines how many
fragments will result for the partitioning of Tk,
according to the following algorithm:
NFTk = # [min(PAj); max(PAj)] A
 # [min(PAjQValue); max(PAjQValue)]
While NFTk > 100 Do
 NFTk = NFTk div 2
EndDo

where NFTk is the number of fragments to be
implemented in Tk, # [min(PAj); max(PAj)] is
the cardinality of that interval, and #
[min(PAjQValue); max(PAjQValue)] the
cardinality of the smallest defined major
OLAP query filtering interval in the WHERE
clause using Sales_Date for the whole
workload of major OLAP queries. After this,
the partitioning schema for Tk would be
defined by creating NFTk partitioned
fragments, with range values defined as
[min(PAj); min(PAj) + # [min(PAjQValue);
max(PAjQValue)]] for the first fragment and

incrementing the following range values by #
[min(PAjQValue); max(PAjQValue)].

To clearly explain the fragmentation schema’s
definition, let us illustrate an example. Consider a
sales table similar to the one referred in section 3.1,
assuming that the partitioning attribute is Sales_Date,
min(Sales_Date) is 1-1-2006 and max(Sales_Date) is
31-12-2006. The cardinality of this attribute is 365,
the number of possible different atomic values in [1-
1-2006; 31-12-2006]. According to our method and
since this cardinality is greater than 100, the table will
be range partitioned. Supposing that in the set of
major OLAP queries there were four of them which
used this attribute in their WHERE clause: the first
requiring rows with Sales_Date between 01-01-2006
and 31-03-2006; two queries asking for rows with
Sales_Date between 01-01-2006 and 31-12-2006;
and a fourth query asking for rows with Sales_Date
between 01-10-2006 and 31-12-2006. The smallest
defined major OLAP query filtering interval using
Sales_Date would be the one in the first or last query,
corresponding to an interval of 90 days (equals a
cardinality of 90). Therefore, the number of
fragments for that sales table would be 365/90 = 4.
The table would be fragmented starting from
min(Sales_Date) and incrementing it with as many
days as those defined in the smallest defined major
OLAP query, resulting in the following partitioned
fragments: (1) Partition 1, all rows with Sales_Date
values between 1-1-2006 and 31-3-2006; (2)
Partition 2, all rows with Sales_Date between 1-4-
2006 and 30-06-2006; (3) Partition 3, all rows with
Sales_Date between 1-7-2006 and 30-9-2006; and (4)
Partition 4 containing all rows with Sales_Date
between 1-1-2006 and 31-12-2006.

Limiting the amount of partitions to a maximum
of 100 prevents exaggerated data fragmentation,
therefore avoiding degradation of performance due to
excessive partitioning. Furthermore, exaggerated
partitioning will cause extensive table fragmentation,
which implies managing hundreds or even thousands
of sub star schemas instead of managing just one,
making the DW Administrator’s maintenance task
extremely hard. According to our tests, up to 100
partitions will not produce negative impact in the
database’s performance. As referred in (Bellatreche,
2005), all partitioning methods should ensure two
main objectives in what concerns defining the number
of partitioned fragments: (1) avoid an explosion of
the number of fragments for a single table; and (2)
ensure a good performance of OLAP queries.

5

3.3 Defining the Indexing Schema

As we mentioned earlier, we advise maintaining all
primary keys and referential integrity constraints. It is
recommended to build a bitmap index on an attribute
when that attribute has a low cardinality of values; if
not, a B*Tree index should be preferred (Agrawal,
2000) (Chee-Yong, 1999) (Gupta, 1997). Therefore,
additionally to primary keys and referential integrity
constraints, our method uses the following simple
unique rule for defining which other indexes should
be created: An index should be created for every
attribute existing in any WHERE clause of any major
OLAP query. This index is to be a B*Tree index if the
cardinality of that attribute is higher than 25% of the
total number of rows in the table to which it belongs,
Bitmap index otherwise.

This indexing schema works with the partitioning
schema in the overall query processes by optimizing
the data filters defined by the attributes present in the
major OLAP query WHERE clauses while the
partitioning reduces the amount of scanned data.

4 Experimental evaluation of PIN

We used TPC-H benchmark [TPC] generator
(DBGen) for building the experimental DW in
ORACLE DBMS 10g with four different scale size
scenarios (1GB, 2GB, 4GB and 8GB) on a Celeron
1.4GHz CPU with 512MB PC-133 DDRAM and a
80GB 7200rpm hard drive. All 22 TPC-H queries
were used and considered as the major decision
making queries for applying our optimization method.
We tested the query results execution with 1, 2, 4 and
8 simultaneous users, which ran each query in random
order in a workload composed by TPC-H Queries 3,
4, 5, 6, 7, 10, 12 and 14. These queries represent a
wide variety of OLAP instructions involving
important operations such as grouping, aggregations,
joins, mathematical functions, among others. We
chose to consider their execution against several scale
sizes of its DB with the purpose of widening the
scope of features for testing our method.

4.1 Partitioning the Data Warehouse

We shall illustrate how we obtained the partitioning
schema for the 1GB TPC-H DW and not include the
schemas of the remaining 2GB, 4GB and 8GB, due to
space constraints in this paper. The remaining
schemas were obtained in a similar form. The

explained processes for the smaller DW should be
enough for understanding how work was done.

Table 1 presents the final overall ratio (FRQiTkAj)
for each attribute. According to our method, the
attribute with the highest FRQiTkAj value for each table
is the chosen partitioning attribute. This means that
for table Customer, the partitioning attribute is
C_MktSegment; LineItem will be partitioned by
L_ShipDate; Orders by O_OrderDate; table Part by
P_Brand; and Supplier by S_Comment. Since table
PartSupp does not have any attribute present as a
predicate restriction in the set of OLAP queries, it
shall not be partitioned. Nation and Region will not
be partitioned because of their insignificant size.

To determine how many partitions will be created
for each table and their range values, we need to
analyze their cardinality and range of values as
restriction predicates in the OLAP queries. This
analysis is presented in Table 2. Since partitioning
attributes C_MktSegment and P_Part have a small
cardinality (<100), tables Customer and Part will be
list partitioned, with 1 fragment per each attribute’s
atomic value. For table Supplier, since S_Comment is
only used once as a restriction predicate (in Query
16) with a unique range value
(‘%Customer%Complaints%’), we can apply list
partitioning to this table defining one fragment for
this restriction value and another for all the rest.

Table 3 presents the resulting partitioning schema.

Attribute (Aj) Table (Tk) FRAj (ΣAIRQiTkAj)
C_MktSegment Customer 0,0004
C_Phone Customer 0,0000
L_ShipDate LineItem 0,0740
L_ShipMode LineItem 0,0438
L_ShipInstruct LineItem 0,0384
L_Quantity LineItem 0,0284
L_ReturnFlag LineItem 0,0142
L_ReceiptDate LineItem 0,0125
L_Discount LineItem 0,0106
O_OrderDate Orders 0,0738
O_OrderStatus Orders 0,0213
O_Comment Orders 0,0000
P_Brand Part 0,0020
P_Container Part 0,0017
P_Size Part 0,0014
P_Name Part 0,0009
P_Type Part 0,0008
S_Comment Supplier 0,0000

Table 1. FRAj ratios for 1GB TPC-H data warehouse

Partitioning
Attribute (PAj)

Cardinality of
PAj in Tk (#)

Range Values of
PAj in Tk

C_MktSegment 5
‘AUTOMOBILE’, ’FURNITURE’,
’MACHINERY’, ’HOUSEHOLD’,

’BUILDING’
L_ShipDate 2526 02-01-1992…01-12-1998

O_OrderDate 2406 01-01-1992…02-08-1998
P_Brand 25 ‘Brand#11’…‘Brand#55’

S_Comment 9999 ‘Customer%’…‘water%’

Table 2. Partitioning attributes cardinality and range values

6

Table (Tk) Partitions

Customer

Create partition by List on C_MktSegment (
 Partition 1 with values 'BUILDING',
 Partition 2 with values 'AUTOMOBILE',
 Partition 3 with values 'FURNITURE',
 Partition 4 with values 'MACHINERY',
 Partition 5 with values 'HOUSEHOLD')

LineItem

Create partition by Range on L_ShipDate (
 Partition 1 with values between [01-01-92; 31-01-92],
 Partition 2 with values between [01-02-92; 28-02-92],
 …
 Partition 84 with values between [01-12-98; 31-12-98])

Orders

Create partition by Range on L_ShipDate (
 Partition 1 with values between [01-01-92; 31-03-92],
 Partition 2 with values between [01-04-92; 30-06-92],
 …
 Partition 27 with values between [01-07-98; 30-09-98])

Part

Create partition by List on P_Brand (
 Partition 1 with values 'Brand#11',
 Partition 2 with values 'Brand#12',
 …
 Partition 25 with values 'Brand#55')

Supplier
Create partition by List on S_Comment (
 Partition 1 with values '%Customer%Complaints%',
 Partition 2 with all other values)

Table 3. Partitioning schema for 1GB TPC-H using PIN

4.2 Indexing the Data Warehouse

Attribute (Aj) Table (Tk) Index Type
C_MktSegment Customer Bitmap
C_Phone Customer B*Tree
L_ShipDate, L_ShipMode,
L_ShipInstruct, L_Quantity,
L_ReturnFlag, L_ReceiptDate,
L_Discount

LineItem Bitmap

O_OrderDate, O_OrderStatus Orders Bitmap
O_Comment Orders B*Tree
P_Brand, P_Container, P_Size, _Type Part Bitmap
P_Name Part B*Tree
S_Comment Supplier B*Tree

Table 4. Indexing schema for TPC-H using PIN

As stated previously, primary keys and referential

integrity constraints will be maintained, so we will
only refer to other indexing for our method. This
means that all attributes used as restriction predicates
in the OLAP queries will be indexed according to the
rule defined in section 3.3 of this paper. The resulting
indexing schema is presented in Table 4.

4.3 Results

To analyze the performance of our method, we have
conducted four series of experiments for each setup:
(1) implemented without optimization techniques, just
maintaining its standard primary keys and integrity
constraints; (2) optimized using standard indexing
techniques, such as join indexes; (3) optimized only
by standard partitioning techniques using our
fragmentation rules; and (4) with full optimization
using our method with partitioning and indexing.
Figures 1 and 2 present the results relating the
execution of the workload for size 1GB and 8GB data
warehouses, while Figure 3 presents the results
according to predefined scenarios on 8 simultaneous
users executing the workload.

For performance optimization of the fourth series
of experiments (our method), we executed many
performance optimization tests that included bitmap
join indexes, which usually improve OLAP query
performance (Bellatreche, 2004), and in this case it
did not improve. Contrarily, performance degraded.
We observed that, for our method, only the restriction
predicates should be indexed. This enforces the
validity for our rule defining the indexing schema,
only building indexes for all the attributes that appear
in the OLAP queries WHERE clause after adequately
partitioning the tables according to our method.

Figures 1 to 3 and Tables 5 and 6 show that PIN
has best scalability features and is the most efficient
technique, outstanding the others in every execution,
both relating to DW size and number of simultaneous
users. Analyzing average gains from a DB size point
of view, the gain for standard indexing is around
25%, while for standard partitioning the results show
an average gain of 48%. PIN has an average gain of
55%. In simultaneous users execution, PIN’s
advantage is also evident, with an average gain of
56% against 49% for standard partitioning and 25%
for standard indexing. It also increases the gain
compared with other methods as the DB grows in size
and/or number of simultaneous users increases,
showing a better performance in heavy usage.

0

700

1400

2100

2800

3500

Simultaneous Users

T
im

e
(s

ec
o
n
d
s)

Standard Schema 326 845 1538 3029

Standard Indexing 264 543 1077 2191

Standard Partitioning 158 306 708 1588

Using our PIN Method 143 237 481 973

1 User 2 Users 4 Users 8 Users

Figure 1. Workload execution time for 1GB TPC-H

0

8000

16000

24000

32000

40000

Simultaneous Users

T
im

e
(S

ec
o
n
d
s)

Standard Schema 3350 7966 17443 37524

Standard Indexing 2463 5725 13621 31038

Standard Partitioning 1458 3670 9854 25653

Using our PIN Method 1427 3386 7918 20745

1 User 2 Users 4 Users 8 Users

Figure 2. Workload execution time for 8GB TPC-H

7

0

4000

8000

12000

16000

20000

24000

28000

32000

36000

40000

1GB 2GB 4GB 8GB

T
im

e
(S

ec
o
n
d
s)

Figure 3. Workload execution for 8 simultaneous users

Table 5. Performance gain comparison between techniques
in several size TPC-H data warehouses

1 GB 2 GB 4 GB 8 GB Methods
Min Max Min Max Min Max Min Max

Standard Index 19% 36% 20% 23% 16% 22% 17% 28%
Standard Partit. 48% 64% 46% 63% 28% 60% 32% 56%

PIN 56% 72% 48% 68% 30% 67% 45% 57%

Table 6. Performance gain comparison between techniques
with workload execution by simultaneous users

1 User 2 Users 4 Users 8 Users Methods

Min Max Min Max Min Max Min Max
Standard Index 19% 26% 20% 36% 22% 30% 16% 28%
Standard Partit. 28% 56% 51% 64% 44% 62% 32% 57%

PIN 30% 57% 57% 72% 55% 69% 45% 68%

5 Conclusions and future work

We present an efficient simple and easy to
implement alternative method for optimizing the
performance of data warehouse OLAP queries by
combining partitioning and indexing techniques based
on the existing features of a set of predefined major
SQL data warehouse queries. It also introduces
simple modifications in the database’s data structures,
minimizing the taken up space and maintenance costs
of the data warehouse, in contrast with other complex
partitioning/indexing methods. The experiments
illustrate its efficiency in time execution and
simultaneous user querying, showing that it
overcomes isolated partitioning and indexing
techniques. As future work, we intend to implement
this method in real live data warehouses and measure
its impact on real world system’s performance.

6 References

Agrawal, S., Chaudhuri, S., Narasayya, V., 2000.

Automated selection of materialized views and indexes

in SQL databases, 26th Int. Conf. on Very Large Data
Bases (VLDB).

Baralis, E., Paraboschi, S., Teniente, E., 1997. Materialized
view selection in a multidimensional database, 23rd Int.
Conference on Very Large Data Bases (VLDB).

Bellatreche, L., Boukhalfa, K., 2005. An Evolutionary
Approach to Schema Partitioning Selection in a Data
Warehouse Environment, Int. Conf. on Data
Warehousing and Knowledge Discovery (DAWAK).

Bellatreche, L., Karlapalem, K., Schneider, M., Mohania,
M., 2000. What can partitioning do for your data
warehouses and data marts, Int. Database Engineering
and Applications Symposium (IDEAS).

Bellatreche, L., Karlapalem, K., Li, Q., 2000B. Evaluation
of indexing materialized views in data warehousing
environments, Int. Conference on Data Warehousing
and Knowledge Discovery (DAWAK).

Bellatreche, L., Schneider, M., Lorinquer, H., Mohania,
M., 2004. Bringing Together Partitioning, Materialized
Views and Indexes to Optimize Performance of
Relational Data Warehouses, Int. Conference on. Data
Warehousing and Knowledge Discovery (DAWAK).

Bellatreche, L., Schneider, M., Mohania, M., Bhargava, B.,
2002. PartJoin: an efficient storage and query execution
design strategy for data warehousing, Int. Conf. on
Data W. and Knowledge Discovery (DAWAK).

Bizarro, P., Madeira, H., 2002. Adding a Performance-
Oriented Perspective to Data Warehouse Design,
International Conference on Data Warehousing and
Knowledge Discovery (DAWAK).

Chaudhuri, S., Narasayya, V., 1997. An efficient cost-
driven index selection tool for Microsoft SQL Server,
23rd Int. Conf. on Very Large Data Bases (VLDB).

Chee-Yong, C., 1999. Indexing techniques in Decision
Support Systems, PhD Thesis, University of Wisconsin,
Madison.

Furtado, P., Costa, J. P., 2002. Time-Interval Sampling for
Improved Estimations in Data Warehouses, Int. Conf.
on Data W. and Knowledge Discovery (DAWAK).

Gupta, H., et al., 1997. Index selection for OLAP, Intern.
Conference on Data Engineering (ICDE).

Gupta, H., Mumick, I. S., 1999. Selection of views to
materialize under a maintenance cost constraint, 8th Int.
Conf. Database Theory (ICDT).

Kalnis, P., Papadias, D., 2001. Proxy-server architecture
for OLAP, ACM SIGMOD Int. Conf. on Management
of Data (ICMD).

O’Neil, P., Quass, D., 1997. Improved query performance
with variant indexes, ACM SIGMOD International
Conf. on Management of Data (ICMD).

Sanjay, A., Narasayya, V. R., Yang, B., 2004. Integrating
vertical and horizontal partitioning into automated
physical database design, ACM SIGMOD Int. Conf. on
Management of Data (ICMD).

Transaction Processing Council, TPC Benchmark H,
www.tpc.org

Vassiliadis, P., Sellis, T., 1999. A Survey of Logical
Models for OLAP Databases, ACM SIGMOD Int. Conf.
on Management of Data (ICMD).

