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Abstract:  Optimizing the performance of OLAP queries in relational data warehouses (DW) has always been a major 
research issue. There are various techniques that can be used to achieve its goals, such as data partitioning, 
indexing, data aggregation, data sampling, redefinition of database (DB) schemas, among others. In this paper 
we present a simple and easy to implement method which links partitioning and indexing based on the features 
present in predefined major decision making queries to efficiently optimize a data warehouse’s performance. The 
evaluation of this method is also presented using the TPC-H benchmark, comparing it with standard partitioning 
and indexing techniques, demonstrating its efficiency with single and multiple simultaneous user scenarios. 

1  INTRODUCTION 

Performance optimization in data warehousing 
(DWH) is always an important research issue. There 
are various techniques which can be used for OLAP 
performance optimization of relational databases such 
as, among others: 1) Partitioning (Bellatreche, 2000), 
which reduces the data to scan for each OLAP query; 
2) Materialized Views (Agrawal, 2000), (Baralis, 
1997) (Gupta, 1999), which store summarized data 
and pre-calculated attributes, also aiming to reduce 
the data to be scanned and reducing time consumption 
for calculating aggregate functions; 3) Indexing 
(Chaudhuri, 1997) (Chee-Yong, 1999) (Gupta, 1997), 
which speeds up processes such as accessing and 
filtering data; 4) Data Sampling (Furtado, 2002), 
giving approximate answers to queries based on 
representative samples of subsets of data instead of 
having to scan the entire data; 5) Redefinition of DB 
schemas (Vassiliadis, 1999) (Bizarro, 2002), trying to 
improve data distribution and/or access by seeking 
efficient table balancing; 6) Hardware optimization, 
such as memory and CPU upgrading, distributing data 
through several physical drives, etc.  
In our opinion, sampling should not be preferred, for 
it has an implicit statistical error margin attached and 

almost never supplies an accurate answer according 
to whole original data. Using materialized views is 
often considered as a good technique, but it has a big 
disadvantage. Since they consist on aggregating the 
data to a certain level, they have limited generic usage 
and each materialized view is usually built for 
speeding up one or two queries instead of the whole 
set of usual decision or ad-hoc queries. Furthermore, 
they may take up much physical space and increase 
DB maintenance efforts. Hardware improvements for 
optimization issues is not part of the scope of this 
paper, neither is changing the data structures in the 
DW’s schema(s). Although much work has been done 
with these techniques separately, few have focused on 
their combination (Bellatreche, 2004) (Bellatreche, 
2002). The author in (Sanjay, 2004) states that 
decision making OLAP queries which are executed 
periodically at regular intervals is by far the most 
used form of obtaining decision making information. 
This implies that this type of information is based 
almost always on the same regular SQL instructions.  

In this work we present an efficient alternative 
method for a partitioning and indexing schema aiming 
to optimize the DW’s global performance. This 
method is based on analyzing the existing features 
within the SQL OLAP queries which are assumed as 
the DW’s main decision making queries. The rest of 
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this paper is organized as follows. In section 2, we 
refer issues and existing solutions related to relational 
DW performance optimization using partitioning 
and/or indexing. In section 3 we present our 
optimization method. In section 4 we illustrate an 
experimental evaluation of our method using the 
TPC-H benchmark, and the final section contains 
concluding remarks and future work. 

2  RELATED WORK 

DWH technology uses the relational data schema for 
modeling the data in a warehouse. The data can be 
modeled either using the star schema or the snowflake 
schema. In this context, OLAP queries require 
extensive join operations between fact and dimension 
tables (Bellatreche, 2004). Several optimization 
techniques have been proposed to improve query 
performance, such as materialized views (Agrawal, 
2000) (Baralis, 1997) (Bellatreche, 2000B) (Gupta, 
1999), advanced indexing techniques using 
bitmapped indexes, join and projection indexes 
(Agrawal, 2000) (Chaudhuri, 1997) (Chee-Yong, 
1999) (Gupta, 1997) (O’Neil, 1997), and data 
partitioning (Bellatreche, 2000) (Bellatreche, 2002) 
(Kalnis, 2001) (Sanjay, 2004), among others. 

The authors in (Agrawal, 2000) automatically 
choose an appropriate set of materialized views and 
consequent indexes from the workload experienced 
by the system. This solution is integrated within the 
Microsoft SQL Server 2000 DBMS’s tuning wizard. 
In (Gupta, 1999) a maintenance-cost based selection 
is presented for selecting which materialized views 
should be built. In (Chaudhuri, 1997) (Chee-Yong, 
1999) (Gupta, 1997) authors illustrate features on 
which types of indexing should be performed based 
on system workload, attribute cardinality and other 
data characteristics. The work in (Bellatreche, 2005) 
presents a genetic algorithm for schema fragmentation 
selection, focused on how to fragment the fact table 
based on the dimension table’s partitioning schemas. 
Fragmenting the DW as a way of speeding up multi-
way joins and reducing query execution cost is 
another possible optimization method, as shown in 
(Bellatreche, 2000). In (Sanjay, 2004) the authors 
propose novel techniques for designing a scalable 
solution as how to adequately incorporate partitioning 
with DB design. In (Bellatreche, 2004) the authors 
obtain tuning parameters for better use of data 
partitioning, join indexes and materialized views to 
optimize the cost in a systematic usage form. 

As stated previously, we discard materialized 
views because of their poor general application for a 
considerably large set of major queries, hence the 
number of necessary materialized views is 
proportional to the number of different queries. 
Furthermore, the significant amount of space they 
might take up in the DB is also a negative aspect, 
along with increase of maintenance costs. Therefore, 
we focus our work on two major performance 
techniques for an alternative optimization schema: 
partitioning and indexing. Considering that the most 
efficient techniques rely on those which minimize the 
amount of data to be scanned for producing each 
major query’s response, our method proposes how to 
implement an efficient partitioning schema and 
consequent best practice indexing based on the 
features presented in that set of the DW’s major 
queries. Our method also minimizes DB maintenance 
effort by defining an efficient number of partitions 
per table, for an excessive amount of partitions may 
result in poor performance (Bellatreche, 2005). 

3  PIN OPTIMIZATION METHOD 

In order to guarantee data validation and integrity, we 
advise maintaining the DB schema’s primary keys 
and referential integrity constraints. Our PIN 
(Partitioning and INdexing) method aims for 
determining the best fragmentation attribute for each 
table and how many fragments should be defined, 
according to an overall ratio that combines all the 
major OLAP query restriction predicates and 
execution time, as well as all attribute’s cardinality. 
This will accelerate OLAP queries having restriction 
predicates on that attribute. 

3.1  Defining the Partitioning Attributes 

The first type of performance measurement we need 
for our method is to evaluate the percentage for the 
total number of records in each table in relation to the 
total number of records which exist in the DW, which 
will be used as a ratio for our method. Consider cTk as 
the number of existing records within table Tk and 
ΣcTk as the total number of existing records within the 
DW. The percentage of records for Tk in the DW 
(ratio RPITk) is given by: 

 cTk 
ΣcTk 

 
 

RPITk  = 
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Another type of performance measure to consider 
for our method is the impact of each isolated query 
execution time in the total time needed for executing 
a workload with all of the major queries. Consider tQi 
as the average execution time for each main DW 
query Qi, and ΣtQj as the average execution time of 
the workload with all the selected major queries. To 
obtain the percentage of time corresponding to the 
execution of query Qi compared with the time spent in 
the execution of all queries, representing another ratio 
for our method, we can calculate the total time 
percentage impact for each query (ratio TIPQi) by:  

tQi 
ΣtQj 

We also need to know the impact given by the 
number of records to be scanned related to each 
attribute filtered values defined in the WHERE clause 
of each OLAP query instruction. For example, 
suppose a common sales table with a record data 
structure (Sale_ID, Sale_Customer_ID, Sale_Date, 
Sale_Amount) and an OLAP query in which we 
needed to filter the sales records only with attribute 
Sale_Date between [1-1-2006; 31-1-2006] in order to 
produce the query’s answer. If the sales table has a 
total of 100.000 records and there are 1.000 records 
which comply with the filtered Sale_Date desired 
values, then the percentage of interesting records 
within the sales table would be equal to 1.000 / 
100.000 = 0,01 in this particular OLAP query. 
Consider an attribute Aj belonging to a table Tk 
existing in the WHERE clause of a query Qi defining 
an interval of absolute values [Ia; Ib] for including 
records in that query’s processing. Consider cTk as the 
total number of records of Tk and fcTk as the number 
of records in Tk where the recorded values of Aj match 
the interval [Ia; Ib]. The percentage of non-interesting 
records in Tk given the Aj values filter which would 
not need to be scanned for query Qi (NIPQiTkAj) is 
given by: 

cTk - fcTk 
    cTk 

For our method, we calculate an attribute interest 
ratio for each attribute Aj of table Tk in each query Qi 
(AIRQiTkAj) present in the WHERE clause of those 
queries, given by: 

   AIRQiTkAj = RPITk x TIPQi x NIPQiTkAj 
This calculus combines the impact produced by 

data filtering due to the existing features of the 
attributes present in the WHERE clause of all major 
queries with the impact due to the execution time of 
each query, resulting in an overall ratio for each 
referred attribute. Our intention with this is to present 

a balanced evaluation of the importance of each 
attribute in the set of major OLAP queries and its real 
individual impact in those queries’ performance. 

After these ratios are calculated, we summarize 
the values grouping them per individual attribute. 
Thus, the final ratio for each attribute Aj (FRAj) is the 
sum of all calculated ratios for AIRQiTkAj: 

FRAj = ΣAIRQiTkAj 

Then, we consider the attribute Aj of table Tk with 
the highest value of FRAj as the attribute that will be 
used for partitioning that table: 

Partitioning attribute (PAj) for Tk is Aj with 
max(FRAj) 

If a table Tk does not have any of its attributes 
involved as a restriction predicate in the whole set of 
OLAP major queries, or if Tk is insignificantly small 
in size (holding less than 0,1% of the database’s total 
number of records), then Tk will not be partitioned. 

3.2 Defining the Partitioning Schema 

We shall now explain how the partitioning schema is 
implemented, based on the features of the previously 
defined fragmentation attributes. Data partitioning of 
databases can be divided into two major types: 
horizontal and vertical. Horizontal partitioning allows 
data sets such as tables, indexes and materialized 
views to be partitioned into disjoint sets of rows that 
are stored and accessed separately. On the other hand, 
vertical partitioning allows a table to be partitioned 
into disjoint sets of columns. In our method, we 
implement horizontal partitioning, for it is usually the 
most efficient form of DW partitioning (Bellatreche, 
2005). Several work and commercial systems show its 
utility and impact in optimizing OLAP queries 
(Bellatreche, 2000) (Bellatreche, 2004) (Kalnis, 
2001) (Sanjay, 2004), but few have formalized the 
problem of selecting a horizontal partitioning schema 
which would speed up a set of queries, except for the 
proposed in (Bellatreche, 2005). 

There are several types of horizontal partitioning: 
(1) Range partitioning, where the rows are grouped 
according to defined intervals of the partitioning 
attributes’ values; (2) List partitioning, where each 
partition fragment contains rows that are grouped 
according to a defined set of absolute values for the 
partitioning attributes; (3) Hash partitioning, in 
which rows are grouped into bundles where each  has 
approximately the same number of records, that are 
accessed through a generated hash key when they are 
needed; (4) Mixed partitioning, which combines more 
than one of the previous techniques. 

NIPQiTkAj  = 

TIPQi  = 
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Our method proposes to set the fragmentation 
schema on range and list partitioning, depending each 
table on its partitioning attribute’s cardinality as a 
restriction predicate in the set of OLAP queries. The 
existence of up to 100 partitions has been proven 
efficient for most general cases (Bellatreche, 2000). 
Therefore, we define the following partitioning rule: 
If the cardinality of the partitioning attribute is 
relatively high (more than 100 different atomic 
values exist in the table for that attribute) range 
partitioning is applied, otherwise list partitioning is 
used. After defining the type of partition for each 
table according to their partition attribute’s 
cardinality, we determine the values to use for range 
or list partitioning, attending the following rules: 

a) If list partitioning is to be used in accordance 
with the first rule we mentioned, the data will 
be partitioned creating one fragment per each 
partitioning attribute’s value; 

b) If range partitioning is to be used, a definition 
of a set of intervals that will define each 
fragment must be determined. Consider a 
partitioning attribute PAj for a table Tk, where 
min(PAj) is the minimum atomic value for PAj 
within Tk and max(Aj) as the same attribute’s 
maximum atomic value in the same table. 
Secondly, the major OLAP queries should be 
analyzed, isolating the instructions holding PAj 
in their WHERE clause. For this subset of 
queries, hold the smallest defined interval of 
values for PAj in their WHERE clause, within 
all those queries. The cardinality of this 
interval and of interval [min(PAj); max(PAj)] 
gives us the measure that defines how many 
fragments will result for the partitioning of Tk, 
according to the following algorithm: 
NFTk =      # [min(PAj); max(PAj)]      A 
      # [min(PAjQValue); max(PAjQValue)] 
While NFTk > 100 Do 
   NFTk = NFTk div 2 
EndDo 

where NFTk is the number of fragments to be 
implemented in Tk, # [min(PAj); max(PAj)] is 
the cardinality of that interval, and # 
[min(PAjQValue); max(PAjQValue)] the 
cardinality of the smallest defined major 
OLAP query filtering interval in the WHERE 
clause using Sales_Date for the whole 
workload of major OLAP queries. After this, 
the partitioning schema for Tk would be 
defined by creating NFTk partitioned 
fragments, with range values defined as 
[min(PAj); min(PAj) + # [min(PAjQValue); 
max(PAjQValue)] ] for the first fragment and 

incrementing the following range values by # 
[min(PAjQValue); max(PAjQValue)]. 

To clearly explain the fragmentation schema’s 
definition, let us illustrate an example. Consider a 
sales table similar to the one referred in section 3.1, 
assuming that the partitioning attribute is Sales_Date, 
min(Sales_Date) is 1-1-2006 and max(Sales_Date) is 
31-12-2006. The cardinality of this attribute is 365, 
the number of possible different atomic values in [1-
1-2006; 31-12-2006]. According to our method and 
since this cardinality is greater than 100, the table will 
be range partitioned. Supposing that in the set of 
major OLAP queries there were four of them which 
used this attribute in their WHERE clause: the first 
requiring rows with Sales_Date between 01-01-2006 
and 31-03-2006; two queries asking for rows with 
Sales_Date between 01-01-2006 and 31-12-2006; 
and a fourth query asking for rows with Sales_Date 
between 01-10-2006 and 31-12-2006. The smallest 
defined major OLAP query filtering interval using 
Sales_Date would be the one in the first or last query, 
corresponding to an interval of 90 days (equals a 
cardinality of 90). Therefore, the number of 
fragments for that sales table would be 365/90 = 4. 
The table would be fragmented starting from 
min(Sales_Date) and incrementing it with as many 
days as those defined in the smallest defined major 
OLAP query, resulting in the following partitioned 
fragments: (1) Partition 1, all rows with Sales_Date 
values between 1-1-2006 and 31-3-2006; (2) 
Partition 2, all rows with Sales_Date between 1-4-
2006 and 30-06-2006; (3) Partition 3, all rows with 
Sales_Date between 1-7-2006 and 30-9-2006; and (4) 
Partition 4 containing all rows with Sales_Date 
between 1-1-2006 and 31-12-2006. 

Limiting the amount of partitions to a maximum 
of 100 prevents exaggerated data fragmentation, 
therefore avoiding degradation of performance due to 
excessive partitioning. Furthermore, exaggerated 
partitioning will cause extensive table fragmentation, 
which implies managing hundreds or even thousands 
of sub star schemas instead of managing just one, 
making the DW Administrator’s maintenance task 
extremely hard. According to our tests, up to 100 
partitions will not produce negative impact in the 
database’s performance. As referred in (Bellatreche, 
2005), all partitioning methods should ensure two 
main objectives in what concerns defining the number 
of partitioned fragments: (1) avoid an explosion of 
the number of fragments for a single table; and (2) 
ensure a good performance of OLAP queries. 

 



5 

3.3 Defining the Indexing Schema 

As we mentioned earlier, we advise maintaining all 
primary keys and referential integrity constraints. It is 
recommended to build a bitmap index on an attribute 
when that attribute has a low cardinality of values; if 
not, a B*Tree index should be preferred (Agrawal, 
2000) (Chee-Yong, 1999) (Gupta, 1997). Therefore, 
additionally to primary keys and referential integrity 
constraints, our method uses the following simple 
unique rule for defining which other indexes should 
be created: An index should be created for every 
attribute existing in any WHERE clause of any major 
OLAP query. This index is to be a B*Tree index if the 
cardinality of that attribute is higher than 25% of the 
total number of rows in the table to which it belongs, 
Bitmap index otherwise. 

This indexing schema works with the partitioning 
schema in the overall query processes by optimizing 
the data filters defined by the attributes present in the 
major OLAP query WHERE clauses while the 
partitioning reduces the amount of scanned data. 

4  Experimental evaluation of PIN 

We used TPC-H benchmark [TPC] generator 
(DBGen) for building the experimental DW in 
ORACLE DBMS 10g with four different scale size 
scenarios (1GB, 2GB, 4GB and 8GB) on a Celeron 
1.4GHz CPU with 512MB PC-133 DDRAM and a 
80GB 7200rpm hard drive. All 22 TPC-H queries 
were used and considered as the major decision 
making queries for applying our optimization method. 
We tested the query results execution with 1, 2, 4 and 
8 simultaneous users, which ran each query in random 
order in a workload composed by TPC-H Queries 3, 
4, 5, 6, 7, 10, 12 and 14. These queries represent a 
wide variety of OLAP instructions involving 
important operations such as grouping, aggregations, 
joins, mathematical functions, among others. We 
chose to consider their execution against several scale 
sizes of its DB with the purpose of widening the 
scope of features for testing our method. 

4.1  Partitioning the Data Warehouse 

We shall illustrate how we obtained the partitioning 
schema for the 1GB TPC-H DW and not include the 
schemas of the remaining 2GB, 4GB and 8GB, due to 
space constraints in this paper. The remaining 
schemas were obtained in a similar form. The 

explained processes for the smaller DW should be 
enough for understanding how work was done. 

Table 1 presents the final overall ratio (FRQiTkAj) 
for each attribute. According to our method, the 
attribute with the highest FRQiTkAj value for each table 
is the chosen partitioning attribute. This means that 
for table Customer, the partitioning attribute is 
C_MktSegment; LineItem will be partitioned by 
L_ShipDate; Orders by O_OrderDate; table Part by 
P_Brand; and Supplier by S_Comment. Since table 
PartSupp does not have any attribute present as a 
predicate restriction in the set of OLAP queries, it 
shall not be partitioned. Nation and Region will not 
be partitioned because of their insignificant size. 

To determine how many partitions will be created 
for each table and their range values, we need to 
analyze their cardinality and range of values as 
restriction predicates in the OLAP queries. This 
analysis is presented in Table 2. Since partitioning 
attributes C_MktSegment and P_Part have a small 
cardinality (<100), tables Customer and Part will be 
list partitioned, with 1 fragment per each attribute’s 
atomic value. For table Supplier, since S_Comment is 
only used once as a restriction predicate (in Query 
16) with a unique range value 
(‘%Customer%Complaints%’), we can apply list 
partitioning to this table defining one fragment for 
this restriction value and another for all the rest. 

Table 3 presents the resulting partitioning schema. 
 

Attribute (Aj) Table (Tk) FRAj   (ΣAIRQiTkAj) 
C_MktSegment Customer 0,0004 
C_Phone Customer 0,0000 
L_ShipDate LineItem 0,0740 
L_ShipMode LineItem 0,0438 
L_ShipInstruct LineItem 0,0384 
L_Quantity LineItem 0,0284 
L_ReturnFlag LineItem 0,0142 
L_ReceiptDate LineItem 0,0125 
L_Discount LineItem 0,0106 
O_OrderDate Orders 0,0738 
O_OrderStatus Orders 0,0213 
O_Comment Orders 0,0000 
P_Brand Part 0,0020 
P_Container Part 0,0017 
P_Size Part 0,0014 
P_Name Part 0,0009 
P_Type Part 0,0008 
S_Comment Supplier 0,0000 

Table 1. FRAj ratios for 1GB TPC-H data warehouse 
 

Partitioning 
Attribute (PAj) 

Cardinality of 
PAj in Tk (#) 

Range Values of  
PAj in Tk 

C_MktSegment 5 
‘AUTOMOBILE’, ’FURNITURE’, 
’MACHINERY’, ’HOUSEHOLD’, 

’BUILDING’ 
L_ShipDate 2526 02-01-1992…01-12-1998 

O_OrderDate 2406 01-01-1992…02-08-1998 
P_Brand 25 ‘Brand#11’…‘Brand#55’ 

S_Comment 9999 ‘Customer%’…‘water%’ 

Table 2. Partitioning attributes cardinality and range values 
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Table (Tk) Partitions 

Customer 

Create partition by List on C_MktSegment ( 
   Partition 1 with values 'BUILDING', 
   Partition 2 with values 'AUTOMOBILE', 
   Partition 3 with values 'FURNITURE', 
   Partition 4 with values 'MACHINERY', 
   Partition 5 with values 'HOUSEHOLD') 

LineItem 

Create partition by Range on L_ShipDate ( 
   Partition 1 with values between [01-01-92; 31-01-92], 
   Partition 2 with values between [01-02-92; 28-02-92],  
   … 
   Partition 84 with values between [01-12-98; 31-12-98]) 

Orders 

Create partition by Range on L_ShipDate ( 
   Partition 1 with values between [01-01-92; 31-03-92], 
   Partition 2 with values between [01-04-92; 30-06-92],  
   … 
    Partition 27 with values between [01-07-98; 30-09-98]) 

Part 

Create partition by List on P_Brand ( 
   Partition 1 with values 'Brand#11', 
   Partition 2 with values 'Brand#12',  
   … 
   Partition 25 with values 'Brand#55') 

Supplier 
Create partition by List on S_Comment ( 
   Partition 1 with values '%Customer%Complaints%', 
   Partition 2 with all other values) 

Table 3. Partitioning schema for 1GB TPC-H using PIN 
 

4.2 Indexing the Data Warehouse 
 

Attribute (Aj) Table (Tk) Index Type 
C_MktSegment Customer Bitmap 
C_Phone Customer B*Tree 
L_ShipDate, L_ShipMode, 
L_ShipInstruct, L_Quantity, 
L_ReturnFlag, L_ReceiptDate, 
L_Discount 

LineItem Bitmap 

O_OrderDate, O_OrderStatus Orders Bitmap 
O_Comment Orders B*Tree 
P_Brand, P_Container, P_Size, _Type Part Bitmap 
P_Name Part B*Tree 
S_Comment Supplier B*Tree 

Table 4. Indexing schema for TPC-H using PIN 
 
As stated previously, primary keys and referential 

integrity constraints will be maintained, so we will 
only refer to other indexing for our method. This 
means that all attributes used as restriction predicates 
in the OLAP queries will be indexed according to the 
rule defined in section 3.3 of this paper. The resulting 
indexing schema is presented in Table 4. 

 
4.3  Results 

 
To analyze the performance of our method, we have 
conducted four series of experiments for each setup: 
(1) implemented without optimization techniques, just 
maintaining its standard primary keys and integrity 
constraints; (2) optimized using standard indexing 
techniques, such as join indexes; (3) optimized only 
by standard partitioning techniques using our 
fragmentation rules; and (4) with full optimization 
using our method with partitioning and indexing. 
Figures 1 and 2 present the results relating the 
execution of the workload for size 1GB and 8GB data 
warehouses, while Figure 3 presents the results 
according to predefined scenarios on 8 simultaneous 
users executing the workload. 

For performance optimization of the fourth series 
of experiments (our method), we executed many 
performance optimization tests that included bitmap 
join indexes, which usually improve OLAP query 
performance (Bellatreche, 2004), and in this case it 
did not improve. Contrarily, performance degraded. 
We observed that, for our method, only the restriction 
predicates should be indexed. This enforces the 
validity for our rule defining the indexing schema, 
only building indexes for all the attributes that appear 
in the OLAP queries WHERE clause after adequately 
partitioning the tables according to our method. 

Figures 1 to 3 and Tables 5 and 6 show that PIN 
has best scalability features and is the most efficient 
technique, outstanding the others in every execution, 
both relating to DW size and number of simultaneous 
users. Analyzing average gains from a DB size point 
of view, the gain for standard indexing is around 
25%, while for standard partitioning the results show 
an average gain of 48%. PIN has an average gain of 
55%. In simultaneous users execution, PIN’s 
advantage is also evident, with an average gain of 
56% against 49% for standard partitioning and 25% 
for standard indexing. It also increases the gain 
compared with other methods as the DB grows in size 
and/or number of simultaneous users increases, 
showing a better performance in heavy usage. 
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Figure 1. Workload execution time for 1GB TPC-H 
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Figure 2. Workload execution time for 8GB TPC-H 
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Figure 3. Workload execution for 8 simultaneous users 

 

 
Table 5. Performance gain comparison between techniques 
in several size TPC-H data warehouses 

1 GB 2 GB 4 GB 8 GB Methods 
Min Max Min Max Min Max Min Max 

Standard Index 19% 36% 20% 23% 16% 22% 17% 28% 
Standard Partit. 48% 64% 46% 63% 28% 60% 32% 56% 

PIN 56% 72% 48% 68% 30% 67% 45% 57% 

Table 6. Performance gain comparison between techniques 
with workload execution by simultaneous users 

 
1 User 2 Users 4 Users 8 Users Methods 

Min Max Min Max Min Max Min Max 
Standard Index 19% 26% 20% 36% 22% 30% 16% 28% 
Standard Partit. 28% 56% 51% 64% 44% 62% 32% 57% 

PIN 30% 57% 57% 72% 55% 69% 45% 68% 

5 Conclusions and future work 

We present an efficient simple and easy to 
implement alternative method for optimizing the 
performance of data warehouse OLAP queries by 
combining partitioning and indexing techniques based 
on the existing features of a set of predefined major 
SQL data warehouse queries. It also introduces 
simple modifications in the database’s data structures, 
minimizing the taken up space and maintenance costs 
of the data warehouse, in contrast with other complex 
partitioning/indexing methods. The experiments 
illustrate its efficiency in time execution and 
simultaneous user querying, showing that it 
overcomes isolated partitioning and indexing 
techniques. As future work, we intend to implement 
this method in real live data warehouses and measure 
its impact on real world system’s performance. 
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