
Real-Time Data Warehouse Loading Methodology
Ricardo Jorge Santos

CISUC – Centre of Informatics and Systems
DEI – FCT – University of Coimbra

Coimbra, Portugal

lionsoftware.ricardo@gmail.com

Jorge Bernardino
CISUC, IPC – Polytechnic Institute of Coimbra

ISEC – Superior Institute of Engineering of Coimbra
Coimbra, Portugal

jorge@isec.pt

ABSTRACT
A data warehouse provides information for analytical processing,
decision making and data mining tools. As the concept of real-
time enterprise evolves, the synchronism between transactional
data and data warehouses, statically implemented, has been
redefined. Traditional data warehouse systems have static
structures of their schemas and relationships between data, and
therefore are not able to support any dynamics in their structure
and content. Their data is only periodically updated because they
are not prepared for continuous data integration. For real-time
enterprises with needs in decision support purposes, real-time data
warehouses seem to be very promising. In this paper we present a
methodology on how to adapt data warehouse schemas and user-
end OLAP queries for efficiently supporting real-time data
integration. To accomplish this, we use techniques such as table
structure replication and query predicate restrictions for selecting
data, to enable continuously loading data in the data warehouse
with minimum impact in query execution time. We demonstrate
the efficiency of the method by analyzing its impact in query
performance using benchmark TPC-H executing query workloads
while simultaneously performing continuous data integration at
various insertion time rates.

Keywords
real-time and active data warehousing, continuous data
integration for data warehousing, data warehouse refreshment
loading process.

1. INTRODUCTION
A data warehouse (DW) provides information for analytical
processing, decision making and data mining tools. A DW
collects data from multiple heterogeneous operational source
systems (OLTP – On-Line Transaction Processing) and stores
summarized integrated business data in a central repository used
by analytical applications (OLAP – On-Line Analytical
Processing) with different user requirements. The data area of a
data warehouse usually stores the complete history of a business.
The common process for obtaining decision making information
is based on using OLAP tools [7]. These tools have their data
source based on the DW data area, in which records are updated

by ETL (Extraction, Transformation and Loading) tools. The ETL
processes are responsible for identifying and extracting the
relevant data from the OLTP source systems, customizing and
integrating this data into a common format, cleaning the data and
conforming it into an adequate integrated format for updating the
data area of the DW and, finally, loading the final formatted data
into its database.

Traditionally, it has been well accepted that data warehouse
databases are updated periodically – typically in a daily, weekly
or even monthly basis [28] – implying that its data is never up-to-
date, for OLTP records saved between those updates are not
included the data area. This implies that the most recent
operational records are not included into the data area, thus
getting excluded from the results supplied by OLAP tools. Until
recently, using periodically updated data was not a crucial issue.
However, with enterprises such as e-business, stock brokering,
online telecommunications, and health systems, for instance,
relevant information needs to be delivered as fast as possible to
knowledge workers or decision systems who rely on it to react in
a near real-time manner, according to the new and most recent
data captured by an organization’s information system [8]. This
makes supporting near real-time data warehousing (RTDW) a
critical issue for such applications.

The demand for fresh data in data warehouses has always been a
strong desideratum. Data warehouse refreshment (integration of
new data) is traditionally performed in an off-line fashion. This
means that while processes for updating the data area are
executed, OLAP users and applications cannot access any data.
This set of activities usually takes place in a preset loading time
window, to avoid overloading the operational OLTP source
systems with the extra workload of this workflow. Still, users are
pushing for higher levels of freshness, since more and more
enterprises operate in a business time schedule of 24x7. Active
Data Warehousing refers to a new trend where DWs are updated
as frequently as possible, due to the high demands of users for
fresh data. The term is also designated as Real-Time Data
Warehousing for that reason in [24]. The conclusions presented
by T. B. Pedersen in a report from a knowledge exchange network
formed by several major technological partners in Denmark [17]
refer that all partners agree real-time enterprise and continuous
data availability is considered a short term priority for many
business and general data-based enterprises. Nowadays, IT
managers are facing crucial challenges deciding whether to build
a real-time data warehouse instead of a conventional one and
whether their existing data warehouse is going out of style and
needs to be converted into a real-time data warehouse to remain
competitive. In some specific cases, data update delays larger than
a few seconds or minutes may jeopardise the usefulness of the
whole system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDEAS’08, September 10–12, 2008, Coimbra, Portugal
Editor: Bipin C. DESAI
Copyright 2008 ACM 978-1-60158-188-0/08/09…$5.00

In a nutshell, accomplishing near zero latency between OLTP and
OLAP systems consists in insuring continuous data integration
from the former type of systems into the last. In order to make
this feasible, several issues need to be taken under consideration:
(1) Operational OLTP systems are designed to meet well-
specified (short) response time requirements aiming for maximum
system availability, which means that a RTDW scenario would
have to cope with this in the overhead implied in those OLTP
systems; (2) The tables existing in a data warehouse’s database
directly related with transactional records (commonly named as
fact tables) are usually huge in size, and therefore, the addition of
new data and consequent procedures such as index updating or
referential integrity checks would certainly have impact in OLAP
systems’ performance and data availability. Our work is focused
on the DW perspective, for that reason we present an efficient
methodology for continuous data integration, performing the ETL
loading process.

This paper presents a solution which enables efficient continuous
data integration in data warehouses, while allowing OLAP
execution simultaneously, with minimum decrease of
performance. With this, we seek to minimize the delay between
the recording of transactional information and its reflected update
on the decision support database. If the operational data extraction
and transformation are able of performing without significant
delay during the transaction itself, this solution will load all the
decision support information needed in the data warehouse in
useful time, allowing an answer while the transaction still is
occurring. This is the general concept of real time data
warehousing. The issues focused in this paper concern the DW
end of the system, referring how to perform loading processes of
ETL procedures and the DW’s data area usage for efficiently
supporting continuous data integration. The items concerning
extracting and transforming of operational (OLTP) source
systems data are not the focus of this paper. Therefore, we shall
always be referring the data warehouse point of view, in the
remainder of the paper.

Based on the existing schema(s) of the DW’s database, our
methodology consists on creating a replica for each of its tables,
empty of contents and without defining any type of indexes,
primary keys or any other kind of restrictions or constraints. In
this new schema, the replicated tables will receive and record the
data from the staging area, which will be continuously loaded.
The fact that they are initially created empty of contents and not
having any sort of constraints allows to considerably minimize the
consumption of time and resources which are necessary in the
procedures inherent to data integration. As the data integration is
performed, the database’s performance which includes the new
most recent data deteriorates, due to the lack of usual data
structures that could optimize it (such as indexes, for example), in
the replicated tables. When the data warehouse’s performance is
considered as unacceptable by its users or administrators, the
existing data within the replicated tables should serve for updating
the original schema. After performing this update, the replicated
tables are to be recreated empty of contents, regaining maximum
performance. We also demonstrate how to adapt OLAP queries in
the new schema, to take advantage of the most recent data which
is integrated in real time.

The experiments which are presented were performed using a
standard benchmark for decision support systems, benchmark

TPC-H, from the Transaction Processing Council [22]. Several
configurations were tested, varying items such as the database’s
physical size, the number of simultaneous users executing OLAP
queries, the amount of available RAM memory and the time rates
between transactions.

The remainder of this paper is organized as follows. In section 2,
we refer the requirements for real-time data warehousing. Section
3 presents background and related work in real-time data
warehousing. Section 4 explains our methodology, and in section
5 we present the experimental evaluation of our methods and
demonstrate its functionality. The final section contains
concluding remarks and future work

2. REQUIREMENTS FOR REAL-TIME
DATA WAREHSOUSING
Nowadays, organizations generate large amounts of data, at a rate
which can easily reach several megabytes or gigabytes per day.
Therefore, as time goes by, a business data warehouse can easily
grow to terabytes or even petabytes. The size of data warehouses
imply that each query which is executed against its data area
usually accesses large amounts of records, also performing
actions such as joins, sorting, grouping and calculation functions.
To optimize these accesses, the data warehouse uses predefined
internal data structures (such as indexes or partitions, for
instance), which are also large in size and have a very
considerable level of complexity. These facts imply that it is very
difficult to efficiently update the data warehouse’s data area in
real-time, for the propagation of transactional data in real-time
would most likely overload the server, given its update frequency
and volume; it would involve immense complex operations on the
data warehouse’s data structures and dramatically degrade OLAP
performance.

In a nutshell, real-time data warehouses aim for decreasing the
time it takes to make decisions and try to attain zero latency
between cause and effect for that decision, closing the gap
between intelligent reactive systems and systems processes. Our
aim is transforming a standard DW using batch loading during
update windows (during which analytical access is not allowed)
into near zero latency analytical environment providing current
data, in order to enable (near) real-time dissemination of new
information across an organization. The business requirements for
this kind of analytical environment introduce a set of service level
agreements that go beyond what is typical in a traditional DW.
The major issue is how to enable continuous data integration and
assuring that it minimizes negative impact in several main
features of the system, such as availability and response time of
both OLTP and OLAP systems.

An in-depth discussion of these features from the analytical point
of view (to enable timely consistent analysis) is given in [6].
Combining highly available systems with active decision engines
allows near real-time information dissemination for data
warehouses. Cumulatively, this is the basis for zero latency
analytical environments [6]. The real-time data warehouse
provides access to an accurate, integrated, consolidated view of
the organization’s information and helps to deliver near real-time
information to its users. This requires efficient ETL techniques
enabling continuous data integration, the focus of this paper.

By adopting real-time data warehousing, it becomes necessary to
cope with at least two radical data state changes. First, it is
necessary to perform continuous data update actions, due to the
continuous data integration, which should mostly concern row
insertions. Second, these update actions must be performed in
parallel with the execution of OLAP, which – due to its new real-
time nature – will probably be solicited more often. Therefore, the
main contributions of this paper are threefold:

• Maximizing the freshness of data by efficiently and
rapidly integrating most recent OLTP data into the data
warehouse;

• Minimizing OLAP response time while simultaneously
performing continuous data integration;

• Maximizing the data warehouse’s availability by reducing
its update time window, in which users and OLAP
applications are off-line.

3. RELATED WORK
So far, research has mostly dealt with the problem of maintaining
the warehouse in its traditional periodical update setup [14, 27].
Related literature presents tools and algorithms to populate the
warehouse in an off-line fashion. In a different line of research,
data streams [1, 2, 15, 20] could possibly appear as a potential
solution. However, research in data streams has focused on topics
concerning the front-end, such as on-the-fly computation of
queries without a systematic treatment of the issues raised at the
back-end of a data warehouse [10]. Much of the recent work
dedicated to RTDW is also focused on conceptual ETL modelling
[4, 5, 19, 23], lacking the presentation of concrete specific
extraction, transformation and loading algorithms along with their
consequent OLTP and OLAP performance issues.

Temporal data warehouses address the issue of supporting
temporal information efficiently in data warehousing systems
[25]. In [27], the authors present efficient techniques (e.g.
temporal view self-maintenance) for maintaining data warehouses
without disturbing source operations. A related challenge is
supporting large-scale temporal aggregation operations in data
warehouses [26]. In [4], the authors describe an approach which
clearly separates the DW refreshment process from its traditional
handling as a view maintenance or bulk loading process. They
provide a conceptual model of the process, which is treated as a
composite workflow, but they do not describe how to efficiently
propagate the date. Theodoratus et al. discuss in [21] data
currency quality factors in data warehouses and propose a DW
design that considers these factors.

An important issue for near real-time data integration is the
accommodation of delays, which has been investigated for
(business) transactions in temporal active databases [18]. The
conclusion is that temporal faithfulness for transactions has to be
provided, which preserves the serialization order of a set of
business transactions. Although possibly lagging behind real-time,
a system that behaves in a temporally faithful manner guarantees
the expected serialization order.

In [23], the authors describe the ARKTOS ETL tool, capable of
modeling and executing practical ETL scenarios by providing

explicit primitives for capturing common tasks (such as data
cleaning, scheduling and data transformations) using a declarative
language. ARKTOS offers graphical and declarative features for
defining DW transformations and tries to optimize the execution
of complex sequences of transformation and cleansing tasks.

In [13] is described a zero-delay DW with Gong, which assists in
providing confidence in the data available to every branch of the
organization. Gong is a Tecco product [3] that offers uni or bi-
directional replication of data between homogeneous and/or
heterogeneous distributed databases. Gong’s database replication
enables zero-delay business in order to assist in the daily running
and decision making of the organization.

But not all transactional informations need to be immediately
dealt with in real-time decision making requirements. We can
define which groups of data is more important to include rapidly
in the data warehouse and other groups of data which can be
updated in latter time. Recently, in [9], the authors present an
interesting architecture on how to define the types of update and
time priorities (immediate, at specific time intervals or only on
data warehouse offline updates) and respective synchronization
for each group of transactional data items.

Our methodology overcomes some of the mentioned drawbacks
and is presented in the next section.

4. CONTINUOUS DATA WAREHOUSE
LOADING METHODOLOGY
From the DW side, updating huge tables and related structures
(such as indexes, materialized views and other integrated
components) makes executing OLAP query workloads
simultaneously with continuous data integration a very difficult
task. Our methodology minimizes the processing time and
workload required for these update processes. It also facilitates
the DW off-line update (see section 4.4), because the data already
lies within the data area and all OLTP data extraction and/or
transformation routines have been executed during the continuous
data integration. Furthermore, the data structure of the replicated
tables is exactly the same as the original DW schema. This
minimizes the time window for packing the data area of the DW,
since its update represents a one step process by resuming itself as
a cut-and-paste action from the temporary tables to the original
ones, as we shall demonstrate further.

Our methodology is focused on four major areas: (1) data
warehouse schema adaptation; (2) ETL loading procedures; (3)
OLAP query adaptation; and (4) DW database packing and
reoptimization. It is mainly based on a very simple principle: new
row insertion procedures in tables with few (or no) contents are
performed much faster than in big size tables. It is obvious and
undeniable that data handling in small sized tables are much less
complex and much faster than in large sized tables. As a matter of
fact, this is mainly the reason why OLTP data sources are
maintained with the fewer amount possible of necessary records,
in order to maximize its availability. The proposed continuous
data warehouse loading methodology is presented in Figure 1.

4.1 Adapting the Data Warehouse Schema
Suppose a very simple sales data warehouse with the schema
illustrated in Figure 2, having two dimensional tables (Store and
Customer, representing business descriptor entities) and one
fact table (Sales, storing business measures aggregated from
transactions). To simplify the figure, the Date dimension is not
shown. This DW allows storing the sales value per store, per
customer, per day. The primary keys are represented in bold,
while the referential integrity constraints with foreign keys are
represented in italic. The factual attribute S_Value is additive.
This property in facts is very important for our methodology, as
we shall demonstrate further on.

For the area concerning data warehouse schema adaptation, we
adopt the following method:

Data warehouse schema adaptation method for
supporting real-time data warehousing: Creation of an
exact structural replica of all the tables of the data
warehouse that could eventually receive new data. These
tables (referred also as temporary tables) are to be created
empty of contents, with no defined indexes, primary key, or
constraints of any kind, including referential integrity. For
each table, an extra attribute must be created, for storing a
unique sequential identifier related to the insertion of each
row within the temporary tables.

The modified schema for supporting RTDW based on our
methodology is illustrated in Figure 3. The unique sequential
identifier attribute present in each temporary table should record
the sequence in which each row is appended in the Data Area.
This will allow identifying the exact sequence of arrival for each
new inserted row. This is useful for restoring prior data states in
disaster recovery procedures, and also for discarding dimensional
rows which have more recent updates. For instance, if the same
customer has had two updates in the OLTP systems which,
consequently, lead to the insertion of two new rows in the
temporary table CustomerTmp, only the most recent one is
relevant. This can be defined by considering as most recent the
row with highest CTmp_Counter for that same customer
(CTmp_CustKey).

CustomerTmp

CTmp_CustKey
CTmp_Name
CTmp_Address
CTmp_PostalCode
CTmp_Phone
CTmp_EMail
CTmp_Counter

SalesTmp

STmp_StoreKey
STmp_CustomerKey
STmp_Date
STmp_Value
STmp_Counter

StoreTmp

StTmp_StoreKey
StTmp_Description
StTmp_Address
StTmp_PostalCode
StTmp_Phone
StTmp_EMail
StTmp_Manager
StTmp_Counter

The authors of the ARKTOS tool [23] refer that their own
experience, as well as the most recent literature, suggests that the
main problems of ETL tools do not consist only in performance
problems (as normally would be expected), but also in aspects
such as complexity, practibility and price. By performing only
record insertion procedures inherent to continuous data
integration using empty or small sized tables without any kind of
constraint or attached physical file related to it, we guarantee the
simplest and fastest logical and physical support for achieving our
goals [12].

The fact that the only significant change in the logical and
physical structure of the data warehouse’s schema is the simple
adaptation shown in Figure 3, allows that the implementation of
the necessary ETL procedures can be made in a manner to
maximize its operationability. Data loading may be done by
simple standard SQL instructions or DBMS batch loading
software such as SQL*Loader [16], with a minimum of
complexity. There is no need for developing complex routines for
updating the data area, in which the needed data for is easily
accessible, independently from the used ETL tools.

4.2 ETL Loading Procedures
To refresh the data warehouse, once the ETL application has
extracted and transformed the OLTP data into the correct format
for loading the data area of the DW, it shall proceed immediately
in inserting that record as a new row in the correspondent
temporary table, filling the unique sequential identifier attribute
with the autoincremented sequential number. This number should
start at 1 for the first record to insert in the DW after executing

Figure 1. General architecture of the proposed continuous data warehouse loading methodology.

Figure 2. Sample sales data warehouse schema.

Figure 3. Sample sales data warehouse schema modified
for supporting real-time data warehousing.

the packing and reoptimizing technique (explained in section 4.4
of this paper), and then be autoincremented by one unit for each
record insertion. The algorithm for accomplishing continuous data
integration by the ETL tool may be similar to:

Trigger for each new record in OLTP system (after it is
commited)

 Extract new record from OLTP system
 Clean and transform the OLTP data, shaping it into the

data warehouse destination table’s format
 Increment record insertion unique counter
 Create a new record in the data warehouse temporary

destination table
 Insert the data in the temporary destination table’s new

record, along with the value of the record insertion
unique counter

End_Trigger

Following, we demonstrate a practical example for explaining
situations regarding updating the data warehouse shown in Figure
3. Figure 4 presents the insertion of a row in the data warehouse
temporary fact table for the recording of a sales transaction of
value 100 which took place at 2008-05-02 in store with
St_StoreKey = 1 related to customer with C_CustKey = 10,
identified by STmp_Counter = 1001. Meanwhile, other
transactions occurred, and the organization’s OLTP system
recorded that instead of a value of 100 for the mentioned
transaction, it should be 1000. The rows in the temporary fact
table with STmp_Counter = 1011 and STmp_Counter =
1012 reflect this modification of values. The first eliminates the
value of the initial transactional row and the second has the new
real value, due to the additivity of the STmp_Value attribute.
The definition of which attributes are additive and which are not
should be the responsibility of the Database Administrator.
According to [11], the most useful facts in a data warehouse are
numeric and additive.
The method for data loading uses the most simple method for
writing data: appending new records. Any other type of writing
method needs the execution of more time consuming and complex
tasks.

STmp_StoreKey STmp_CustomerKey STmp_Date STmp_Value STmp_Counter

1 10 2008-05-02 100 1001

1 10 2008-05-02 -100 1011

1 10 2008-05-02 1000 1012

4.3 OLAP Query Adaptation
Consider the following OLAP query, for calculating the total
revenue per store in the last seven days.

SELECT S_StoreKey,

 Sum(S_Value) AS Last7DaysSaleVal

FROM Sales

WHERE S_Date>=SystemDate()-7

GROUP BY S_StoreKey

To take advantage of our schema modification method and
include the most recent data in the OLAP query response, queries
should be rewritten taking under consideration the following rule:
the FROM clause should join all rows from the required original
and temporary tables with relevant data, excluding all fixed
restriction predicate values from the WHERE clause whenever
possible. The modification for the prior instruction is illustrated
below, with respect to our methodology. It can be seen that the

relevant rows from both issue tables are joined for supplying the
OLAP query answer, filtering the rows used in the resulting
dataset according to its restrictions in the original instruction.

SELECT S_StoreKey,

 Sum(S_Value) AS Last7DaysSaleVal

FROM (SELECT S_StoreKey,

 S_Value FROM Sales

 WHERE S_Date>=SystemDate()-7)

 UNION ALL

 (SELECT STmp_StoreKey,

 STmp_Value FROM SalesTmp

 WHERE STmp_Date>=SystemDate()-7)

GROUP BY S_StoreKey

An interesting and relevant aspect of the proposed methodology is
that if OLAP users wish to query only the most recent
information, they only need to do so against the temporary
replicated tables. For instance, if the temporary tables are meant
to be filled with data for each business day before they are

Figure 4. Partial contents of the temporary fact table SalesTmp with exemplification of record insertions.

recreated, and we want to know the sales value of the current day,
per store, the adequate response could be obtained from the
following SQL instruction:

SELECT STmp_StoreKey,

 Sum(STmp_Value) AS TodaysValue

FROM SalesTmp

WHERE STmp_Date=SystemDate()

GROUP BY STmp_StoreKey

This way, our method aids the processing of the data warehouse’s
most recent data, for this kind of data is stored within the
temporary replica tables, which are presumed to be small in size.
This minimizes CPU, memory and I/O costs involved in most
recent data query processing. Theoretically, this would make it
possible to deliver the most recent decision making information
while the business transaction itself occurs.

4.4 Packing and Reoptimizing the Data
Warehouse
Since the data is being integrated within tables that do not have
access optimization of any kind that could speed up querying,
such as indexes, for instance, it is obvious that its functionality is
affected, implying a decrease of performance. Due to the size of
physically occupied space, after a certain number of insertions the
performance becomes too poor to consider as acceptable. To
regain performance in the DW it is necessary to execute a pack
routine which will update the original DW schema tables using
the records in the temporary tables, and recreate these temporary
tables empty of contents, along with rebuilding the original
tables’ indexes and materialized views, so that maximum
processing speed is obtained once more.

For updating the original DW tables, the rows in the temporary
tables should be aggregated according to the original tables’
primary keys, maintaining the rows with highest unique counter
attribute value for possible duplicate values in non-additive
attributes, for they represent the most recent records. The time
needed for executing these update procedures represents the only
period of time in which the DW in unavailable to OLAP tools and
end users, for they need to be executed exclusively. The
appropriate moment for doing this may be determined by the
Database Administrator, or automatically, taking under
consideration parameters such as a determined number of records
in the temporary tables, the amount of physically occupied space,
or yet a predefined period of time. The determination of this
moment should consist on the best possible compromise related to
its frequency of execution and the amount of time it takes away
from all user availability, which depends on the physical, logical
and practical characteristics inherent to each specific DW
implementation itself and is not object of discussion in this paper.

4.5 Final Remarks on Our Methodology
Notice that only record insertions are used for updating the DW
for all related transactions in the OLTP source systems. Since this
type of procedure does not require any record locking in the
tables (except for the appended record itself) nor search
operations for previously stored data before writing data (like in
update or delete instructions), the time necessary to accomplish

this is minimal. The issue of record locking is strongly enforced
by the fact that the referred tables do not have any indexes or
primary keys, implying absolutely no record locking, except for
the appended record itself. Furthermore, since they do not have
constraints of any sort, including referential integrity and primary
keys, there is no need to execute time consuming tasks such as
index updating or referential integrity cross checks. Kimball
refers in [12] that many ETL tools use a UPDATE ELSE INSERT
function in loading data, considering this as a performance killer.
With our method, any appending, updating or eliminating data
tasks on OLTP systems reflect themselves as only new record
insertions in the data warehouse, which allows minimizing row,
block and table locks and other concurrent data access problems.
Physical database tablespace fragmentation is also avoided, once
there is now deletion of data, only sequential increments. This
allows us to state that the data update time window for our
methods is minimal for the insertion of new data, maximizing the
availability of that data, and consequently contributing to
effectively increase the data warehouses’ global availability and
minimize any negative impact in its performance.

As mentioned earlier, the extracted data usually needs to be
corrected and transformed before updating the data warehouse’s
data area. Since we pretend to obtain this data near real-time, the
time gap between recording OLTP transactions and their
extraction by ETL processes is minimal, occurring nearly at the
same time, which somewhat reduces error probability. We can
also assume that the amount of intermediate “information
buckets” which the data passes through in the ETL Area is also
minimal, for temporary storage is almost not needed.
Furthermore, instead of extracting a considerable amount of
OLTP data, which is what happens in the “traditional” bulk
loading data warehousing, the volume of information extracted
and transformed in real-time is extremely reduced (representing
commonly few dozen bytes), since it consists of only one
transaction per execution cycle. All this allows assuming that the
extraction and transformation phase will be cleaner and more time
efficient.

As a limitation to our methodology, data warehouse contexts in
which additive attributes are difficult or even not possible to
define for their fact tables may invalidate its practice.

5. EXPERIMENTAL EVALUATION
Recurring to TPC-H decision support benchmark (TPC-H) we
tested our methodology, creating 5GB, 10GB and 20GB sized
DWs for continuous data integration at several time rates, in
ORACLE 10g DBMS [16]. We used an Intel Celeron 2.8GHz
with variations of 512MB, 1GB and 2GB of SDRAM and a
7200rpm 160GB hard disk. The modified TPC-H schema
according to our methodology can be seen in Figure 5. Tables
Region and Nation are not included as temporary tables
because they are fixed-size tables in the TPC-H benchmark, and
therefore do not receive new data. For the query workloads we
selected TPC-H queries 1, 8, 12 and 20 (TPC-H), executed in
random order for each simultaneous user in the tests, for up to 8
hours of testing for each scenario.

The summarized results which are presented in this section
correspond to a total amount of approximately 4000 hours of
testing.

The definition of the number of transactions, average time
interval between transactions, number of records and data size to
be inserted for each scenario number of records are illustrated in
Table 1. Each new transaction represents the insertion of an
average of four records in LineItemTmp and one row in each of
the other temporary tables, continuously being integrated for a
period of 8 hours. For each database size, we also tested three
different transaction insertion time interval frequencies,
referenced as 1D, 2D and 4D, each corresponding to a different
amount of records to be inserted throughout the tests.

The impact in OLAP processing while performing the continuous
data integration is shown in Figures 6 and 7. Table 2 resumes the
results for each scenario. All results show that the system is

significantly dependable on the transaction rates, performing
better if more RAM is used. They present a minimal cost of
around 8% of query response time for practicing our
methodology, independently from the amount of RAM, for a
transactional frequency of inserting 1 transaction every 9,38
seconds. Apparently, this is the lowest price to pay for having real
time data warehousing with our methodology, for the tested
benchmark. At the highest transactional frequency, 1 every 0,57
seconds, the increase of OLAP response time climbs up to a
maximum of 38,5% with 512MB of RAM memory. The results
also show that the methodology is also relatively scalable in what
concerns database size.

Scenario Nr. Transactions to
load in 8 Hours

Average Time
between Transactions

N.º Records to
integrate in 8 Hours

Total Size of RTDW
Transactions

DW5GB-1D 3.072 9,38 seconds 54.040 4,59 MBytes
DW5GB-2D 6.205 4,64 seconds 106.302 9,28 MBytes
DW5GB-4D 12.453 2,31 seconds 204.904 18,62 MBytes

DW10GB-1D 6.192 4,65 seconds 109.464 9,26 MBytes
DW10GB-2D 12.592 2,29 seconds 213.912 18,83 MBytes
DW10GB-4D 25.067 1,15 seconds 410.764 37,48 MBytes
DW20GB-1D 12.416 2,32 seconds 218.634 18,57 MBytes
DW20GB-2D 25.062 1,15 seconds 429.214 37,48 MBytes
DW20GB-4D 50.237 0,57 seconds 825.242 75,12 MBytes

Table 1. Characterization of the experimental evaluation scenarios.

Figure 5. TPC-H data warehouse schema modified for supporting real-time data warehousing.

Average Increase OLAP Response Time
(Data Warehouse Dimension - RAM Memory)

8,8 8,3 8,5 9,7 9,1

23,0 20,4 17,4

31,9
25,3

20,1

38,5

30,4
25,9

10,1

17,7
11,213,4

17,2
20,2

27,8

15,418,0
22,6

13,314,315,7

0,0

10,0

20,0

30,0

40,0

50,0

O
LA

P
 re

sp
on

se
 ti

m
e

in
cr

ea
se

 (%
)

RTDW-1D RTDW-2D RTDW-4D

RTDW-1D 8,8 8,3 8,5 13,4 11,2 9,7 17,7 10,1 9,1

RTDW-2D 15,7 14,3 13,3 22,6 18,0 15,4 27,8 20,2 17,2

RTDW-4D 23,0 20,4 17,4 31,9 25,3 20,1 38,5 30,4 25,9

5GB-512MB 5GB-1GB 5GB-2GB 10GB-512MB 10GB-1GB 10GB-2GB 20GB-512MB 20GB-1GB 20GB-2GB

Average increase OLAP response time percentage for query workload per
transactional frequency

8,8

14,6

21,1

29,9

38,5

12,8

16,2

22,8

30,4

11,5
14,0

18,7

25,9

8,3

8,5

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

50,0

O
LA

P
 re

sp
on

se
 ti

m
e

in
cr

ea
se

 (%
)

512MB RAM 1GB RAM 2GB RAM

512MB RAM 8,8 14,6 21,1 29,9 38,5

1GB RAM 8,3 12,8 16,2 22,8 30,4

2GB RAM 8,5 11,5 14,0 18,7 25,9

9,38 sec 4,65 sec 2,32 sec 1,15 sec 0,57 sec

Figure 6. Average increase of the OLAP response time (Data Warehouse dimension – RAM memory).

Figure 7. Average increase of the OLAP response time per transactional frequency.

 Data Warehouse 5 GBytes Data Warehouse 10 GBytes Data Warehouse 20 GBytes

 512 MBytes 1 GBytes 2 GBytes 512 MBytes 1 Gbyte 2 GBytes 512 MBytes 1 GByte 2 GBytes

9,38 seconds 8,8% 8,3% 8,5% nt nt nt nt nt nt

4,65 seconds 15,7% 14,3% 13,3% 13,4% 11,2% 9,7% nt nt nt

2,32 seconds 23,0% 20,4% 17,4% 22,6% 18,0% 15,4% 17,7% 10,1% 9,1%

1,15 seconds nt nt nt 31,9% 25,3% 20,1% 27,8% 20,2% 17,2%

0,57 seconds nt nt nt nt nt nt 38,5% 30,4% 25,9%

 nt – not tested

6. CONCLUSIONS AND FUTURE WORK
This paper refers the necessary requirements for RTDW and
presents a methodology for supporting the implementation of
RTDW by enabling continuous data integration while minimizing
impact in query execution on the user end of the DW. This is
achieved by data structure replication and adapting query
instructions in order to take advantage of the new real time data
warehousing schemas.

We have shown its functionality, recurring to a simulation using
the TPC-H benchmark, performing continuous data integration at
various time rates against the execution of various simultaneous
query workloads, for data warehouses with different scale sizes.
All scenarios show that it is possible to achieve real-time data
warehousing performance in exchange for an average increase of
query execution time. This should be considered the price to pay
for real-time capability within the data warehouse.

As future work we intend to develop an ETL tool which will
integrate this methodology with extraction and transformation
routines for the OLTP systems. There is also room for optimizing
the query instructions used for our methods.

7. REFERENCES
[1] D. J. Abadi, D. Carney, et al., 2003. “Aurora: A New Model

and Architecture for Data Stream Management”, The VLDB
Journal, 12(2), pp. 120-139.

[2] S. Babu, and J. Widom, 2001. “Continuous Queries Over
Data Streams”, SIGMOD Record 30(3), pp. 109-120.

[3] T. Binder, 2003. Gong User Manual, Tecco Software
Entwicklung AG.

[4] M. Bouzeghoub, F. Fabret, and M. Matulovic, 1999.
“Modeling Data Warehouse Refreshment Process as a
Workflow Application”, Intern. Workshop on Design and
Management of Data Warehouses (DMDW).

[5] R. M. Bruckner, B. List, and J. Schiefer, 2002. “Striving
Towards Near Real-Time Data Integration for Data
Warehouses”, International Conference on Data Warehousing
and Knowledge Discovery (DAWAK).

[6] R. M. Bruckner, and A. M. Tjoa, 2002. “Capturing Delays
and Valid Times in Data Warehouses – Towards Timely
Consistent Analyses”. Journal of Intelligent Information
Systems (JIIS), 19:2, pp. 169-190.

[7] S. Chaudhuri, and U. Dayal, 1997. “An Overview of Data
Warehousing and OLAP Technology”, SIGMOD Record,
Volume 26, Number 1, pp. 65-74.

[8] W. H. Inmon, R. H. Terdeman, J. Norris-Montanari, and D.
Meers, 2001. Data Warehousing for E-Business, J. Wiley &
Sons.

[9] I. C. Italiano, and J. E. Ferreira, 2006. “Synchronization
Options for Data Warehouse Designs”, IEEE Computer
Magazine.

[10] A. Karakasidis, P. Vassiliadis, and E. Pitoura, 2005. “ETL
Queues for Active Data Warehousing”, IQIS’05.

[11] R. Kimball, L. Reeves, M. Ross, and W. Thornthwaite, 1998.
The Data Warehouse Lifecycle Toolkit – Expert Methods for
Designing, Developing and Deploying Data Warehouses,
Wiley Computer Publishing.

[12] R. Kimball, and J. Caserta, 2004. The Data Warehouse ETL
Toolkit, Wiley Computer Publishing.

[13] E. Kuhn, 2003. “The Zero-Delay Data Warehouse:
Mobilizing Heterogeneous Databases”, International
Conference on Very Large Data Bases (VLDB).

[14] W. Labio, J. Yang, Y. Cui, H. Garcia-Molina, and J. Widom,
2000. “Performance Issues in Incremental Warehouse
Maintenance”, International Conference on Very Large Data
Bases (VLDB).

[15] D. Lomet, and J. Gehrke, 2003. Special Issue on Data
Stream Processing, IEEE Data Eng. Bulletin, 26(1).

[16] Oracle Corporation, 2005. www.oracle.com
[17] T. B. Pedersen, 2004. “How is BI Used in Industry?”, Int.

Conf. on Data Warehousing and Knowledge Discovery
(DAWAK).

[18] J. F. Roddick, and M. Schrefl, 2000. “Towards an
Accommodation of Delay in Temporal Active Databases”,
11th ADC.

[19] A. Simitsis, P. Vassiliadis and T. Sellis, 2005. “Optimizing
ETL Processes in Data Warehouses”, Inte. Conference on
Data Engineering (ICDE).

Table 2. Characterization of the average increase of OLAP response times for each experimental scenario.

[20] U. Srivastava, and J. Widom, 2004. “Flexible Time
Management in Data Stream Systems”, PODS.

[21] D. Theodoratus, and M. Bouzeghoub, 1999. “Data Currency
Quality Factors in Data Warehouse Design”, International
Workshop on the Design and Management of Data
Warehouses (DMDW).

[22] TPC-H decision support benchmark, Transaction Processing
Council, www.tpc.com.

[23] P. Vassiliadis, Z. Vagena, S. Skiadopoulos, N. Karayannidis,
and T. Sellis, 2001. “ARKTOS: Towards the Modelling,
Design, Control and Execution of ETL Processes”,
Information Systems, Vol. 26(8).

[24] C. White, 2002. “Intelligent Business Strategies: Real-Time
Data Warehousing Heats Up”, DM Preview,
www.dmreview.com/article_sub_cfm?articleId=5570.

[25] J. Yang, 2001. “Temporal Data Warehousing”, Ph.D.
Thesis, Dpt. Computer Science, Stanford University.

[26] J. Yang, and J. Widom, 2001. “Incremental Computation
and Maintenance of Temporal Aggregates”, 17th Intern.
Conference on Data Engineering (ICDE).

[27] J. Yang, and J. Widom, 2001. “Temporal View Self-
Maintenance”, 7th Int. Conf. Extending Database Technology
(EDBT).

[28] T. Zurek, and K. Kreplin, 2001. “SAP Business Information
Warehouse – From Data Warehousing to an E-Business
Platform”, 17th International Conference on Data Engineering
(ICDE).

