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ABSTRACT 
A data warehouse provides information for analytical processing, 
decision making and data mining tools. As the concept of real-
time enterprise evolves, the synchronism between transactional 
data and data warehouses, statically implemented, has been 
redefined. Traditional data warehouse systems have static 
structures of their schemas and relationships between data, and 
therefore are not able to support any dynamics in their structure 
and content. Their data is only periodically updated because they 
are not prepared for continuous data integration. For real-time 
enterprises with needs in decision support purposes, real-time data 
warehouses seem to be very promising. In this paper we present a 
methodology on how to adapt data warehouse schemas and user-
end OLAP queries for efficiently supporting real-time data 
integration. To accomplish this, we use techniques such as table 
structure replication and query predicate restrictions for selecting 
data, to enable continuously loading data in the data warehouse 
with minimum impact in query execution time. We demonstrate 
the efficiency of the method by analyzing its impact in query 
performance using benchmark TPC-H executing query workloads 
while simultaneously performing continuous data integration at 
various insertion time rates. 

Keywords 
real-time and active data warehousing, continuous data 
integration for data warehousing, data warehouse refreshment 
loading process. 

1. INTRODUCTION 
A data warehouse (DW) provides information for analytical 
processing, decision making and data mining tools. A DW 
collects data from multiple heterogeneous operational source 
systems (OLTP – On-Line Transaction Processing) and stores 
summarized integrated business data in a central repository used 
by analytical applications (OLAP – On-Line Analytical 
Processing) with different user requirements. The data area of a 
data warehouse usually stores the complete history of a business. 
The common process for obtaining decision making information 
is based on using OLAP tools [7]. These tools have their data 
source based on the DW data area, in which records are updated 

by ETL (Extraction, Transformation and Loading) tools. The ETL 
processes are responsible for identifying and extracting the 
relevant data from the OLTP source systems, customizing and 
integrating this data into a common format, cleaning the data and 
conforming it into an adequate integrated format for updating the 
data area of the DW and, finally, loading the final formatted data 
into its database. 

Traditionally, it has been well accepted that data warehouse 
databases are updated periodically – typically in a daily, weekly 
or even monthly basis [28] – implying that its data is never up-to-
date, for OLTP records saved between those updates are not 
included the data area. This implies that the most recent 
operational records are not included into the data area, thus 
getting excluded from the results supplied by OLAP tools. Until 
recently, using periodically updated data was not a crucial issue. 
However, with enterprises such as e-business, stock brokering, 
online telecommunications, and health systems, for instance, 
relevant information needs to be delivered as fast as possible to 
knowledge workers or decision systems who rely on it to react in 
a near real-time manner, according to the new and most recent 
data captured by an organization’s information system [8]. This 
makes supporting near real-time data warehousing (RTDW) a 
critical issue for such applications. 

The demand for fresh data in data warehouses has always been a 
strong desideratum. Data warehouse refreshment (integration of 
new data) is traditionally performed in an off-line fashion. This 
means that while processes for updating the data area are 
executed, OLAP users and applications cannot access any data. 
This set of activities usually takes place in a preset loading time 
window, to avoid overloading the operational OLTP source 
systems with the extra workload of this workflow. Still, users are 
pushing for higher levels of freshness, since more and more 
enterprises operate in a business time schedule of 24x7. Active 
Data Warehousing refers to a new trend where DWs are updated 
as frequently as possible, due to the high demands of users for 
fresh data. The term is also designated as Real-Time Data 
Warehousing for that reason in [24]. The conclusions presented 
by T. B. Pedersen in a report from a knowledge exchange network 
formed by several major technological partners in Denmark [17] 
refer that all partners agree real-time enterprise and continuous 
data availability is considered a short term priority for many 
business and general data-based enterprises. Nowadays, IT 
managers are facing crucial challenges deciding whether to build 
a real-time data warehouse instead of a conventional one and 
whether their existing data warehouse is going out of style and 
needs to be converted into a real-time data warehouse to remain 
competitive. In some specific cases, data update delays larger than 
a few seconds or minutes may jeopardise the usefulness of the 
whole system. 
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In a nutshell, accomplishing near zero latency between OLTP and 
OLAP systems consists in insuring continuous data integration 
from the former type of systems into the last. In order to make 
this feasible, several issues need to be taken under consideration: 
(1) Operational OLTP systems are designed to meet well-
specified (short) response time requirements aiming for maximum 
system availability, which means that a RTDW scenario would 
have to cope with this in the overhead implied in those OLTP 
systems; (2) The tables existing in a data warehouse’s database 
directly related with transactional records (commonly named as 
fact tables) are usually huge in size, and therefore, the addition of 
new data and consequent procedures such as index updating or 
referential integrity checks would certainly have impact in OLAP 
systems’ performance and data availability. Our work is focused 
on the DW perspective, for that reason we present an efficient 
methodology for continuous data integration, performing the ETL 
loading process. 

This paper presents a solution which enables efficient continuous 
data integration in data warehouses, while allowing OLAP 
execution simultaneously, with minimum decrease of 
performance. With this, we seek to minimize the delay between 
the recording of transactional information and its reflected update 
on the decision support database. If the operational data extraction 
and transformation are able of performing without significant 
delay during the transaction itself, this solution will load all the 
decision support information needed in the data warehouse in 
useful time, allowing an answer while the transaction still is 
occurring. This is the general concept of real time data 
warehousing. The issues focused in this paper concern the DW 
end of the system, referring how to perform loading processes of 
ETL procedures and the DW’s data area usage for efficiently 
supporting continuous data integration. The items concerning 
extracting and transforming of operational (OLTP) source 
systems data are not the focus of this paper. Therefore, we shall 
always be referring the data warehouse point of view, in the 
remainder of the paper. 

Based on the existing schema(s) of the DW’s database, our 
methodology consists on creating a replica for each of its tables, 
empty of contents and without defining any type of indexes, 
primary keys or any other kind of restrictions or constraints. In 
this new schema, the replicated tables will receive and record the 
data from the staging area, which will be continuously loaded. 
The fact that they are initially created empty of contents and not 
having any sort of constraints allows to considerably minimize the 
consumption of time and resources which are necessary in the 
procedures inherent to data integration. As the data integration is 
performed, the database’s performance which includes the new 
most recent data deteriorates, due to the lack of usual data 
structures that could optimize it (such as indexes, for example), in 
the replicated tables. When the data warehouse’s performance is 
considered as unacceptable by its users or administrators, the 
existing data within the replicated tables should serve for updating 
the original schema. After performing this update, the replicated 
tables are to be recreated empty of contents, regaining maximum 
performance. We also demonstrate how to adapt OLAP queries in 
the new schema, to take advantage of the most recent data which 
is integrated in real time. 

The experiments which are presented were performed using a 
standard benchmark for decision support systems, benchmark 

TPC-H, from the Transaction Processing Council [22]. Several 
configurations were tested, varying items such as the database’s 
physical size, the number of simultaneous users executing OLAP 
queries, the amount of available RAM memory and the time rates 
between transactions. 

The remainder of this paper is organized as follows. In section 2, 
we refer the requirements for real-time data warehousing. Section 
3 presents background and related work in real-time data 
warehousing. Section 4 explains our methodology, and in section 
5 we present the experimental evaluation of our methods and 
demonstrate its functionality. The final section contains 
concluding remarks and future work 
 

2. REQUIREMENTS FOR REAL-TIME 
DATA WAREHSOUSING 
Nowadays, organizations generate large amounts of data, at a rate 
which can easily reach several megabytes or gigabytes per day. 
Therefore, as time goes by, a business data warehouse can easily 
grow to terabytes or even petabytes. The size of data warehouses 
imply that each query which is executed against its data area 
usually accesses large amounts of records, also performing 
actions such as joins, sorting, grouping and calculation functions. 
To optimize these accesses, the data warehouse uses predefined 
internal data structures (such as indexes or partitions, for 
instance), which are also large in size and have a very 
considerable level of complexity. These facts imply that it is very 
difficult to efficiently update the data warehouse’s data area in 
real-time, for the propagation of transactional data in real-time 
would most likely overload the server, given its update frequency 
and volume; it would involve immense complex operations on the 
data warehouse’s data structures and dramatically degrade OLAP 
performance. 

In a nutshell, real-time data warehouses aim for decreasing the 
time it takes to make decisions and try to attain zero latency 
between cause and effect for that decision, closing the gap 
between intelligent reactive systems and systems processes. Our 
aim is transforming a standard DW using batch loading during 
update windows (during which analytical access is not allowed) 
into near zero latency analytical environment providing current 
data, in order to enable (near) real-time dissemination of new 
information across an organization. The business requirements for 
this kind of analytical environment introduce a set of service level 
agreements that go beyond what is typical in a traditional DW. 
The major issue is how to enable continuous data integration and 
assuring that it minimizes negative impact in several main 
features of the system, such as availability and response time of 
both OLTP and OLAP systems. 

An in-depth discussion of these features from the analytical point 
of view (to enable timely consistent analysis) is given in [6]. 
Combining highly available systems with active decision engines 
allows near real-time information dissemination for data 
warehouses. Cumulatively, this is the basis for zero latency 
analytical environments [6]. The real-time data warehouse 
provides access to an accurate, integrated, consolidated view of 
the organization’s information and helps to deliver near real-time 
information to its users. This requires efficient ETL techniques 
enabling continuous data integration, the focus of this paper. 



By adopting real-time data warehousing, it becomes necessary to 
cope with at least two radical data state changes. First, it is 
necessary to perform continuous data update actions, due to the 
continuous data integration, which should mostly concern row 
insertions. Second, these update actions must be performed in 
parallel with the execution of OLAP, which – due to its new real-
time nature – will probably be solicited more often. Therefore, the 
main contributions of this paper are threefold: 

• Maximizing the freshness of data by efficiently and 
rapidly integrating most recent OLTP data into the data 
warehouse; 

• Minimizing OLAP response time while simultaneously 
performing continuous data integration; 

• Maximizing the data warehouse’s availability by reducing 
its update time window, in which users and OLAP 
applications are off-line. 

3. RELATED WORK 
So far, research has mostly dealt with the problem of maintaining 
the warehouse in its traditional periodical update setup [14, 27]. 
Related literature presents tools and algorithms to populate the 
warehouse in an off-line fashion. In a different line of research, 
data streams [1, 2, 15, 20] could possibly appear as a potential 
solution. However, research in data streams has focused on topics 
concerning the front-end, such as on-the-fly computation of 
queries without a systematic treatment of the issues raised at the 
back-end of a data warehouse [10]. Much of the recent work 
dedicated to RTDW is also focused on conceptual ETL modelling 
[4, 5, 19, 23], lacking the presentation of concrete specific 
extraction, transformation and loading algorithms along with their 
consequent OLTP and OLAP performance issues. 

Temporal data warehouses address the issue of supporting 
temporal information efficiently in data warehousing systems 
[25]. In [27], the authors present efficient techniques (e.g. 
temporal view self-maintenance) for maintaining data warehouses 
without disturbing source operations. A related challenge is 
supporting large-scale temporal aggregation operations in data 
warehouses [26]. In [4], the authors describe an approach which 
clearly separates the DW refreshment process from its traditional 
handling as a view maintenance or bulk loading process. They 
provide a conceptual model of the process, which is treated as a 
composite workflow, but they do not describe how to efficiently 
propagate the date. Theodoratus et al. discuss in [21] data 
currency quality factors in data warehouses and propose a DW 
design that considers these factors. 

An important issue for near real-time data integration is the 
accommodation of delays, which has been investigated for 
(business) transactions in temporal active databases [18]. The 
conclusion is that temporal faithfulness for transactions has to be 
provided, which preserves the serialization order of a set of 
business transactions. Although possibly lagging behind real-time, 
a system that behaves in a temporally faithful manner guarantees 
the expected serialization order. 

In [23], the authors describe the ARKTOS ETL tool, capable of 
modeling and executing practical ETL scenarios by providing 

explicit primitives for capturing common tasks (such as data 
cleaning, scheduling and data transformations) using a declarative 
language. ARKTOS offers graphical and declarative features for 
defining DW transformations and tries to optimize the execution 
of complex sequences of transformation and cleansing tasks. 

In [13] is described a zero-delay DW with Gong, which assists in 
providing confidence in the data available to every branch of the 
organization. Gong is a Tecco product [3] that offers uni or bi-
directional replication of data between homogeneous and/or 
heterogeneous distributed databases. Gong’s database replication 
enables zero-delay business in order to assist in the daily running 
and decision making of the organization. 

But not all transactional informations need to be immediately 
dealt with in real-time decision making requirements. We can 
define which groups of data is more important to include rapidly 
in the data warehouse and other groups of data which can be 
updated in latter time. Recently, in [9], the authors present an 
interesting architecture on how to define the types of update and 
time priorities (immediate, at specific time intervals or only on 
data warehouse offline updates) and respective synchronization 
for each group of transactional data items.  

Our methodology overcomes some of the mentioned drawbacks 
and is presented in the next section. 

4. CONTINUOUS DATA WAREHOUSE 
LOADING METHODOLOGY 
From the DW side, updating huge tables and related structures 
(such as indexes, materialized views and other integrated 
components) makes executing OLAP query workloads 
simultaneously with continuous data integration a very difficult 
task. Our methodology minimizes the processing time and 
workload required for these update processes. It also facilitates 
the DW off-line update (see section 4.4), because the data already 
lies within the data area and all OLTP data extraction and/or 
transformation routines have been executed during the continuous 
data integration. Furthermore, the data structure of the replicated 
tables is exactly the same as the original DW schema. This 
minimizes the time window for packing the data area of the DW, 
since its update represents a one step process by resuming itself as 
a cut-and-paste action from the temporary tables to the original 
ones, as we shall demonstrate further. 

Our methodology is focused on four major areas: (1) data 
warehouse schema adaptation; (2) ETL loading procedures; (3) 
OLAP query adaptation; and (4) DW database packing and 
reoptimization. It is mainly based on a very simple principle: new 
row insertion procedures in tables with few (or no) contents are 
performed much faster than in big size tables. It is obvious and 
undeniable that data handling in small sized tables are much less 
complex and much faster than in large sized tables. As a matter of 
fact, this is mainly the reason why OLTP data sources are 
maintained with the fewer amount possible of necessary records, 
in order to maximize its availability. The proposed continuous 
data warehouse loading methodology is presented in Figure 1. 



 
 

4.1 Adapting the Data Warehouse Schema 
Suppose a very simple sales data warehouse with the schema 
illustrated in Figure 2, having two dimensional tables (Store and 
Customer, representing business descriptor entities) and one 
fact table (Sales, storing business measures aggregated from 
transactions). To simplify the figure, the Date dimension is not 
shown. This DW allows storing the sales value per store, per 
customer, per day. The primary keys are represented in bold, 
while the referential integrity constraints with foreign keys are 
represented in italic. The factual attribute S_Value is additive. 
This property in facts is very important for our methodology, as 
we shall demonstrate further on. 

 
 

For the area concerning data warehouse schema adaptation, we 
adopt the following method: 

Data warehouse schema adaptation method for 
supporting real-time data warehousing: Creation of an 
exact structural replica of all the tables of the data 
warehouse that could eventually receive new data. These 
tables (referred also as temporary tables) are to be created 
empty of contents, with no defined indexes, primary key, or 
constraints of any kind, including referential integrity. For 
each table, an extra attribute must be created, for storing a 
unique sequential identifier related to the insertion of each 
row within the temporary tables. 

The modified schema for supporting RTDW based on our 
methodology is illustrated in Figure 3. The unique sequential 
identifier attribute present in each temporary table should record 
the sequence in which each row is appended in the Data Area. 
This will allow identifying the exact sequence of arrival for each 
new inserted row. This is useful for restoring prior data states in 
disaster recovery procedures, and also for discarding dimensional 
rows which have more recent updates. For instance, if the same 
customer has had two updates in the OLTP systems which, 
consequently, lead to the insertion of two new rows in the 
temporary table CustomerTmp, only the most recent one is 
relevant. This can be defined by considering as most recent the 
row with highest CTmp_Counter for that same customer 
(CTmp_CustKey). 

 

CustomerTmp

CTmp_CustKey
CTmp_Name
CTmp_Address
CTmp_PostalCode
CTmp_Phone
CTmp_EMail
CTmp_Counter

SalesTmp

STmp_StoreKey
STmp_CustomerKey
STmp_Date
STmp_Value
STmp_Counter

StoreTmp

StTmp_StoreKey
StTmp_Description
StTmp_Address
StTmp_PostalCode
StTmp_Phone
StTmp_EMail
StTmp_Manager
StTmp_Counter  

 

The authors of the ARKTOS tool [23] refer that their own 
experience, as well as the most recent literature, suggests that the 
main problems of ETL tools do not consist only in performance 
problems (as normally would be expected), but also in aspects 
such as complexity, practibility and price. By performing only 
record insertion procedures inherent to continuous data 
integration using empty or small sized tables without any kind of 
constraint or attached physical file related to it, we guarantee the 
simplest and fastest logical and physical support for achieving our 
goals [12]. 

The fact that the only significant change in the logical and 
physical structure of the data warehouse’s schema is the simple 
adaptation shown in Figure 3, allows that the implementation of 
the necessary ETL procedures can be made in a manner to 
maximize its operationability. Data loading may be done by 
simple standard SQL instructions or DBMS batch loading 
software such as SQL*Loader [16], with a minimum of 
complexity. There is no need for developing complex routines for 
updating the data area, in which the needed data for is easily 
accessible, independently from the used ETL tools. 

4.2 ETL Loading Procedures 
To refresh the data warehouse, once the ETL application has 
extracted and transformed the OLTP data into the correct format 
for loading the data area of the DW, it shall proceed immediately 
in inserting that record as a new row in the correspondent 
temporary table, filling the unique sequential identifier attribute 
with the autoincremented sequential number. This number should 
start at 1 for the first record to insert in the DW after executing 

Figure 1. General architecture of the proposed continuous data warehouse loading methodology. 

Figure 2. Sample sales data warehouse schema. 

Figure 3. Sample sales data warehouse schema modified 
for supporting real-time data warehousing. 



the packing and reoptimizing technique (explained in section 4.4 
of this paper), and then be autoincremented by one unit for each 
record insertion. The algorithm for accomplishing continuous data 
integration by the ETL tool may be similar to: 

Trigger for each new record in OLTP system (after it is 
commited) 

   Extract new record from OLTP system 
   Clean and transform the OLTP data, shaping it into the 

data warehouse destination table’s format 
   Increment record insertion unique counter 
   Create a new record in the data warehouse temporary 

destination table 
   Insert the data in the temporary destination table’s new 

record, along with the value of the record insertion 
unique counter 

End_Trigger 

 

 

 

Following, we demonstrate a practical example for explaining 
situations regarding updating the data warehouse shown in Figure 
3. Figure 4 presents the insertion of a row in the data warehouse 
temporary fact table for the recording of a sales transaction of 
value 100 which took place at 2008-05-02 in store with 
St_StoreKey = 1 related to customer with C_CustKey = 10, 
identified by STmp_Counter = 1001. Meanwhile, other 
transactions occurred, and the organization’s OLTP system 
recorded that instead of a value of 100 for the mentioned 
transaction, it should be 1000. The rows in the temporary fact 
table with STmp_Counter = 1011 and STmp_Counter = 
1012 reflect this modification of values. The first eliminates the 
value of the initial transactional row and the second has the new 
real value, due to the additivity of the STmp_Value attribute. 
The definition of which attributes are additive and which are not 
should be the responsibility of the Database Administrator. 
According to [11], the most useful facts in a data warehouse are 
numeric and additive.  
The method for data loading uses the most simple method for 
writing data: appending new records. Any other type of writing 
method needs the execution of more time consuming and complex 
tasks. 

 
 

STmp_StoreKey STmp_CustomerKey STmp_Date STmp_Value STmp_Counter 
     

1 10 2008-05-02 100 1001 
     

1 10 2008-05-02 -100 1011 

1 10 2008-05-02 1000 1012 
     

 

 

4.3 OLAP Query Adaptation 
Consider the following OLAP query, for calculating the total 
revenue per store in the last seven days. 

SELECT S_StoreKey,  

       Sum(S_Value) AS Last7DaysSaleVal 

FROM Sales 

WHERE S_Date>=SystemDate()-7  

GROUP BY S_StoreKey 

 

To take advantage of our schema modification method and 
include the most recent data in the OLAP query response, queries 
should be rewritten taking under consideration the following rule: 
the FROM clause should join all rows from the required original 
and temporary tables with relevant data, excluding all fixed 
restriction predicate values from the WHERE clause whenever 
possible. The modification for the prior instruction is illustrated 
below, with respect to our methodology. It can be seen that the 

relevant rows from both issue tables are joined for supplying the 
OLAP query answer, filtering the rows used in the resulting 
dataset according to its restrictions in the original instruction. 

SELECT S_StoreKey, 

       Sum(S_Value) AS Last7DaysSaleVal 

FROM (SELECT S_StoreKey, 

             S_Value FROM Sales 

      WHERE S_Date>=SystemDate()-7)  

      UNION ALL 

     (SELECT STmp_StoreKey, 

             STmp_Value FROM SalesTmp 

             WHERE STmp_Date>=SystemDate()-7) 

GROUP BY S_StoreKey 

An interesting and relevant aspect of the proposed methodology is 
that if OLAP users wish to query only the most recent 
information, they only need to do so against the temporary 
replicated tables. For instance, if the temporary tables are meant 
to be filled with data for each business day before they are 

Figure 4. Partial contents of the temporary fact table SalesTmp with exemplification of record insertions. 



recreated, and we want to know the sales value of the current day, 
per store, the adequate response could be obtained from the 
following SQL instruction: 

SELECT STmp_StoreKey, 

       Sum(STmp_Value) AS TodaysValue 

FROM SalesTmp  

WHERE STmp_Date=SystemDate() 

GROUP BY STmp_StoreKey 

This way, our method aids the processing of the data warehouse’s 
most recent data, for this kind of data is stored within the 
temporary replica tables, which are presumed to be small in size. 
This minimizes CPU, memory and I/O costs involved in most 
recent data query processing. Theoretically, this would make it 
possible to deliver the most recent decision making information 
while the business transaction itself occurs. 

4.4 Packing and Reoptimizing the Data 
Warehouse  
Since the data is being integrated within tables that do not have 
access optimization of any kind that could speed up querying, 
such as indexes, for instance, it is obvious that its functionality is 
affected, implying a decrease of performance. Due to the size of 
physically occupied space, after a certain number of insertions the 
performance becomes too poor to consider as acceptable. To 
regain performance in the DW it is necessary to execute a pack 
routine which will update the original DW schema tables using 
the records in the temporary tables, and recreate these temporary 
tables empty of contents, along with rebuilding the original 
tables’ indexes and materialized views, so that maximum 
processing speed is obtained once more. 

For updating the original DW tables, the rows in the temporary 
tables should be aggregated according to the original tables’ 
primary keys, maintaining the rows with highest unique counter 
attribute value for possible duplicate values in non-additive 
attributes, for they represent the most recent records. The time 
needed for executing these update procedures represents the only 
period of time in which the DW in unavailable to OLAP tools and 
end users, for they need to be executed exclusively. The 
appropriate moment for doing this may be determined by the 
Database Administrator, or automatically, taking under 
consideration parameters such as a determined number of records 
in the temporary tables, the amount of physically occupied space, 
or yet a predefined period of time. The determination of this 
moment should consist on the best possible compromise related to 
its frequency of execution and the amount of time it takes away 
from all user availability, which depends on the physical, logical 
and practical characteristics inherent to each specific DW 
implementation itself and is not object of discussion in this paper. 

4.5 Final Remarks on Our Methodology 
Notice that only record insertions are used for updating the DW 
for all related transactions in the OLTP source systems. Since this 
type of procedure does not require any record locking in the 
tables (except for the appended record itself) nor search 
operations for previously stored data before writing data (like in 
update or delete instructions), the time necessary to accomplish 

this is minimal. The issue of record locking is strongly enforced 
by the fact that the referred tables do not have any indexes or 
primary keys, implying absolutely no record locking, except for 
the appended record itself. Furthermore, since they do not have 
constraints of any sort, including referential integrity and primary 
keys, there is no need to execute time consuming tasks such as 
index updating or referential integrity cross checks. Kimball 
refers in [12] that many ETL tools use a UPDATE ELSE INSERT 
function in loading data, considering this as a performance killer. 
With our method, any appending, updating or eliminating data 
tasks on OLTP systems reflect themselves as only new record 
insertions in the data warehouse, which allows minimizing row, 
block and table locks and other concurrent data access problems. 
Physical database tablespace fragmentation is also avoided, once 
there is now deletion of data, only sequential increments. This 
allows us to state that the data update time window for our 
methods is minimal for the insertion of new data, maximizing the 
availability of that data, and consequently contributing to 
effectively increase the data warehouses’ global availability and 
minimize any negative impact in its performance. 

As mentioned earlier, the extracted data usually needs to be 
corrected and transformed before updating the data warehouse’s 
data area. Since we pretend to obtain this data near real-time, the 
time gap between recording OLTP transactions and their 
extraction by ETL processes is minimal, occurring nearly at the 
same time, which somewhat reduces error probability. We can 
also assume that the amount of intermediate “information 
buckets” which the data passes through in the ETL Area is also 
minimal, for temporary storage is almost not needed. 
Furthermore, instead of extracting a considerable amount of 
OLTP data, which is what happens in the “traditional” bulk 
loading data warehousing, the volume of information extracted 
and transformed in real-time is extremely reduced (representing 
commonly few dozen bytes), since it consists of only one 
transaction per execution cycle. All this allows assuming that the 
extraction and transformation phase will be cleaner and more time 
efficient. 

As a limitation to our methodology, data warehouse contexts in 
which additive attributes are difficult or even not possible to 
define for their fact tables may invalidate its practice. 

5. EXPERIMENTAL EVALUATION 
Recurring to TPC-H decision support benchmark (TPC-H) we 
tested our methodology, creating 5GB, 10GB and 20GB sized 
DWs for continuous data integration at several time rates, in 
ORACLE 10g DBMS [16]. We used an Intel Celeron 2.8GHz 
with variations of 512MB, 1GB and 2GB of SDRAM and a 
7200rpm 160GB hard disk. The modified TPC-H schema 
according to our methodology can be seen in Figure 5. Tables 
Region and Nation are not included as temporary tables 
because they are fixed-size tables in the TPC-H benchmark, and 
therefore do not receive new data. For the query workloads we 
selected TPC-H queries 1, 8, 12 and 20 (TPC-H), executed in 
random order for each simultaneous user in the tests, for up to 8 
hours of testing for each scenario.  

The summarized results which are presented in this section 
correspond to a total amount of approximately 4000 hours of 
testing. 



 
 
 
The definition of the number of transactions, average time 
interval between transactions, number of records and data size to 
be inserted for each scenario number of records are illustrated in 
Table 1. Each new transaction represents the insertion of an 
average of four records in LineItemTmp and one row in each of 
the other temporary tables, continuously being integrated for a 
period of 8 hours. For each database size, we also tested three 
different transaction insertion time interval frequencies, 
referenced as 1D, 2D and 4D, each corresponding to a different 
amount of records to be inserted throughout the tests. 

The impact in OLAP processing while performing the continuous 
data integration is shown in Figures 6 and 7. Table 2 resumes the 
results for each scenario. All results show that the system is 

significantly dependable on the transaction rates, performing 
better if more RAM is used. They present a minimal cost of 
around 8% of query response time for practicing our 
methodology, independently from the amount of RAM, for a 
transactional frequency of inserting 1 transaction every 9,38 
seconds. Apparently, this is the lowest price to pay for having real 
time data warehousing with our methodology, for the tested 
benchmark. At the highest transactional frequency, 1 every 0,57 
seconds, the increase of OLAP response time climbs up to a 
maximum of 38,5% with 512MB of RAM memory. The results 
also show that the methodology is also relatively scalable in what 
concerns database size. 

 
 
 

Scenario Nr. Transactions to 
load in 8 Hours 

Average Time 
between Transactions 

N.º Records to 
integrate in 8 Hours 

Total Size of RTDW 
Transactions 

DW5GB-1D 3.072 9,38 seconds 54.040 4,59 MBytes 
DW5GB-2D 6.205 4,64 seconds 106.302 9,28 MBytes 
DW5GB-4D 12.453 2,31 seconds 204.904 18,62 MBytes 

DW10GB-1D 6.192 4,65 seconds 109.464 9,26 MBytes 
DW10GB-2D 12.592 2,29 seconds 213.912 18,83 MBytes 
DW10GB-4D 25.067 1,15 seconds 410.764 37,48 MBytes 
DW20GB-1D 12.416 2,32 seconds 218.634 18,57 MBytes 
DW20GB-2D 25.062 1,15 seconds 429.214 37,48 MBytes 
DW20GB-4D 50.237 0,57 seconds 825.242 75,12 MBytes 

Table 1. Characterization of the experimental evaluation scenarios. 

Figure 5. TPC-H data warehouse schema modified for supporting real-time data warehousing. 
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Figure 6. Average increase of the OLAP response time (Data Warehouse dimension – RAM memory). 

Figure 7. Average increase of the OLAP response time per transactional frequency. 



 

 

 Data Warehouse 5 GBytes Data Warehouse 10 GBytes Data Warehouse 20 GBytes 

 512 MBytes 1 GBytes 2 GBytes 512 MBytes 1 Gbyte 2 GBytes 512 MBytes 1 GByte 2 GBytes 

9,38 seconds 8,8% 8,3% 8,5% nt nt nt nt nt nt 

4,65 seconds 15,7% 14,3% 13,3% 13,4% 11,2% 9,7% nt nt nt 

2,32 seconds 23,0% 20,4% 17,4% 22,6% 18,0% 15,4% 17,7% 10,1% 9,1% 

1,15 seconds nt nt nt 31,9% 25,3% 20,1% 27,8% 20,2% 17,2% 

0,57 seconds nt nt nt nt nt nt 38,5% 30,4% 25,9% 

      nt – not tested 

 

6. CONCLUSIONS AND FUTURE WORK 
This paper refers the necessary requirements for RTDW and 
presents a methodology for supporting the implementation of 
RTDW by enabling continuous data integration while minimizing 
impact in query execution on the user end of the DW. This is 
achieved by data structure replication and adapting query 
instructions in order to take advantage of the new real time data 
warehousing schemas. 

We have shown its functionality, recurring to a simulation using 
the TPC-H benchmark, performing continuous data integration at 
various time rates against the execution of various simultaneous 
query workloads, for data warehouses with different scale sizes. 
All scenarios show that it is possible to achieve real-time data 
warehousing performance in exchange for an average increase of 
query execution time. This should be considered the price to pay 
for real-time capability within the data warehouse. 

As future work we intend to develop an ETL tool which will 
integrate this methodology with extraction and transformation 
routines for the OLTP systems. There is also room for optimizing 
the query instructions used for our methods. 
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