
A BIT-SELECTOR TECHNIQUE FOR PERFORMANCE
OPTIMIZATION OF DECISION-SUPPORT QUERIES

Ricardo Jorge Santos1, Jorge Bernardino1,2
1CISUC – Centre of Informatics and Systems of the University of Coimbra – Coimbra – Portugal

2ISEC – IPC – Superior Institute of Engineering – Polytechnic Institute of Coimbra – Coimbra - Portugal
lionsoftware.ricardo@gmail.com, jorge@isec.pt

Keywords: OLAP Query Performance Optimization, Bitmap and Bitwise Operations in OLAP.

Abstract: Performance optimization of decision support queries has always been a major issue in data warehousing. A
large amount of wide-ranging techniques have been used in research to overcome this problem. Bit-based
techniques such as bitmap indexes and bitmap join indexes have been used and are generally accepted as
standard common practice for optimizing data warehouses. These techniques are very promising due to their
relatively low overhead and fast bitwise operations. In this paper, we propose a new technique which
performs optimized row selection for decision support queries, introducing a bit-based attribute into the fact
table. This attribute’s value for each row is set according to its relevance for processing each decision
support query by using bitwise operations. Simply inserting a new column in the fact table’s structure and
using bitwise operations for performing row selection makes it a simple and practical technique, which is
easy to implement in any Database Management System. The experimental results, using benchmark TPC-
H, demonstrates that it is an efficient optimization method which significantly improves query performance.

1 INTRODUCTION

Over the last decades, data warehouses have become
excellent decision-support resources for almost
every business area. Decision making information is
mainly obtained through usage of tools performing
On-Line Analytical Processing (OLAP) against data
warehouse databases. Because these databases
usually store the whole business’ history, they
frequently have a huge number of rows, and grow to
gigabytes or terabytes of storage size, making query
performance one of the most important issues in data
warehousing.

In the past, much research has been done
proposing a wide range of techniques which can be
used to achieve performance optimization of OLAP
databases, such as, among others:

1) Partitioning (Agrawal, 2004; Bellatreche,
2000, 2005; Bernardino, 2001], which
reduces the data which is necessary to scan
for each OLAP query;

2) Materialized Views and Aggregates
(Agrawal, 2000; Baralis, 1997; Gupta,
1999), which store summarized data and
pre-calculated attributes, also aiming to
reduce the data necessary to scan and
reducing time consumption for calculating
aggregate functions;

3) Indexing (Chaudhuri, 1997; Chee-Yong,
1999; Gupta, 1997), which speeds up
accessing and filtering data;

4) Data Sampling (Furtado, 2002), giving
approximate answers to queries based on
representative samples of subsets of data
instead of having to scan the entire data;

5) Redefining database schemas (Bizarro,
2002; Vassiliadis, 1999), to improve data
distribution and/or access by seeking
efficient table balancing;

6) Hardware optimization, such as memory
and CPU upgrading, distributing data
through several physical drives, etc.

Sampling is a technique which has an implicit
statistical error margin attached to it and almost
never supplies an exact answer to the queries
according to the whole original data. Using
materialized views is often considered as a good
technique, but it has a big disadvantage. Since they
consist on aggregating the data to a certain level,
they have limited generic usage and each
materialized view is usually built for speeding up a
limited class of queries instead of the whole set of
usual decision queries. Furthermore, they may take
up immense space within the data warehouse and
they also increase database maintenance efforts.
Hardware improvements for optimization issues are
not part of the scope of this paper. Although much
work has been done with these techniques
separately, few have focused on their combination,
except for aggregation and indexing (Bellatreche,
2002, 2004; Santos, 2007).

The author in (Pedersen, 2004) refers that
standard decision making OLAP queries which are
executed periodically at regular intervals are, by far,
the most usual form of obtaining decision making
information. This implies that this kind of
information is usually based on the same regular
SQL instructions. This makes it relevant and
important to optimize the performance of a set of
predefined decision support queries, which would be
executed repeatedly at any time, by a significant
number of OLAP users.

Therefore, our goal is to optimize the database
performance for a workload of given representative
decision support queries, without defeating the
readability and simplicity of its schema. The
performance of ad-hoc queries is not treated. The
presented technique aims to optimize the access to
all fact table rows which are relevant for processing
each decision support query, thus optimizing the
queries’ execution time. As we shall demonstrate
throughout the paper, this technique is very easy and
simple to implement in any Database Management
System. Basically, it takes advantage of using an
extra bit-based attribute which should be included in
the fact table, for marking which rows are relevant
for processing each decision support query.

The remainder of this paper is organized as
follows. Section 2 presents related work on
performance optimization research and using bit-
based methods in data warehouse optimization.
Section 3 explains our bit-selector technique and
how to implement and use it. Section 4 presents an
experimental evaluation using the TPC-H
benchmark. Finally, some conclusions and future
work are given in Section 5.

2 RELATED WORK

Data warehousing technology typically uses the
relational data schema for modeling the data in a
warehouse. The data can be modeled either using the
star schema or the snowflake schema. In this
context, OLAP queries require extensive join
operations between fact tables and dimension tables
(Kimball, 2002). Several optimization techniques
have been proposed to improve query performance,
such as materialized views (Agrawal, 2000; Baralis,
1997; Bellatreche, 2000; Gupta, 1999), advanced
indexing techniques using bitmap indexes, join and
projection indexes (Agrawal, 2000; Chaudhuri,
1997; Chee-Yong, 1999; Gupta; 1997; O’Neil,
1995), and data partitioning (Agrawal, 2004;
Bellatreche, 2000, 2002, 2005), among others.
 The authors in (Agrawal, 2000) present how to
automatically choose a suitable set of materialized
views and consequent indexes from the workload
experienced by the system. This solution has been
integrated within the Microsoft SQL Server 2000
tuning wizard. In (Gupta, 1999) a maintenance-cost
based selection is presented for selecting which
materialized views should be built. In (Chaudhuri,
1997; Chee-Yong, 1999; Gupta, 1997) authors
illustrate features on which types of indexing should
be performed based on system workload, attribute
cardinality and other data characteristics. The work
in (Bellatreche, 2005) presents a genetic algorithm
for schema fragmentation selection, focused on how
to fragment fact tables based on the dimension
table’s partitioning schemas. Fragmenting the data
warehouse as a way of speeding up multi-way joins
and reducing query execution cost is another
possible optimization method, as shown in that
paper. In (Bellatreche, 2004; Santos, 2007) the
authors obtain tuning parameters for better use of
data partitioning, join indexes and materialized
views to optimize the total cost in a systematic
system usage form.
 The technique proposed in (Bizarro, 2002)
presents how to tune database schemas towards
performance-orientation, illustrating a demonstration
of their proposal with the same benchmark used in
this paper to demonstrate our optimization
technique. We shall compare our results with theirs
in this paper’s experimental evaluation.
 As we mentioned before, optimization research
based on bitmaps has been proposed and regularly
used in practice almost since the beginning of data
warehousing, mainly in indexing (Gupta, 1997;
O’Neil, 1995; Wu, 1998). The authors in (Hu, 2003)
present bitmap techniques for optimizing decision

support queries together with association rule
algorithms. They show how to use a new type of
predefined bitmap join index to efficiently execute
complex decision support queries with multiple
outer join operations involved and push the outer
join operations from the data flow level to the
bitmap level, achieving significant performance
gain. They also discuss a bitmap based association
rule algorithm. In (Agrawal, 2004) the authors
propose novel techniques for designing a scalable
solution to a physical design issue such as
incorporating adequately partitioning with database
design. Both horizontal and vertical partitioning is
considered. The technique uses bitmaps for
referencing the relevant columns of a given table for
each query executed for a given workload. These
bitmaps are then used to generate which column-
groups of the table are interesting to consider for its
horizontal and/or vertical partitioning.

Our technique essentially consists on adding a
new numeric integer attribute to be used as a bitmap
for each row referring if it is relevant or not for each
query. This way, to know which rows are necessary
for processing each query we only need to test the
value of this new attribute – the bit-selector –
recurring to a simple bitwise modulus operation (by
comparing the remainder of an integer division,
identifying the query which is being executed). We
aim for minimizing data access costs for processing
the given query workload, thus improving its
performance by reducing execution time.

3 THE BIT-SELECTOR
TECHNIQUE

Bitmap indexes are one of the most common used
techniques for upgrading performance, for they can
accelerate data searching and reduce data accesses.
It is well known that the list of rows associated with
a given index key value can be represented by a
bitmap or bit vector. In this case, each row in a table
is associated with a bit in a long string, an N-bit
string if there are N rows in the table, with the bit set
to 1 in the bitmap if the associated row is contained
in the represented list; otherwise, the bit is set to 0.
Our technique uses the same principle, but relating if
the row is relevant for executing a given query.

3.1 Defining the Bit-Selector

Consider a table T with rows TR1, TR2, TR3, TR4,
TR5 and TR6. Suppose a given workload with

queries Q1, Q2 and Q3. If all rows were necessary for
processing query Q1, only the second and third rows
were needed for query Q2, and only the first three
rows were necessary for processing query Q3, we
could represent this according to Table 1. For each
row, we use 1 to define it as relevant for each query
in column, and 0 if it is not.

Table 1. A bitmap example for Row-Query Bit-selecting

 Q3 Q2 Q1
Binary
Value

Decimal
Value

TR1 1 0 1 101 5
TR2 1 1 1 111 7
TR3 1 1 1 111 7
TR4 0 0 1 001 1
TR5 0 0 1 001 1
TR6 0 0 1 001 1

This way, the decimal value for each row may be
obtained by transforming the binary value for the
query workload into its respective decimal value.
Observing Formula 1, we present the general
conversion formula for obtaining the decimal value
for bit-selection of each table row TRi, given a
workload of N queries { Q1, Q2, …, QN }:

TRi Bit-Selector Decimal Value =
 QS1 x 20 + QS2 x 21 + … + QSN x 2(N-1)

Formula 1. Bit-Selector decimal value formula

Where QSN represents the bit value 1 if row TRi is
relevant for QN, and 0 otherwise. This can be
mathematically simplified and generalized to the
final formula shown in Formula 2.

TRi Bit-Selector Decimal Value =
 Σ (QSJ x 2(J-1))

Formula 2. Bit-Selector decimal value generic formula
(final).

3.2 Using the Bit-Selector

Since the Bit-Selector is bit based, to know if a row
TRi is needed for processing a given query QN, we
need to test if the Nth bit of its binary value is equal
to 1. To do this, we only need to perform a modulus
(MOD) operation (equal to the remainder of an
integer division) on its bit-selector decimal value,
using a power of base 2 and exponent equal to N.
The generic formula for this is shown in Formula 3.

Row TRi is interesting for QN
 if (Bit-Selector Value MOD 2N) >= 2(N-1)

Formula 3. Rule for defining if a given row is relevant for
a given query using the Bit-Selector technique

Figure 1. TPC-H benchmark database schema with the inclusion of the Bit-Selector attribute within the LineItem fact table

Mainly, data access problems in data
warehousing address fact tables, since they usually
have a huge number of rows, when comparing to
dimension tables. To use the bit-selector in the data
warehouse, we propose adding it as a column in its
fact tables. This implies that query instructions
executed against fact tables need to take this under
consideration if they are to take advantage in using
the bit-selector technique.

Recurring to the decision support benchmark
TPC-H (TPC-H) and DBMS Oracle 10g (Oracle),
we shall now demonstrate some examples on how to
adapt decision support queries for using our
technique, for the whole set of 22 queries which
belong to this benchmark. Figure 1 shows the
modified TPC-H database schema. To use our
technique, note that the only modification necessary
to perform in the schema is adding an integer
column L_BitSelector in fact table LineItem.

We shall now demonstrate how to update the
Bit-Selector attribute’s value for using our
technique, concerning the set of 22 TPC-H queries,
and how to rewrite query instructions in order to
take advantage of it. Since we cannot present an
explanation for each of the queries due to space
constraints in this paper, we shall use queries Q1, Q6
and Q21 as examples. We also make considerations
over each of the rewritten queries, comparing them
to their respective original, in what concerns then
involved data operations and probable impact in
query processing time.

Consider TPC-H query 1 (Q1), which uses only
the fact table LineItem, presented next:

SELECT
 L_ReturnFlag,
 L_LineStatus,
 SUM(L_Quantity) AS Sum_Qty,
 SUM(L_ExtendedPrice) AS Sum_Base_Price,
 SUM(L_ExtendedPrice*(1-L_Discount)) AS
 Sum_Disc_Price,
 SUM(L_ExtendedPrice*(1-L_Discount)*
 (1+L_Tax)) AS Sum_Charge,
 AVG(L_Quantity) AS Avg_Qty,
 AVG(L_ExtendedPrice) AS Avg_Price,
 AVG(L_Discount) AS Avg_Discount,
 COUNT(*) AS Count_Order
FROM
 LineItem
WHERE
 L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–90
GROUP BY
 L_ReturnFlag, L_LineStatus
ORDER BY
 L_ReturnFlag, L_LineStatus

To put into practice our technique, we need to
account all fact table rows which are relevant for Q1.
This can be done by using the fixed conditions
existing in Q1’s WHERE clause, which defines the
row filters. If this is the first time we are setting the
L_BitSelector column for query Q1, by applying
the generic formula presented in Formula 2, the SQL
update statement for determining which rows of
LineItem are relevant for processing this query is
similar to:

UPDATE LineItem
 SET L_BitSelector = L_BitSelector + 1
WHERE
 L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–90

To rewrite query Q1 to take advantage of the Bit-
Selector attribute, the only modification in Q1 would

Part
P_PartKey
P_Name
P_Mfgr
P_Brand
P_Type
P_Size
P_Container
P_RetailPrice
P_Comment

PartSupp
PS_PartKey
PS_SuppKey
PS_AvailQty
PS_SupplyCost
PS_Comment

Supplier

S_SuppKey
S_Name
S_Address
S_NationKey
S_Phone
S_AcctBal
S_Comment

Orders
O_OrderKey
O_CustKey
O_OrderStatus
O_TotalPrice
O_OrderDate
O_OrderPriority
O_Clerk
O_ShipPriority
O_Comment

Customer
C_CustKey
C_Name
C_Address
C_NationKey
C_Phone
C_AcctBal
C_MktSegment
C_Comment

Nation

N_NationKey
N_Name
N_RegionKey
N_Comment

Region
R_RegionKey
R_Name
R_Comment

LineItem
L_OrderKey
L_PartKey
L_SuppKey
L_LineNumber
L_Quantity
L_ExtendedPrice
L_Discount
L_Tax
L_ReturnFlag
L_LineStatus
L_ShipDate
L_CommitDate
L_ReceiptDate
L_ShipInstruct
L_ShipMode
L_Comment
L_BitSelector

be in the WHERE clause, using the generic Formula
3 presented in the prior section. The WHERE clause
of the rewritten query Q1 would then become:

WHERE MOD(L_BitSelector,2)>=1

This is a very slight modification to the original
instruction, and should imply a small increase its
execution time, for instead of just executing a
comparison of preset values (in the original Q1
WHERE clause), in the modified instruction there is
the need to execute a MOD operation for each row,
and then compare values. On the other hand,
consider TPC-H query 6 (Q6):

SELECT
 SUM(L_ExtendedPrice*L_Discount) AS Revenue
FROM
 LineItem
WHERE
 L_ShipDate>=TO_DATE(‘1994-01-01’,
 ‘YYYY-MM-DD’) AND
 L_ShipDate<TO_DATE(‘1995-01-01’,
 ‘YYYY-MM-DD’),12) AND
 L_Discount BETWEEN .06-0.01 AND
 .06+0.01 AND
 L_Quantity < 24

Since all rows involved in the processing and
returning results of Q6 come only from the fact table
LineItem, applying our method makes it possible
to obtain the query’s results just by verifying the
value of L_BitSelector, dismissing all other
comparisons which needed to be made in the
original instruction. Therefore, to update the value of
L_BitSelector for the first time, in order to
optimize query Q6, the instruction is similar to:

UPDATE LineItem
 SET L_BitSelector = L_BitSelector +2^5
WHERE
 L_ShipDate>=TO_DATE(‘1994-01-01’,
 ‘YYYY-MM-DD’) AND
 L_ShipDate<TO_DATE(‘1995-01-01’,
 ‘YYYY-MM-DD’),12) AND
 L_Discount BETWEEN .06-0.01 AND
 .06+0.01 AND
 L_Quantity < 24

The following new rewritten instruction for
executing Q6 is:

SELECT
 SUM(L_ExtendedPrice*L_Discount) AS Revenue
FROM
 LineItem
WHERE
 MOD(L_BitSelector,2^6) >= 2^5

Differing from Q1, the modifications in Q6 due
to our technique should now save query processing
time, for it reduces several fixed value comparisons.

Consider TPC-H query 21 (Q21), which performs
a join with dimension table Orders. This table is
only mentioned in the WHERE clause, in which it is
used as a filter for selecting which rows in the fact

table LineItem are needed in the query’s response.
Since our technique selects the relevant rows in
LineItem, the join with table Orders becomes
unnecessary, therefore discarding the need for a
heavy table join, leaving table Orders out of the
modified query. For the same reason, we can also
exclude table Nation by selecting as relevant all
LineItem rows (in conjunction with the selection
criteria mentioned before due to the Orders row
filtering in the WHERE clause) with L_SuppKey =
S_SuppKey only for the suppliers from Saudi
Arabia (N_Name = ‘SAUDI ARABIA’). There are
also conditional filters based on the fact table itself,
with EXISTS and NOT EXISTS conditions, which
should also be coped with to perform the selection of
the relevant LineItem rows pretended for Q21.

The original TPC-H query Q21 is similar to:
SELECT * FROM (
 SELECT
 S_Name, COUNT(*) AS NumWait
 FROM
 Supplier, LineItem L1, Orders, Nation
 WHERE
 S_SuppKey = L1.L_SuppKey AND
 O_OrderKey = L1.L_OrderKey AND
 O_OrderStatus = ‘F’ AND
 L1.L_ReceiptDate>L1.L_CommitDate AND
 EXISTS (
 SELECT *
 FROM LineItem L2
 WHERE L2.L_OrderKey=L1.L_OrderKey AND
 L2.L_SuppKey<>L1.L_SuppKey) AND
 NOT EXISTS (
 SELECT *
 FROM LineItem L3
 WHERE L3.L_OrderKey=L1.L_OrderKey AND
 L3.L_SuppKey<>L1.L_SuppKey AND
 L3.L_ReceiptDate>L3.L_CommitDate)
 AND
 S_NationKey = N_NationKey AND
 N_Name = ‘SAUDI ARABIA’
 GROUP BY
 S_Name
 ORDER BY
 NumWait DESC, S_Name)
WHERE RowNum <= 100

After updating the value of L_BitSelector for
the first time to optimize query Q21 according to our
technique, the new instruction for Q21 would be:

SELECT * FROM (
 SELECT
 S_Name,
 COUNT(*) AS NumWait
 FROM
 Supplier, LineItem
 WHERE
 S_SuppKey = L_SuppKey AND
 MOD(L_Queries,2^21) >= 2^20
 GROUP BY
 S_Name
 ORDER BY
 NumWait DESC, S_Name)
WHERE RowNum <= 100

As it can be seen, the complexity of the original
instruction of Q21 has mostly decreased. Sub-

querying and selection within the fact table itself has
been discarded. The joins of table LineItem with
table Orders, and table Supplier with table
Nation, have been ruled out. Several condition
testing such as value comparisons have also been
discarded. The gain of query processing time in this
case should be very significant.

In conclusion, we may state that most decision
support queries modified to comply with the
proposed technique become simpler than the original
instructions. They also significantly reduce the
number of conditions to be tested and calculations to
be performed on each row, reducing query
processing costs. As seen in TPC-H query 21 (Q21),
the technique can also lead to avoid the need to
execute heavy table joins involving fact tables.

3.3 Practical Update Procedures for
the Bit-Selector

Since the TPC-H benchmark is composed with a set
of 22 decision support queries, the maximum value
for the bit-selector column is a 22 bit value in which
all digits are 1 (1111111111111111111111), equal
to the decimal value 4194303. If we were to add a
new decision support query (Query 23) to the set of
22 queries already defined, the only thing needed to
accommodate this for using the bit-selector
technique is to update the bit-selector attribute,
adding a 23 bit value (2(23-1)) to the rows which
would be significant for this query, according to the
generic formula shown in Formula 2. This could be
accomplished by the following generic instruction:

UPDATE LineItem
 SET
 L_BitSelector = L_BitSelector+2(23-1)
 WHERE
 {List of Conditions in the Q23 WHERE clause}

Therefore, it is obvious to state that the generic
instruction for updating the Bit-Selector column in
any fact table for a given Query N would be similar
to:

UPDATE FactTable
 SET
 L_BitSelector = L_BitSelector+2(N-1)
 WHERE
 {List of Conditions in the QN WHERE clause}

If the update is to be made for new incoming fact
rows in the data warehouse, this update may be
performed both for new or previously considered
queries.

On the other hand, if a previously defined query,
which has already modified the Bit-Selector attribute
values, changes in a way that it needs to access a
different set of rows than the ones that were marked

as relevant, this change implies that the Bit-Selector
also needs to be updated. In order to do this, it is
needed do unmark the rows which were marked
earlier as significant, and then mark again those
which are now significant. Using TPC-H query Q1
as an example, suppose we had already updated
L_BitSelector for this query, marking the rows
which are significant. This was done by executing an
instruction similar to:

UPDATE LineItem
 SET
 L_BitSelector = L_BitSelector + 1
 WHERE
 L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–90

As we discussed in the previous section, to
determine which rows in LineItem should be used
for Q1, we only need to test if
MOD(L_BitSelector,2)>=1 in the WHERE
clause of Q1. Now assume that, instead of wanting
the rows in which L_ShipDate<=TO_DATE(‘1998-12-

01’,‘YYYY-MM-DD’)–90, we wanted the rows in which
L_ShipDate<=TO_DATE(‘1998-12-01’,‘YYYY-MM-DD’)–180.
The algorithm for updating L_BitSelector in
order to do this should be:

FOR EACH Row IN LineItem
 IF (MOD(L_BitSelector,2)>=1) AND
 (L_ShipDate>TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–180)
 SET L_BitSelector = L_BitSelector - 1
 ELSE
 IF (MOD(L_BitSelector,2)=0) AND
 (L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–180)
 SET L_BitSelector = L_BitSelector + 1
 END IF
NEXT

The first half of the update algorithm would void
all rows previously defined as relevant for Q1 and
which are now to be discarded, by diminishing the
decimal value responsible for its corresponding
significant bit. The second half of the algorithm
would define which fact table rows that were not and
are now relevant for Q1, in the same manner, by
using the generic formula presented in Formula 2.
The rows which were already considered as relevant
for the original Q1 and remain relevant for the
altered Q1 do not need to be updated and are not,
saving update time and resource consumption.

3.4 Remarks and Considerations on
the Bit-Selector Technique

The technique is simple and practical to implement.
Most results should be promising due to the
relatively low overhead and fast bitwise operations
in the used bit-based techniques.

For ad-hoc decision queries which are to be
executed only once, our technique should not be
applied, because the resources and time needed to
update the fact table would not result in a significant
gain. If the query needs to access almost every row
in the fact table, the technique is also not very
efficient, for its nature is to simplify and optimize
selecting and accessing only the relevant rows for
processing the query. The more rows are needed for
this, the fewer the gain given by the technique. Our
technique is best for: queries which need the same
set of fact table rows, repeatedly; and also if a small
number of rows in the fact table (at most, 50% of the
total number of rows in the table) is needed for
query processing. Nevertheless, according to
(Pedersen, 2004), these features represent a large
class of decision queries to be executed in any
business data warehouse.

On the other hand, research work on data
warehouse optimization oftenly proposes methods
and techniques that need to alter or reconstruct data
structures, such as indexes and partitions, if not the
database schema itself. This needs to be done with
the database off-line from users, because the DBMS
processes involved require exclusive access to those
data structures. Such procedures imply a decrease in
availability. With our technique, there is no need to
set the data warehouse off-line, because to optimize
each new query, we only need to execute an update
for the bit-selector attribute. Therefore, it promotes
continuous data warehouse usage, increasing its
availability, in contrast with most other optimization
methods and techniques with higher levels of

complexity. It also presents a much lower overhead
in data storage size when compared with techniques
such as partitioning or creating materialized views.
Another advantage of this modular approach is that
it can be incorporated in every relational DBMS
without any modification.

4 EXPERIMENTAL
EVALUATION

To test the proposed technique, we implemented the
TPC-H benchmark using DBMS Oracle 10g on
Pentium IV 2.8 GHz machine, with 1 Gbyte of
SDRAM and 7200 rpm 160 Gbytes hard disk with
IDE U-DMA 133, with Windows XP Professional.
We performed all experiments on four different
scale sizes of the database: 1, 2, 4 and 8 Gbytes.
Note that the sequence represents each next size as
the double of the precedent. This will allow us to
state conclusions regarding scalability of the results.

Table 3 presents the execution time for the set
of queries in the TPC-H benchmark that need data
from the fact table, for each predefined database
size. These are the queries to which our bit-selector
technique can be applied. For the fairness of the
experiments, all databases where index optimized
the “standard” way, defining each table’s primary
key and building all relevant bitmap join indexes.
Figures 2, 3, 4 and 5 show the differences between
standard and our technique’s execution times, for
each modified query, in each tested database.

Table 3. Time execution of the TPC-H query workload (Standard vs. Bit-Selector)

TPC-H
Database Size

Standard Execution
Time (seconds)

Bit-Selector Execution
Time (seconds)

Execution Time
Difference

% Execution
Time

Times
Faster/Slower

1 Gbytes 675 418 -257 62% 1.61 times faster
2 Gbytes 1 831 882 -949 48% 2.08 times faster
4 Gbytes 4 266 1 634 -2 632 38% 2.61 times faster
8 Gbytes 10 332 3 384 -6 948 33% 3.05 times faster

Figure 2. Query execution difference time – 1 Gbyte data warehouse

Figure 3. Query execution difference time – 2 Gbytes data warehouse

Figure 4. Query execution difference time – 4 Gbytes data warehouse

Figure 5. Query execution difference time – 8 Gbytes data warehouse

It can be seen in the individual query results that
the proposed technique brings advantages for most
queries in the workload, and the overall performance
is efficiently improved. As expected, queries Q1 and
Q15 present a small increase of execution time in all
scenarios, for instead of just executing a comparison
of fixed values (for the original Q1 WHERE clause),
the modified instructions include executing a MOD
operation for each row and then compare values. As
also expected, queries Q5, Q8, Q19 and Q21 present
the highest gains, because with our technique the
need for performing heavy join operations for these

queries has been dismissed. Figure 6 shows the
overall query workload execution time for each of
the database sizes used in this evaluation.

As we mentioned earlier, authors in (Bizarro,
2002) propose to modify the database schema in a
performance-oriented perspective. They use TPC-H
benchmark database as an example and tune it
looking for highest performance, taking under
account the attributes which are most queried,
calculations, frequently accessed dimensions, types
of attributes, table joins, etc. In their experimental
evaluation, a workload of 10 TPC-H queries { Q1,

Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q21 } is executed
against a 1 Gbyte database and its execution time is
analyzed. They state that for the fairness of
experiments, all queries were fully optimized. Their
results show that the workload executes 2.19 times
faster using their new proposed schema, than with
the original one. Consulting Table 3 in this paper,
we can calculate that our Bit-Selector technique
executes this same query workload 1.69 times faster
than without using our technique. However, results
presented in (Bizarro, 2002) are mainly due to one
query only (Q5). If Q5 was excluded from the
workload, their proposal would execute 1.84 times
faster, while our proposal would execute 1.67 times
faster. Furthermore, experiments in (Bizarro, 2002)
only consider 10 TPC-H benchmark queries, while
we consider all of them. Therefore, we can state that
our proposal seems more continuous and consistent
for optimizing a wide range of queries, when
compared with the gains in (Bizarro, 2002).

Analyzing Figure 6, we can state that the results
indicate a very significant performance optimization,

speeding up an increasing percentage of standard
query execution time while the database size grows.

Figure 7 shows the results for the execution of
the TPC-H benchmark queries which were not
modified because they do not access the fact table’s
data. As can be seen by observing this figure, the
non-modified queries approximately maintained
their execution times when using the Bit-Selector
technique. Since the modifications of the schema for
our technique only modifies the fact tables and
queries which execute against it, other queries do not
suffer any impact. Table 4 presents the impact in
database size for the implementation of our Bit-
Selector technique.

The modified database schema proposed in
(Bizarro, 2002) presents an increase of 612 Mbytes
(66%) of its original size. From this point of view, as
seen in Table 4, the increase of size using our
proposal (with the Bit-Selector column defined as a
4 byte integer) is very low (3%), when compared
with the prior.

Figure 6. Query workload execution time for the modified fact table queries

Figure 7. Query workload execution time for the modified fact table queries

675 418

1831
882

4266

1634

10332

3384

0

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

1GB 2GB 4GB 8GB

Data Warehouse Dimension (GBytes)

Query Workload Execution Time - Modified Fact Table Queries
(Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q12, Q14, Q15, Q17, Q18, Q19, Q20, Q21)

Standard
Bit-Selector

30 30

64 65

155 159

293 293

0

50

100

150

200

250

300

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

1GB 2GB 4GB 8GB

Data Warehouse Dimension (GBytes)

Query Workload Execution Time - Non-Modified Queries
(Q2, Q11, Q13, Q16, Q22)

Standard
Bit-Selector

Table 4. TPC-H original fact table size vs. modified bit-selector fact table size

Database Size
LineItem

Original Size
Number of Rows

in LineItem
LineItem Size

with Bit-Selector
% Size Increase

1 Gbytes 801 Mbytes 6 001 215 825 Mbytes 3 %
2 Gbytes 1 602 Mbytes 11 997 996 1 650 Mbytes 3 %
4 Gbytes 3 204 Mbytes 23 996 604 3 300 Mbytes 3 %
8 GBytes 6 408 Mbytes 47 989 007 6 600 Mbytes 3 %

Table 5. TPC-H original queries execution time with original fact table size vs. modified bit-selector fact table

Finally, we address the implications of our

technique regarding decision support queries which
access the fact table’s data, but do not take
advantage of the Bit-Selector column, i.e, the Bit-
Selector column has not been updated for optimizing
these queries. This can be measured by executing the
exact original query instructions which need fact
table data, using the fact table already modified with
the inclusion of the Bit-Selector column. Therefore,
we performed the execution of the query workload
{Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q12, Q14, Q15,
Q17, Q18, Q19, Q20, Q21} using the original TPC-H
benchmark query instructions against the new fact
table with Bit-Selector for each database. The results
can be seen in Table 5.

It can be seen that query workload execution
time increased around 5%. This is the average
increase in execution time for ad-hoc decision
support queries which access the fact table and are
not to be included in the set of queries used for the
Bit-Selector, for the database used in our
experiments. This was somewhat expected, because
the altered fact table is bigger, due to the inclusion
of the Bit-Selector attribute, which means that the
DBMS needs to access a slightly bigger amount of
data blocks in order to access the same amount of
factual data as in the original schema.

Many proposals in past research work in data
warehousing optimization imply data structure
modifications, increase of database size and query
complexity, loss of schema legibility, among other
negative aspects. As we stated earlier, the only
modification to be done within the database schema
is the inclusion of a new integer type column (the
Bit-Selector) in its fact tables, which will imply the
growth of the database size by multiplying the Bit-

Selector’s size by the number of rows in the fact
tables. To our knowledge, compared with most of
the research work done in data warehouse schema
conceptual, logical and/or physical modifications,
our technique seems to be one of the best in what
concerns overhead in database size and schema
modifications, while providing a very significant
optimization of query execution time.

5 CONCLUSIONS AND FUTURE
WORK

This paper presents an efficient, simple and easy to
implement alternative technique for optimizing the
performance of data warehouse OLAP queries,
which significantly reduces the execution time of
repeatable queries which need to access at least one
fact table. Using our technique, the TPC-H query
workload executed 1.61, 2.08, 2.61 and 3.05 times
faster than when “traditionally” index optimized, for
the 1, 2, 4 and 8 GByte sized databases, respectively.
Queries which do not access a fact table maintain
their average response time.

We have also referred that ad-hoc query
processing time increases because of the inclusion of
an extra attribute in the fact table, which implies a
size growth. However, both size and time increases
measured are almost insignificant and should be
considered as acceptable, when compared with the
storage size needed for other kinds of optimization
data structures such as partitions, pre-built
aggregates and materialized views. We can state that
the results indicate a very significant performance
optimization of the query workload, speeding up an

Database Size
Workload Exec. Time in

the Original Schema
Workload Exec. Time in

the Altered Schema
% Execution

Time Increase
1 Gbytes 675 seconds 706 seconds 4,6 %
2 Gbytes 1 831 seconds 1 921 seconds 4,9 %
4 Gbytes 4 266 seconds 4 484 seconds 5,1 %
8 GBytes 10 332 seconds 10 911 seconds 5,6 %

increasing percentage of standard query execution
time while the database size grows.

Although query instructions need to be modified
to take advantage of the proposed technique, the
resulting rewritten instructions are often simpler
than the original ones. The technique also makes it
possible, for certain queries, to discard heavy time
and resource consuming operations such as fact table
joins. We also illustrated how to update the bit-
selector attribute to optimize the performance for
new queries or modify the row selecting of
previously defined queries, without having to
perform traditional off-line data warehouse update
reoptimization procedures. This brings advantages
due to enabling continuous usage fashion.

As future work, we intend to implement this
method in real-world data warehouses and measure
its impact on real world system’s performance.

REFERENCES

S. Agrawal, S. Chaudhuri and V. R. Narasayya,
“Automated Selection of Materialized Views and
Indexes in SQL Databases”, 26th International
Conference on Very Large Data Bases (VLDB),
2000.

S. Agrawal, V. Narasayya and B. Yang, “Integrating
Vertical and Horizontal Partitioning into Automated
Physical Database Design”, ACM SIGMOD
Conference, 2004.

E. Baralis, S. Paraboschi and E. Teniente, “Materialized
View Selection in a Multidimensional Database”,
23rd Int. Conf. Very Large Data Bases (VLDB), 1997.

L. Bellatreche and K. Boukhalfa, “An Evolutionary
Approach to Schema Partitioning Selection in a Data
Warehouse Environment”, Intern. Conf. on Data
Warehousing and Knowledge Discovery (DAWAK),
2005.

L. Bellatreche, K. Karlapalem, M. Schneider and M.
Mohania, “What Can Partitioning Do for your Data
Warehouses and Data Marts”, Int. Database
Engineering and Applications Symposium (IDEAS),
2000.

L. Bellatreche, M. Schneider, H. Lorinquer and M.
Mohania, “Bringing Together Partitioning,
Materialized Views and Indexes to Optimize
Performance of Relational Data Warehouses”, Int.
Conference on Data W. and Knowledge Discovery
(DAWAK), 2004.

L. Bellatreche, M. Schneider, M. Mohania and B.
Bhargava, “PartJoin: An Efficient Storage and Query
Execution Design Strategy for Data Warehousing”,
Int. Conference on Data Warehousing and
Knowledge Discovery (DAWAK), 2002.

J. Bernardino, P. Furtado and H. Madeira, “Approximate
Query Answering Using Data Warehouse Stripping”,
Int. Conference on Data Warehousing and
Knowledge Discovery (DAWAK), 2001.

P. Bizarro and H. Madeira, “Adding a Performance-
Oriented Perspective to Data Warehouse Design”,
Int. Conference on Data Warehousing and
Knowledge Discovery (DAWAK), 2002.

S. Chaudhuri and V. Narasa11a, “An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL
Server”, 23rd International Conference on Very Large
Data Bases (VLDB), 1997.

C. Chee-Yong, “Indexing Techniques in Decision Support
Systems”, PhD Thesis, University of Wisconsin,
Madison, 1999.

P. Furtado and J. P. Costa, “Time-Interval Sampling for
Improved Estimations in Data Warehouses”, Int.
Conference on Data Warehousing and Knowledge
Discovery (DAWAK), 2002.

H. Gupta et al., “Index Selection for OLAP”, Int.
Conference on Data Engineering (ICDE), 1997.

H. Gupta and I. S. Mumick, “Selection of Views to
Materialize under a Maintenance Cost Constraint”,
8th Int. Conference on Database Theory (ICDT),
1999.

X. Hu, T. Y. Lin and E. Louie, “Bitmap Techniques for
Optimizing Decision Support Queries and
Association Rule Algorithms”, Int. Database
Engineering and Applications Symposium (IDEAS),
2003.

P. O’Neil and G. Graefe, “Multi-Table Joins Through
Bitmapped Join Indices”, SIGMOD Record, Vol. 24,
No. 3, September 1995.

Oracle 10g DBMS, Oracle Corporation, 2005.
T. B. Pedersen, “How is BI Used in Industry?”, Int.

Conference on Data Warehousing and Knowledge
Discovery (DAWAK), 2004.

R. J. Santos and J. Bernardino, “PIN: A Partitioning &
Indexing Optimization Method for OLAP”, Int.
Conference on Enterprise Information Systems
(ICEIS), 2007.

TPC-H Decision Support Benchmark, Transaction
Processing Council, www.tpc.org.

P. Vassiliadis and T. Sellis, “A Survey of Logical Models
for OLAP Databases”, ACM SIGMOD Int.
Conference on Management of Data (ICMD), 1999.

M. C. Wu and A. P. Buchmann, “Encoded Bitmap
Indexing for Data Warehouses”, 14th Int. Conference
on Data Engineering (ICDE), 1998.

R. Kimball and M. Ross, The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling, 2nd
Edition, Wiley & Sons, 2002.

