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Abstract: Performance optimization of decision support queries has always been a major issue in data warehousing. A 
large amount of wide-ranging techniques have been used in research to overcome this problem. Bit-based 
techniques such as bitmap indexes and bitmap join indexes have been used and are generally accepted as 
standard common practice for optimizing data warehouses. These techniques are very promising due to their 
relatively low overhead and fast bitwise operations. In this paper, we propose a new technique which 
performs optimized row selection for decision support queries, introducing a bit-based attribute into the fact 
table. This attribute’s value for each row is set according to its relevance for processing each decision 
support query by using bitwise operations. Simply inserting a new column in the fact table’s structure and 
using bitwise operations for performing row selection makes it a simple and practical technique, which is 
easy to implement in any Database Management System. The experimental results, using benchmark TPC-
H, demonstrates that it is an efficient optimization method which significantly improves query performance. 

1 INTRODUCTION 

Over the last decades, data warehouses have become 
excellent decision-support resources for almost 
every business area. Decision making information is 
mainly obtained through usage of tools performing 
On-Line Analytical Processing (OLAP) against data 
warehouse databases. Because these databases 
usually store the whole business’ history, they 
frequently have a huge number of rows, and grow to 
gigabytes or terabytes of storage size, making query 
performance one of the most important issues in data 
warehousing. 

In the past, much research has been done 
proposing a wide range of techniques which can be 
used to achieve performance optimization of OLAP 
databases, such as, among others: 

1) Partitioning (Agrawal, 2004; Bellatreche, 
2000, 2005; Bernardino, 2001], which 
reduces the data which is necessary to scan 
for each OLAP query;  

2) Materialized Views and Aggregates 
(Agrawal, 2000; Baralis, 1997; Gupta, 
1999), which store summarized data and 
pre-calculated attributes, also aiming to 
reduce the data necessary to scan and 
reducing time consumption for calculating 
aggregate functions; 

3) Indexing (Chaudhuri, 1997; Chee-Yong, 
1999; Gupta, 1997), which speeds up 
accessing and filtering data; 

4) Data Sampling (Furtado, 2002), giving 
approximate answers to queries based on 
representative samples of subsets of data 
instead of having to scan the entire data; 

5) Redefining database schemas (Bizarro, 
2002; Vassiliadis, 1999), to improve data 
distribution and/or access by seeking 
efficient table balancing; 

6) Hardware optimization, such as memory 
and CPU upgrading, distributing data 
through several physical drives, etc. 

 
 
 



 

Sampling is a technique which has an implicit 
statistical error margin attached to it and almost 
never supplies an exact answer to the queries 
according to the whole original data. Using 
materialized views is often considered as a good 
technique, but it has a big disadvantage. Since they 
consist on aggregating the data to a certain level, 
they have limited generic usage and each 
materialized view is usually built for speeding up a 
limited class of queries instead of the whole set of 
usual decision queries. Furthermore, they may take 
up immense space within the data warehouse and 
they also increase database maintenance efforts. 
Hardware improvements for optimization issues are 
not part of the scope of this paper. Although much 
work has been done with these techniques 
separately, few have focused on their combination, 
except for aggregation and indexing (Bellatreche, 
2002, 2004; Santos, 2007). 

The author in (Pedersen, 2004) refers that 
standard decision making OLAP queries which are 
executed periodically at regular intervals are, by far, 
the most usual form of obtaining decision making 
information. This implies that this kind of 
information is usually based on the same regular 
SQL instructions. This makes it relevant and 
important to optimize the performance of a set of 
predefined decision support queries, which would be 
executed repeatedly at any time, by a significant 
number of OLAP users. 

Therefore, our goal is to optimize the database 
performance for a workload of given representative 
decision support queries, without defeating the 
readability and simplicity of its schema. The 
performance of ad-hoc queries is not treated. The 
presented technique aims to optimize the access to 
all fact table rows which are relevant for processing 
each decision support query, thus optimizing the 
queries’ execution time. As we shall demonstrate 
throughout the paper, this technique is very easy and 
simple to implement in any Database Management 
System. Basically, it takes advantage of using an 
extra bit-based attribute which should be included in 
the fact table, for marking which rows are relevant 
for processing each decision support query. 

The remainder of this paper is organized as 
follows. Section 2 presents related work on 
performance optimization research and using bit-
based methods in data warehouse optimization. 
Section 3 explains our bit-selector technique and 
how to implement and use it. Section 4 presents an 
experimental evaluation using the TPC-H 
benchmark. Finally, some conclusions and future 
work are given in Section 5. 

2 RELATED WORK 

Data warehousing technology typically uses the 
relational data schema for modeling the data in a 
warehouse. The data can be modeled either using the 
star schema or the snowflake schema. In this 
context, OLAP queries require extensive join 
operations between fact tables and dimension tables 
(Kimball, 2002). Several optimization techniques 
have been proposed to improve query performance, 
such as materialized views (Agrawal, 2000; Baralis, 
1997; Bellatreche, 2000; Gupta, 1999), advanced 
indexing techniques using bitmap indexes, join and 
projection indexes (Agrawal, 2000; Chaudhuri, 
1997; Chee-Yong, 1999; Gupta; 1997; O’Neil, 
1995), and data partitioning (Agrawal, 2004; 
Bellatreche, 2000, 2002, 2005), among others. 
 The authors in (Agrawal, 2000) present how to 
automatically choose a suitable set of materialized 
views and consequent indexes from the workload 
experienced by the system. This solution has been 
integrated within the Microsoft SQL Server 2000 
tuning wizard. In (Gupta, 1999) a maintenance-cost 
based selection is presented for selecting which 
materialized views should be built. In (Chaudhuri, 
1997; Chee-Yong, 1999; Gupta, 1997) authors 
illustrate features on which types of indexing should 
be performed based on system workload, attribute 
cardinality and other data characteristics. The work 
in (Bellatreche, 2005) presents a genetic algorithm 
for schema fragmentation selection, focused on how 
to fragment fact tables based on the dimension 
table’s partitioning schemas. Fragmenting the data 
warehouse as a way of speeding up multi-way joins 
and reducing query execution cost is another 
possible optimization method, as shown in that 
paper. In (Bellatreche, 2004; Santos, 2007) the 
authors obtain tuning parameters for better use of 
data partitioning, join indexes and materialized 
views to optimize the total cost in a systematic 
system usage form. 
 The technique proposed in (Bizarro, 2002) 
presents how to tune database schemas towards 
performance-orientation, illustrating a demonstration 
of their proposal with the same benchmark used in 
this paper to demonstrate our optimization 
technique. We shall compare our results with theirs 
in this paper’s experimental evaluation. 
 As we mentioned before, optimization research 
based on bitmaps has been proposed and regularly 
used in practice almost since the beginning of data 
warehousing, mainly in indexing (Gupta, 1997; 
O’Neil, 1995; Wu, 1998). The authors in (Hu, 2003) 
present bitmap techniques for optimizing decision 



 

support queries together with association rule 
algorithms. They show how to use a new type of 
predefined bitmap join index to efficiently execute 
complex decision support queries with multiple 
outer join operations involved and push the outer 
join operations from the data flow level to the 
bitmap level, achieving significant performance 
gain. They also discuss a bitmap based association 
rule algorithm. In (Agrawal, 2004) the authors 
propose novel techniques for designing a scalable 
solution to a physical design issue such as 
incorporating adequately partitioning with database 
design. Both horizontal and vertical partitioning is 
considered. The technique uses bitmaps for 
referencing the relevant columns of a given table for 
each query executed for a given workload. These 
bitmaps are then used to generate which column-
groups of the table are interesting to consider for its 
horizontal and/or vertical partitioning. 

Our technique essentially consists on adding a 
new numeric integer attribute to be used as a bitmap 
for each row referring if it is relevant or not for each 
query. This way, to know which rows are necessary 
for processing each query we only need to test the 
value of this new attribute – the bit-selector – 
recurring to a simple bitwise modulus operation (by 
comparing the remainder of an integer division, 
identifying the query which is being executed). We 
aim for minimizing data access costs for processing 
the given query workload, thus improving its 
performance by reducing execution time. 

3 THE BIT-SELECTOR 
TECHNIQUE 

Bitmap indexes are one of the most common used 
techniques for upgrading performance, for they can 
accelerate data searching and reduce data accesses. 
It is well known that the list of rows associated with 
a given index key value can be represented by a 
bitmap or bit vector. In this case, each row in a table 
is associated with a bit in a long string, an N-bit 
string if there are N rows in the table, with the bit set 
to 1 in the bitmap if the associated row is contained 
in the represented list; otherwise, the bit is set to 0. 
Our technique uses the same principle, but relating if 
the row is relevant for executing a given query. 

3.1 Defining the Bit-Selector 

Consider a table T with rows TR1, TR2, TR3, TR4, 
TR5 and TR6. Suppose a given workload with 

queries Q1, Q2 and Q3. If all rows were necessary for 
processing query Q1, only the second and third rows 
were needed for query Q2, and only the first three 
rows were necessary for processing query Q3, we 
could represent this according to Table 1. For each 
row, we use 1 to define it as relevant for each query 
in column, and 0 if it is not. 

Table 1. A bitmap example for Row-Query Bit-selecting 

 Q3 Q2 Q1 
Binary 
Value 

Decimal 
Value 

TR1 1 0 1 101 5 
TR2 1 1 1 111 7 
TR3 1 1 1 111 7 
TR4 0 0 1 001 1 
TR5 0 0 1 001 1 
TR6 0 0 1 001 1 

This way, the decimal value for each row may be 
obtained by transforming the binary value for the 
query workload into its respective decimal value. 
Observing Formula 1, we present the general 
conversion formula for obtaining the decimal value 
for bit-selection of each table row TRi, given a 
workload of N queries { Q1, Q2, …, QN }: 

TRi Bit-Selector Decimal Value =  
   QS1 x 20 + QS2 x 21 + … + QSN x 2(N-1) 

Formula 1. Bit-Selector decimal value formula 

Where QSN represents the bit value 1 if row TRi is 
relevant for QN, and 0 otherwise. This can be 
mathematically simplified and generalized to the 
final formula shown in Formula 2. 

TRi Bit-Selector Decimal Value =  
   Σ (QSJ x 2(J-1)) 

Formula 2. Bit-Selector decimal value generic formula 
(final). 

3.2 Using the Bit-Selector 

Since the Bit-Selector is bit based, to know if a row 
TRi is needed for processing a given query QN, we 
need to test if the Nth bit of its binary value is equal 
to 1. To do this, we only need to perform a modulus 
(MOD) operation (equal to the remainder of an 
integer division) on its bit-selector decimal value, 
using a power of base 2 and exponent equal to N. 
The generic formula for this is shown in Formula 3. 

Row TRi is interesting for QN  
   if (Bit-Selector Value MOD 2N) >= 2(N-1) 

Formula 3. Rule for defining if a given row is relevant for 
a given query using the Bit-Selector technique 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. TPC-H benchmark database schema with the inclusion of the Bit-Selector attribute within the LineItem fact table 
 

Mainly, data access problems in data 
warehousing address fact tables, since they usually 
have a huge number of rows, when comparing to 
dimension tables. To use the bit-selector in the data 
warehouse, we propose adding it as a column in its 
fact tables. This implies that query instructions 
executed against fact tables need to take this under 
consideration if they are to take advantage in using 
the bit-selector technique. 

Recurring to the decision support benchmark 
TPC-H (TPC-H) and DBMS Oracle 10g (Oracle), 
we shall now demonstrate some examples on how to 
adapt decision support queries for using our 
technique, for the whole set of 22 queries which 
belong to this benchmark. Figure 1 shows the 
modified TPC-H database schema. To use our 
technique, note that the only modification necessary 
to perform in the schema is adding an integer 
column L_BitSelector in fact table LineItem.  

We shall now demonstrate how to update the 
Bit-Selector attribute’s value for using our 
technique, concerning the set of 22 TPC-H queries, 
and how to rewrite query instructions in order to 
take advantage of it. Since we cannot present an 
explanation for each of the queries due to space 
constraints in this paper, we shall use queries Q1, Q6 
and Q21 as examples. We also make considerations 
over each of the rewritten queries, comparing them 
to their respective original, in what concerns then 
involved data operations and probable impact in 
query processing time. 

Consider TPC-H query 1 (Q1), which uses only 
the fact table LineItem, presented next: 

SELECT  
   L_ReturnFlag, 
   L_LineStatus, 
   SUM(L_Quantity) AS Sum_Qty, 
   SUM(L_ExtendedPrice) AS Sum_Base_Price, 
   SUM(L_ExtendedPrice*(1-L_Discount)) AS  
      Sum_Disc_Price, 
   SUM(L_ExtendedPrice*(1-L_Discount)*  
      (1+L_Tax)) AS Sum_Charge, 
   AVG(L_Quantity) AS Avg_Qty, 
   AVG(L_ExtendedPrice) AS Avg_Price, 
   AVG(L_Discount) AS Avg_Discount, 
   COUNT(*) AS Count_Order 
FROM  
   LineItem 
WHERE  
   L_ShipDate<=TO_DATE(‘1998-12-01’,  
                       ‘YYYY-MM-DD’)–90 
GROUP BY  
   L_ReturnFlag, L_LineStatus 
ORDER BY  
   L_ReturnFlag, L_LineStatus 

To put into practice our technique, we need to 
account all fact table rows which are relevant for Q1. 
This can be done by using the fixed conditions 
existing in Q1’s WHERE clause, which defines the 
row filters. If this is the first time we are setting the 
L_BitSelector column for query Q1, by applying 
the generic formula presented in Formula 2, the SQL 
update statement for determining which rows of 
LineItem are relevant for processing this query is 
similar to: 

UPDATE LineItem  
   SET L_BitSelector = L_BitSelector + 1  
WHERE  
   L_ShipDate<=TO_DATE(‘1998-12-01’,  
                       ‘YYYY-MM-DD’)–90 

To rewrite query Q1 to take advantage of the Bit-
Selector attribute, the only modification in Q1 would 
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be in the WHERE clause, using the generic Formula 
3 presented in the prior section. The WHERE clause 
of the rewritten query Q1 would then become: 

WHERE MOD(L_BitSelector,2)>=1 

This is a very slight modification to the original 
instruction, and should imply a small increase its 
execution time, for instead of just executing a 
comparison of preset values (in the original Q1 
WHERE clause), in the modified instruction there is 
the need to execute a MOD operation for each row, 
and then compare values. On the other hand, 
consider TPC-H query 6 (Q6): 

SELECT  
   SUM(L_ExtendedPrice*L_Discount) AS Revenue 
FROM 
   LineItem 
WHERE 
   L_ShipDate>=TO_DATE(‘1994-01-01’, 
                       ‘YYYY-MM-DD’) AND 
   L_ShipDate<TO_DATE(‘1995-01-01’, 
                      ‘YYYY-MM-DD’),12) AND 
   L_Discount BETWEEN .06-0.01 AND  
                      .06+0.01 AND 
   L_Quantity < 24 

Since all rows involved in the processing and 
returning results of Q6 come only from the fact table 
LineItem, applying our method makes it possible 
to obtain the query’s results just by verifying the 
value of L_BitSelector, dismissing all other 
comparisons which needed to be made in the 
original instruction. Therefore, to update the value of 
L_BitSelector for the first time, in order to 
optimize query Q6, the instruction is similar to: 

UPDATE LineItem  
   SET L_BitSelector = L_BitSelector +2^5 
WHERE 
   L_ShipDate>=TO_DATE(‘1994-01-01’, 
                       ‘YYYY-MM-DD’) AND 
   L_ShipDate<TO_DATE(‘1995-01-01’, 
                      ‘YYYY-MM-DD’),12) AND 
   L_Discount BETWEEN .06-0.01 AND  
                      .06+0.01 AND 
   L_Quantity < 24 

The following new rewritten instruction for 
executing Q6 is: 

SELECT  
   SUM(L_ExtendedPrice*L_Discount) AS Revenue 
FROM 
   LineItem 
WHERE 
   MOD(L_BitSelector,2^6) >= 2^5 

Differing from Q1, the modifications in Q6 due 
to our technique should now save query processing 
time, for it reduces several fixed value comparisons. 

Consider TPC-H query 21 (Q21), which performs 
a join with dimension table Orders. This table is 
only mentioned in the WHERE clause, in which it is 
used as a filter for selecting which rows in the fact 

table LineItem are needed in the query’s response. 
Since our technique selects the relevant rows in 
LineItem, the join with table Orders becomes 
unnecessary, therefore discarding the need for a 
heavy table join, leaving table Orders out of the 
modified query. For the same reason, we can also 
exclude table Nation by selecting as relevant all 
LineItem rows (in conjunction with the selection 
criteria mentioned before due to the Orders row 
filtering in the WHERE clause) with L_SuppKey = 
S_SuppKey only for the suppliers from Saudi 
Arabia (N_Name = ‘SAUDI ARABIA’). There are 
also conditional filters based on the fact table itself, 
with EXISTS and NOT EXISTS conditions, which 
should also be coped with to perform the selection of 
the relevant LineItem rows pretended for Q21. 

The original TPC-H query Q21 is similar to: 
SELECT * FROM ( 
   SELECT  
      S_Name, COUNT(*) AS NumWait 
   FROM 
      Supplier, LineItem L1, Orders, Nation  
   WHERE 
      S_SuppKey = L1.L_SuppKey AND  
      O_OrderKey = L1.L_OrderKey AND  
      O_OrderStatus = ‘F’ AND  
      L1.L_ReceiptDate>L1.L_CommitDate AND  
      EXISTS ( 
         SELECT *  
         FROM LineItem L2  
         WHERE L2.L_OrderKey=L1.L_OrderKey AND  
               L2.L_SuppKey<>L1.L_SuppKey) AND  
      NOT EXISTS ( 
         SELECT * 
         FROM LineItem L3  
         WHERE L3.L_OrderKey=L1.L_OrderKey AND  
               L3.L_SuppKey<>L1.L_SuppKey AND  
               L3.L_ReceiptDate>L3.L_CommitDate)  
         AND 
      S_NationKey = N_NationKey AND 
      N_Name = ‘SAUDI ARABIA’ 
   GROUP BY 
      S_Name 
   ORDER BY  
      NumWait DESC, S_Name) 
WHERE RowNum <= 100 

After updating the value of L_BitSelector for 
the first time to optimize query Q21 according to our 
technique, the new instruction for Q21 would be: 

SELECT * FROM ( 
   SELECT  
      S_Name, 
      COUNT(*) AS NumWait 
   FROM 
      Supplier, LineItem  
   WHERE 
      S_SuppKey = L_SuppKey AND  
      MOD(L_Queries,2^21) >= 2^20  
   GROUP BY 
      S_Name 
   ORDER BY  
      NumWait DESC, S_Name) 
WHERE RowNum <= 100 

As it can be seen, the complexity of the original 
instruction of Q21 has mostly decreased. Sub-



 

querying and selection within the fact table itself has 
been discarded. The joins of table LineItem with 
table Orders, and table Supplier with table 
Nation, have been ruled out. Several condition 
testing such as value comparisons have also been 
discarded. The gain of query processing time in this 
case should be very significant. 

In conclusion, we may state that most decision 
support queries modified to comply with the 
proposed technique become simpler than the original 
instructions. They also significantly reduce the 
number of conditions to be tested and calculations to 
be performed on each row, reducing query 
processing costs. As seen in TPC-H query 21 (Q21), 
the technique can also lead to avoid the need to 
execute heavy table joins involving fact tables. 

3.3 Practical Update Procedures for 
the Bit-Selector 

Since the TPC-H benchmark is composed with a set 
of 22 decision support queries, the maximum value 
for the bit-selector column is a 22 bit value in which 
all digits are 1 (1111111111111111111111), equal 
to the decimal value 4194303. If we were to add a 
new decision support query (Query 23) to the set of 
22 queries already defined, the only thing needed to 
accommodate this for using the bit-selector 
technique is to update the bit-selector attribute, 
adding a 23 bit value (2(23-1)) to the rows which 
would be significant for this query, according to the 
generic formula shown in Formula 2. This could be 
accomplished by the following generic instruction: 

UPDATE LineItem  
   SET  
      L_BitSelector = L_BitSelector+2(23-1) 
   WHERE  
     {List of Conditions in the Q23 WHERE clause} 

Therefore, it is obvious to state that the generic 
instruction for updating the Bit-Selector column in 
any fact table for a given Query N would be similar 
to: 

UPDATE FactTable  
   SET  
      L_BitSelector = L_BitSelector+2(N-1)  
   WHERE  
     {List of Conditions in the QN WHERE clause} 

If the update is to be made for new incoming fact 
rows in the data warehouse, this update may be 
performed both for new or previously considered 
queries.  

On the other hand, if a previously defined query, 
which has already modified the Bit-Selector attribute 
values, changes in a way that it needs to access a 
different set of rows than the ones that were marked 

as relevant, this change implies that the Bit-Selector 
also needs to be updated. In order to do this, it is 
needed do unmark the rows which were marked 
earlier as significant, and then mark again those 
which are now significant. Using TPC-H query Q1 
as an example, suppose we had already updated 
L_BitSelector for this query, marking the rows 
which are significant. This was done by executing an 
instruction similar to:  

UPDATE LineItem  
   SET  
      L_BitSelector = L_BitSelector + 1  
   WHERE  
      L_ShipDate<=TO_DATE(‘1998-12-01’,  
                          ‘YYYY-MM-DD’)–90 

As we discussed in the previous section, to 
determine which rows in LineItem should be used 
for Q1, we only need to test if 
MOD(L_BitSelector,2)>=1 in the WHERE 
clause of Q1. Now assume that, instead of wanting 
the rows in which L_ShipDate<=TO_DATE(‘1998-12-

01’,‘YYYY-MM-DD’)–90, we wanted the rows in which 
L_ShipDate<=TO_DATE(‘1998-12-01’,‘YYYY-MM-DD’)–180. 
The algorithm for updating L_BitSelector in 
order to do this should be: 

FOR EACH Row IN LineItem 
   IF (MOD(L_BitSelector,2)>=1) AND 
      (L_ShipDate>TO_DATE(‘1998-12-01’,  
                          ‘YYYY-MM-DD’)–180) 
      SET L_BitSelector = L_BitSelector - 1  
   ELSE 
      IF (MOD(L_BitSelector,2)=0) AND 
         (L_ShipDate<=TO_DATE(‘1998-12-01’,  
                             ‘YYYY-MM-DD’)–180) 
         SET L_BitSelector = L_BitSelector + 1  
   END IF 
NEXT 

The first half of the update algorithm would void 
all rows previously defined as relevant for Q1 and 
which are now to be discarded, by diminishing the 
decimal value responsible for its corresponding 
significant bit. The second half of the algorithm 
would define which fact table rows that were not and 
are now relevant for Q1, in the same manner, by 
using the generic formula presented in Formula 2. 
The rows which were already considered as relevant 
for the original Q1 and remain relevant for the 
altered Q1 do not need to be updated and are not, 
saving update time and resource consumption. 

3.4 Remarks and Considerations on 
the Bit-Selector Technique 

The technique is simple and practical to implement. 
Most results should be promising due to the 
relatively low overhead and fast bitwise operations 
in the used bit-based techniques. 



 

For ad-hoc decision queries which are to be 
executed only once, our technique should not be 
applied, because the resources and time needed to 
update the fact table would not result in a significant 
gain. If the query needs to access almost every row 
in the fact table, the technique is also not very 
efficient, for its nature is to simplify and optimize 
selecting and accessing only the relevant rows for 
processing the query. The more rows are needed for 
this, the fewer the gain given by the technique. Our 
technique is best for: queries which need the same 
set of fact table rows, repeatedly; and also if a small 
number of rows in the fact table (at most, 50% of the 
total number of rows in the table) is needed for 
query processing. Nevertheless, according to 
(Pedersen, 2004), these features represent a large 
class of decision queries to be executed in any 
business data warehouse. 

On the other hand, research work on data 
warehouse optimization oftenly proposes methods 
and techniques that need to alter or reconstruct data 
structures, such as indexes and partitions, if not the 
database schema itself. This needs to be done with 
the database off-line from users, because the DBMS 
processes involved require exclusive access to those 
data structures. Such procedures imply a decrease in 
availability. With our technique, there is no need to 
set the data warehouse off-line, because to optimize 
each new query, we only need to execute an update 
for the bit-selector attribute. Therefore, it promotes 
continuous data warehouse usage, increasing its 
availability, in contrast with most other optimization 
methods and techniques with higher levels of 

complexity. It also presents a much lower overhead 
in data storage size when compared with techniques 
such as partitioning or creating materialized views. 
Another advantage of this modular approach is that 
it can be incorporated in every relational DBMS 
without any modification. 

4 EXPERIMENTAL 
EVALUATION 

To test the proposed technique, we implemented the 
TPC-H benchmark using DBMS Oracle 10g on 
Pentium IV 2.8 GHz machine, with 1 Gbyte of 
SDRAM and 7200 rpm 160 Gbytes hard disk with 
IDE U-DMA 133, with Windows XP Professional. 
We performed all experiments on four different 
scale sizes of the database: 1, 2, 4 and 8 Gbytes. 
Note that the sequence represents each next size as 
the double of the precedent. This will allow us to 
state conclusions regarding scalability of the results. 

Table 3 presents the execution time for the set 
of queries in the TPC-H benchmark that need data 
from the fact table, for each predefined database 
size. These are the queries to which our bit-selector 
technique can be applied. For the fairness of the 
experiments, all databases where index optimized 
the “standard” way, defining each table’s primary 
key and building all relevant bitmap join indexes. 
Figures 2, 3, 4 and 5 show the differences between 
standard and our technique’s execution times, for 
each modified query, in each tested database. 

Table 3. Time execution of the TPC-H query workload (Standard vs. Bit-Selector) 

TPC-H 
Database Size 

Standard Execution 
Time (seconds) 

Bit-Selector Execution 
Time (seconds) 

Execution Time 
Difference 

% Execution 
Time 

Times 
Faster/Slower 

1 Gbytes 675 418 -257 62% 1.61 times faster 
2 Gbytes 1 831 882 -949 48% 2.08 times faster 
4 Gbytes 4 266 1 634 -2 632 38% 2.61 times faster 
8 Gbytes 10 332 3 384 -6 948 33% 3.05 times faster 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Query execution difference time – 1 Gbyte data warehouse 



 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Query execution difference time – 2 Gbytes data warehouse 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Query execution difference time – 4 Gbytes data warehouse 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Query execution difference time – 8 Gbytes data warehouse 
 

It can be seen in the individual query results that 
the proposed technique brings advantages for most 
queries in the workload, and the overall performance 
is efficiently improved. As expected, queries Q1 and 
Q15 present a small increase of execution time in all 
scenarios, for instead of just executing a comparison 
of fixed values (for the original Q1 WHERE clause), 
the modified instructions include executing a MOD 
operation for each row and then compare values. As 
also expected, queries Q5, Q8, Q19 and Q21 present 
the highest gains, because with our technique the 
need for performing heavy join operations for these 

queries has been dismissed. Figure 6 shows the 
overall query workload execution time for each of 
the database sizes used in this evaluation. 

As we mentioned earlier, authors in (Bizarro, 
2002) propose to modify the database schema in a 
performance-oriented perspective. They use TPC-H 
benchmark database as an example and tune it 
looking for highest performance, taking under 
account the attributes which are most queried, 
calculations, frequently accessed dimensions, types 
of attributes, table joins, etc. In their experimental 
evaluation, a workload of 10 TPC-H queries { Q1, 



 

Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q21 } is executed 
against a 1 Gbyte database and its execution time is 
analyzed. They state that for the fairness of 
experiments, all queries were fully optimized. Their 
results show that the workload executes 2.19 times 
faster using their new proposed schema, than with 
the original one. Consulting Table 3 in this paper, 
we can calculate that our Bit-Selector technique 
executes this same query workload 1.69 times faster 
than without using our technique. However, results 
presented in (Bizarro, 2002) are mainly due to one 
query only (Q5). If Q5 was excluded from the 
workload, their proposal would execute 1.84 times 
faster, while our proposal would execute 1.67 times 
faster. Furthermore, experiments in (Bizarro, 2002) 
only consider 10 TPC-H benchmark queries, while 
we consider all of them. Therefore, we can state that 
our proposal seems more continuous and consistent 
for optimizing a wide range of queries, when 
compared with the gains in (Bizarro, 2002). 

Analyzing Figure 6, we can state that the results 
indicate a very significant performance optimization, 

speeding up an increasing percentage of standard 
query execution time while the database size grows. 

Figure 7 shows the results for the execution of 
the TPC-H benchmark queries which were not 
modified because they do not access the fact table’s 
data. As can be seen by observing this figure, the 
non-modified queries approximately maintained 
their execution times when using the Bit-Selector 
technique. Since the modifications of the schema for 
our technique only modifies the fact tables and 
queries which execute against it, other queries do not 
suffer any impact. Table 4 presents the impact in 
database size for the implementation of our Bit-
Selector technique. 

The modified database schema proposed in 
(Bizarro, 2002) presents an increase of 612 Mbytes 
(66%) of its original size. From this point of view, as 
seen in Table 4, the increase of size using our 
proposal (with the Bit-Selector column defined as a 
4 byte integer) is very low (3%), when compared 
with the prior. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Query workload execution time for the modified fact table queries 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Query workload execution time for the modified fact table queries 
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Table 4. TPC-H original fact table size vs. modified bit-selector fact table size 

Database Size 
LineItem 

Original Size  
Number of Rows 

in LineItem 
LineItem Size 

with Bit-Selector 
% Size Increase 

1 Gbytes 801 Mbytes 6 001 215 825 Mbytes 3 % 
2 Gbytes 1 602 Mbytes 11 997 996 1 650 Mbytes 3 % 
4 Gbytes 3 204 Mbytes 23 996 604 3 300 Mbytes 3 % 
8 GBytes 6 408 Mbytes 47 989 007 6 600 Mbytes 3 % 

 

Table 5. TPC-H original queries execution time with original fact table size vs. modified bit-selector fact table 

 

 
Finally, we address the implications of our 

technique regarding decision support queries which 
access the fact table’s data, but do not take 
advantage of the Bit-Selector column, i.e, the Bit-
Selector column has not been updated for optimizing 
these queries. This can be measured by executing the 
exact original query instructions which need fact 
table data, using the fact table already modified with 
the inclusion of the Bit-Selector column. Therefore, 
we performed the execution of the query workload 
{Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q12, Q14, Q15, 
Q17, Q18, Q19, Q20, Q21} using the original TPC-H 
benchmark query instructions against the new fact 
table with Bit-Selector for each database. The results 
can be seen in Table 5. 

It can be seen that query workload execution 
time increased around 5%. This is the average 
increase in execution time for ad-hoc decision 
support queries which access the fact table and are 
not to be included in the set of queries used for the 
Bit-Selector, for the database used in our 
experiments. This was somewhat expected, because 
the altered fact table is bigger, due to the inclusion 
of the Bit-Selector attribute, which means that the 
DBMS needs to access a slightly bigger amount of 
data blocks in order to access the same amount of 
factual data as in the original schema. 

Many proposals in past research work in data 
warehousing optimization imply data structure 
modifications, increase of database size and query 
complexity, loss of schema legibility, among other 
negative aspects. As we stated earlier, the only 
modification to be done within the database schema 
is the inclusion of a new integer type column (the 
Bit-Selector) in its fact tables, which will imply the 
growth of the database size by multiplying the Bit-

Selector’s size by the number of rows in the fact 
tables. To our knowledge, compared with most of 
the research work done in data warehouse schema 
conceptual, logical and/or physical modifications, 
our technique seems to be one of the best in what 
concerns overhead in database size and schema 
modifications, while providing a very significant 
optimization of query execution time. 

5 CONCLUSIONS AND FUTURE 
WORK 

This paper presents an efficient, simple and easy to 
implement alternative technique for optimizing the 
performance of data warehouse OLAP queries, 
which significantly reduces the execution time of 
repeatable queries which need to access at least one 
fact table. Using our technique, the TPC-H query 
workload executed 1.61, 2.08, 2.61 and 3.05 times 
faster than when “traditionally” index optimized, for 
the 1, 2, 4 and 8 GByte sized databases, respectively. 
Queries which do not access a fact table maintain 
their average response time.  

We have also referred that ad-hoc query 
processing time increases because of the inclusion of 
an extra attribute in the fact table, which implies a 
size growth. However, both size and time increases 
measured are almost insignificant and should be 
considered as acceptable, when compared with the 
storage size needed for other kinds of optimization 
data structures such as partitions, pre-built 
aggregates and materialized views. We can state that 
the results indicate a very significant performance 
optimization of the query workload, speeding up an 

Database Size 
Workload Exec. Time in 

the Original Schema 
Workload Exec. Time in 

the Altered Schema 
% Execution 

Time Increase 
1 Gbytes 675 seconds 706 seconds 4,6 % 
2 Gbytes 1 831 seconds 1 921 seconds 4,9 % 
4 Gbytes 4 266 seconds 4 484 seconds 5,1 % 
8 GBytes 10 332 seconds 10 911 seconds 5,6 % 



 

increasing percentage of standard query execution 
time while the database size grows. 

Although query instructions need to be modified 
to take advantage of the proposed technique, the 
resulting rewritten instructions are often simpler 
than the original ones. The technique also makes it 
possible, for certain queries, to discard heavy time 
and resource consuming operations such as fact table 
joins. We also illustrated how to update the bit-
selector attribute to optimize the performance for 
new queries or modify the row selecting of 
previously defined queries, without having to 
perform traditional off-line data warehouse update 
reoptimization procedures. This brings advantages 
due to enabling continuous usage fashion.  

As future work, we intend to implement this 
method in real-world data warehouses and measure 
its impact on real world system’s performance. 
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