
24/7 Real-Time Data Warehousing: A Tool for Continuous Actionable Knowledge

Ricardo Jorge Santos
CISUC – DEI – FCTUC
University of Coimbra

Coimbra, Portugal
lionsoftware.ricardo@gmail.com

Jorge Bernardino
CISUC – DEIS – ISEC

Polytechnic Institute of Coimbra
Coimbra, Portugal

jorge@isec.pt

Marco Vieira
CISUC – DEI – FCTUC
University of Coimbra

Coimbra, Portugal
mvieira@isec.pt

Abstract - Technological evolution has redefined many business
models. Many decision makers are now required to act near
real-time, instead of periodically, given the latest transactional
information. Decision-making occurs much more frequently
and considers the latest business data. Since data warehouses
(DWs) are the core of business intelligence, decision support
systems need to deal with 24/7 real-time requirements. Thus,
the ability to deal with continuous data loading and decision
support availability simultaneously is critical, for producing
continuous actionable knowledge. The main challenge in this
context is to efficiently manage the DW’s refreshment, when
data sources change, to recapture consistency and accuracy
with those sources, while maintaining OLAP availability and
database performance. This paper proposes a simple, fast and
efficient solution based on database replication and temporary
tables to change a traditional enterprise DW into a real-time
DW, enabling continuous data loading and OLAP availability
on a 24/7 schedule. Experimental evaluations using a real-
world DW and the TPC-H decision support benchmark show
its advantages and analyze its impact in OLAP performance.

Keywords: Real-time data warehousing, ETL, Continuous
data loading, OLAP, Availability, Actionable knowledge

I. INTRODUCTION

Data warehouses (DWs) are the main decision-support
assets in many business fields. Using data mining on DWs
enables producing business knowledge. DWs typically store
the complete business history, producing decision support
information by using On-Line Analytical Processing
(OLAP) tools. Transactional systems (TS) store only current
information for supporting business transactions. Extraction,
Transformation and Loading (ETL) tools are used for
extracting TS business data, transforming and cleansing it
into an analytical format, and finally loading it into the DW
database(s). It has been well accepted that DW databases
have been updated periodically, typically in a daily, weekly
or even monthly basis [12]. This update policy was defined
as common practice due to two major assumptions:

1) Since it stores the whole business history, it has huge
tables and complex optimization data structures (such as
indexes, partitions, etc). Executing data updating procedures
continuously and frequently (similar to TS), while
simultaneously executing OLAP, would create huge
bottlenecks, due to time and resource consumption implied
in executing those actions simultaneously; and

2) Business decisions were made on a daily, weekly or
monthly basis, dismissing recent real-time business data.

This type of update policy meant that DW data was
never up-to-date; transactional data saved between those
updates was not included in its databases, excluding the
most recent transactional data from OLAP results. Today,
technological evolution has pushed forward and redefined
business models operating on a 24/7 schedule, requiring
decision makers to act almost immediately after the original
transactional data is written, instead of making decisions on
a daily or weekly basis [3, 26]. A paper by Oracle [2] states
that the “Holy Grail” of data warehousing is to support
analysis at the speed of the business, affirming the concept
of “on-time information” as having information available
whenever it is needed. This means that decision-making
occurs much more frequently and continuously.

DW refreshment (integration of new data) has
traditionally been done in an offline fashion. This meant that
while updating the DW, OLAP applications could not
access any data. Since DWs are currently the core back-end
of decision support and Business Intelligence (BI) systems
[13], they need to deal with 24/7 real-time enterprise
requirements, coping with both continuous data integration
and decision support availability in these business scenarios.
In some scenarios, update delays greater than a few seconds
or minutes may jeopardize the whole system’s usefulness.

Thus, the 24/7 real-time enterprise requires a decision
support tool able to continuously acquire and process the
latest business data, supplying business knowledge at all
times for aiding decision making that can take effect while
the business transactions occur. For example, airlines and
government agencies need to be able to analyze the most
current information when detecting suspicious passengers or
potentially illegal activity. Fast-paced changes in financial
markets may make personalized suggestions on a
stockbroker's website obsolete by the time they are viewed.
Effectively, supplying decision support in useful time is
what we consider actionable knowledge.

Our work focuses on the DW perspective, and for that
reason, our contribution is a simple and easy-to-implement
solution that enables efficient 24/7 continuous data loading
in DW, while simultaneously keeping the database available
for OLAP execution at all times, i.e., enabling everlasting
availability. Much research on Real-Time DW (RTDW) has
been published, but it has mainly focused on ETL workflow
or data integration issues, lacking OLAP performance and
availability aspects. We focus on Loading procedures, using
a middleware tool to accomplish our aims, which uses fast

data insertion techniques for minimizing impact in database
performance. Issues on Extracting and Transforming
transactional data are not within the scope of this paper. Our
tool acts as a data manager between the DW ETL tool and
its databases, accomplishing three functions: managing the
DW database schemas, updating the databases, and aiding
OLAP querying against them.

The remainder of this paper is organized as follows. In
Section 2, we present requirements for 24/7 RTDW and
explain our methodology. Section 3 presents an experimental
evaluation of our proposal. Section 4 presents background
and related work in RTDW, and the final section summarizes
our conclusions and actions for future work.

II. DESIGNING A 24/7 REAL-TIME DATA WAREHOUSE

One of the most difficult parts of building any DW is the
process of extracting, transforming, cleansing, and loading
the data from the source system. According to [12], 70% of
the warehouse implementation and maintenance effort is
spent on ETL procedures. Real-time ETL brings additional
challenges. Almost all ETL tools and systems operate in
batch mode, assuming data becomes available as some sort
of extract file on a certain schedule, usually nightly, weekly,
or monthly. Then, the system transforms and cleanses the
data and loads it into the DW. This process typically
involves DW downtime, so users are unable to access it
while the load takes place. In what concerns DW, near zero
latency between TS and OLAP systems consists on ensuring
continuous data integration in the DW and guaranteeing that
decision makers may request decision support information
at all times [3]. Therefore, in RTDW, we need to cope with
two radical data state changes:

1) Performing continuous data update actions, which
should mostly concern row insertions;

2) These updates must be performed simultaneously with
OLAP execution, which – due to its new real-time nature –
will probably be requested much more often.

This implies that the DW should be able to cope with
database access failure, involving fault tolerance procedures
to ensure its continuous availability. Given the purpose of
the 24/7 real-time DW, besides the needs and issues behind

traditional periodic updated DW and used ETL tools, the
main new requirements that must be considered are:

• Loading the new data into the DW databases as soon
as possible, as quickly and as frequently as possible;

• Minimizing the impact in OLAP performance due to
the simultaneous execution of data update procedures;

• Assuring OLAP is always possible and available on a
24/7 schedule/strategy.

Figure 1 shows a classic DW architecture, illustrating
the data flow between transactional operational systems and
the DW databases and OLAP users and applications. The
Database Administrator (DBA) is responsible for managing
and monitoring the ETL processes, as well as the databases.

To use our tool, the DW database schemas need to be
adapted, using a replica of each fact table, empty of contents
and without any optimization structure such as primary keys
or referential integrity constraints, for loading the new
factual DW data, as described in detail in previous work
[18, 19]. We shall now summarily explain how this
adaptation should be made, as explained in [18, 19].

Suppose a simple sales DW, with a schema as shown in
Figure 2; two dimensional tables (Store and Customer,
representing business descriptor entities) and one fact table
(Sales, storing business facts aggregated from
transactions). To simplify the figure, the Date dimension is
not shown. This DW stores the sales value per store, per
customer, and per day. Primary keys are in bold, while the
referential integrity constraints with foreign keys are shown
in italic. The factual attribute S_Value is additive. This
property in fact data is very important for our methodology,
as we shall demonstrate further on. For the data area
concerning DW schema, we adopt the following method:

DW schema adaptation for supporting Real-Time DW:
Creation of a structural replica of each original table of the DW
that could eventually receive new data. These tables (referred
also as temporary tables) are created empty of contents, with
no defined indexes, primary key, or constraints of any kind,
including referential integrity. For each table, an extra attribute
is created, for storing a unique sequential identifier related to
the insertion of each row within the temporary tables.

Figure 3 shows the sub-schema to be appended to the
original schema.

Figure 1. A classical data warehouse architecture.

Figure 2. Sample sales data warehouse schema.

A temporary table is created for each original schema
table. The unique sequential identifier attribute in each
temporary table (xTmp_Counter) records the sequence in
which each row is appended in the database. This allows
identifying the exact sequence for each new inserted row,
useful for restoring prior data states in disaster recovery
procedures, and also for discarding dimensional rows which
have more recent updates. For instance, if one customer has
had two updates in the OLTP systems which, consequently,
lead to the insertion of two new rows in the temporary table
CustomerTmp, only the most recent one is relevant. This is
done by considering as most recent the row with highest
CTmp_Counter for that same customer (CTmp_CustKey).

CustomerTmp

CTmp_CustKey
CTmp_Name
CTmp_Address
CTmp_PostalCode
CTmp_Phone
CTmp_EMail
CTmp_Counter

SalesTmp

STmp_StoreKey
STmp_CustomerKey
STmp_Date
STmp_Value
STmp_Counter

StoreTmp

StTmp_StoreKey
StTmp_Description
StTmp_Address
StTmp_PostalCode
StTmp_Phone
StTmp_EMail
StTmp_Manager
StTmp_Counter

Figure 3. Sample sales DW appended sub-schema.

As demonstrated in [18,19], making the factual attributes
additive is crucial for our solution, in spite of eventual
drawbacks, for enabling the update of DW fact tables just by
inserting new records, instead of using UPDATE or
DELETE actions. However, Kimball refers in [12] that
many ETL tools use a UPDATE ELSE INSERT function for
loading data, considering this as a performance killer. With
our method, any appending, updating or eliminating factual
data tasks on OLTP systems only generate as new record
insertions in the DW, allowing to minimize row, block and
table locks and other concurrent data access problems.
Physical database tablespace fragmentation is also avoided,
once there is no deletion of data, only sequential increments.
INSERT is much faster than UPDATE or DELETE row
operations, since these need to previously perform a lookup

in order to know which rows to update, allowing us to state
that our method uses the fastest methods to refresh the DW
[12, 19]. In the solution proposed in our paper, all
dimensional data is to be updated or inserted directly in the
existing tables. The definition of which attributes are
additive and which are not should be the responsibility of
the DW design team. According to [11], the most useful
facts in a DW are numeric and additive. Our method for
data loading uses the simplest method for writing data:
appending new records. Any other type of writing method
needs to execute more time consuming and complex tasks.

Regarding the sample sales DW of Figures 2 and 3, we
shall now describe an example for loading new data. Figure
4 presents the insertion of a row in the data warehouse
temporary fact table for the recording of a sales transaction
of value 100 which took place at 2008-05-02 in store with
St_StoreKey = 1 related to customer with C_CustKey
= 10, identified by STmp_Counter = 1001. Meanwhile,
other transactions occurred, and the organization’s OLTP
system recorded that instead of a value of 100 for the
mentioned transaction, it should be 1000. The rows in the
temporary fact table with STmp_Counter = 1011 and
STmp_Counter = 1012 reflect this modification of values.
The first eliminates the value of the initial transactional row
and the second has the new real value, due to the additivity
of the STmp_Value attribute.

Many issues involving the use of ETL tools do not focus
only on performance problems (as would be expected), but
also in aspects such as complexity, practicability and price
[12]. By using only record insertion procedures to enable
continuous data integration, using empty or small sized
tables without any kind of constraint or attached physical
file related to it, we guarantee the simplest and fastest
logical and physical support for achieving our goals [12].

The fact that the only significant change in the logical
and physical structure of the DW’s schema is the simple
adaptation shown in Figure 3, allows implementing ETL
procedures in a manner to maximize its operability. Data
loading may be done by simple standard SQL instructions
or DBMS batch loading software such as SQL*Loader [16],
with a minimum of complexity. There is no need for
developing complex routines for updating the data area,
since the needed data is easily accessible, independently
from the used ETL tools.

Figure 4. Partial contents of temporary fact table SalesTmp with exemplification record insertions.

Since the data schemas are modified, OLAP queries
need to be adapted in order to take advantage of the most
recent integrated data, which resides in the temporary tables.
For the sample sales DW, consider the following query,
calculating the total revenue per store in the last 7 days:
SELECT S_StoreKey,
 Sum(S_Value) AS Last7DaysSV
FROM Sales
WHERE S_Date>=SystemDate()-7
GROUP BY S_StoreKey

To take advantage of our method and include the most
recent data in the OLAP query response, queries should be
rewritten taking under consideration the following rule: the
FROM clause should join all rows from the required
original and temporary tables with relevant data, excluding
all fixed restriction predicate values from the WHERE
clause whenever possible. The modification for the prior
instruction is illustrated below. It can be seen that the
relevant rows from both issue tables are joined for supplying
the query answer, filtering the rows used in the resulting
dataset given its restrictions in the original instruction.
SELECT S_StoreKey,
 Sum(S_Value) AS Last7DaysSV
FROM (SELECT S_StoreKey, S_Value
 FROM Sales
 WHERE S_Date>=SystemDate()-7)
 UNION ALL
 (SELECT STmp_StoreKey, STmp_Value
 FROM SalesTmp
 WHERE STmp_Date>=SystemDate()-7)
GROUP BY S_StoreKey

An interesting and relevant aspect of the proposed
methodology is that if users wish to query only the most
recent information, they only need to do so against the
temporary replicated tables. For instance, if the temporary
tables are meant to be filled with data for each business day
before they are recreated, and we want to know the sales
value of the current day, per store, the adequate response
could be obtained from the following SQL instruction:
SELECT STmp_StoreKey,
 Sum(STmp_Value) AS TodaysValue
FROM SalesTmp
WHERE STmp_Date=SystemDate()
GROUP BY STmp_StoreKey

This way, our method aids in processing the DW’s most
recent data, since this kind of data is stored within the
temporary replica tables, assumed to be small in size. This
minimizes CPU, memory and I/O costs involved in most
recent data query processing. Theoretically, this would
enable it to deliver the most recent decision making
information while the business transaction itself occurs.

In our previous work, we also point out other advantages
and disadvantages of our loading method, which are not
included here due to lack of space, since the current paper is
focused on engineering its applications. The performance
and functional issues of this method for DW data loading
are thoroughly presented and discussed in the mentioned
previous work [18, 19]. Our data loading and database
schema managing procedures lie between the used ETL tool
and the DW databases. Since the original database schemas
need to be modified, we also supply methods for querying
the new schemas, making the OLAP querying procedure
public for DW end users and applications. The proposed
architecture for our 24/7 real-time DW is shown in Figure 5.
 To enable 24/7 OLAP availability, we use the following
method: every DW database schema will be replicated,
creating exact duplicates of all their components (tables,
indexes, materialized views, etc). Both databases will be
updated simultaneously by our 24/7 RTDW Tool, but only
one at a time will be made available for OLAP users and
applications.

Since our data loading is done mainly into fact table
replicas lacking performance optimization structures of any
kind, as their size increases, OLAP performance decreases.
This happens until it is time to reoptimize the system, which
is done by transferring the data in the fact table replicas into
the original ones, as explained in [18, 19], recreating the fact
tables replicas empty of contents once more, and rebuilding
the performance optimization structures, for the database
which is offline to OLAP users. After this, the reoptimized
database is made available to OLAP users, switching places
with its duplicate, and vice-versa, continuously rotating the
availability of both databases. The next section explains
how 24/7 RTDW Tool works and presents its components.

Figure 5. The 24/7 real-time data warehouse architecture.

III. THE 24/7 REAL-TIME DATA WAREHOUSE TOOL

Our 24/7 RTDW Tool has 3 main components: the 24/7
RTDW Tool Manager, the Loader and the Query Executor.
The first manages the DW database schemas and supplies
an interface for monitoring loading tasks performed by the
Loader. The Loader is responsible for refreshing the DW
databases according to the methodology presented in [18,
19], briefly explained in section II. It also checks if all data
has been loaded and completes all loading tasks that did not
finish with success. The Query Executor will redirect
querying to the database that is available for the DW end
users and applications. To demonstrate our methodology, in
Figure 6 we present a data schema of a real-world
commercial sales enterprise DW, having four dimensional
tables (Time, Customers, Products and Promotions,
representing business descriptor entities) and one fact table
(Sales, storing business measures aggregated from
transactions). In what concerns the fact table, S_SaleID
and S_LineNumber are primary key columns, S_TimeID,
S_CustomerID, S_ProductID and S_PromotionID
foreign keys for referencing the dimensional tables.
Columns S_ShipToCost, S_SalesAmount, S_Quantity
and S_Profit are additive factual attributes, while
S_SalesMean and S_Tax are descriptive attributes.

Figure 7 shows the 24/7 RTDW Tool, along with the
related objects and people that interact with it. DB1 and
DB2 represent the duplicated database schemas, with a
temporary replica table of the Sales fact table, named
SalesTmp. Our methodology requires the ETL tool to
produce flat files for updating each table of the DW. This
requirement should be easy to fulfill, since all ETL tools
we know are able to do this [7, 14, 15, 22]. The 24/7 RTDW

Tool Loader will then use those flat files for updating the
tables in the DW, using bulk loading whenever possible (in
order to achieve the highest magnitude of speed) or SQL
INSERTs (for instance, Oracle and MySQL allow using
high speed bulk loaders, SQL*Loader and Load Data Infile,
respectively, for appending new data). The following
subsections explain the 24/7 RTDW Tool Database and
each of the tools’ components.

Figure 6. Real-world commercial sales DW schema.

Figure 7. The 24/7 RTDW Tool middleware scenario (interaction and data flow).

A. The Real-Time DW Tool Database
The 24/7 RTDW Tool Database represents the data

structures for managing our tool’s functionality. Its schema
is shown in Figure 8. The DB table is for defining the
access to each DW database to be managed, defining its
DBMS (Oracle, MySQL, SQL Server, etc), the ODBC
driver name to access the database, DBMS database service
name, DBA username and password. There are also fields
concerning database reoptimization and OLAP usage:

RB_ReoptimizingDB, which indicates the number of
the database that is currently being reoptimized (1 or 2), or
a zero value if the database isn’t reoptimizing;

RB_ReoptType and RB_ReoptLimit which indicates
how the database will be reoptimized (after loading every N
transactions, after every N seconds, or every day at N
o’clock); and

RB_CurrentDB that indicates which is the currently
available database for OLAP querying (1 or 2).

Tables DB_Indexes and DB_MatViews will store the
names and stored SQL scripts for all the indexes and
materialized views to be rebuilt, respectively, belonging to
each database in DB, whenever that database’s
reoptimization procedure is executed. The DB_Tables
table is for defining each table in each database. Each table
has a unique identifier, T_ID, and is characterized by its
name, T_TableName, and type, T_TableType (where D
means dimensional and F means it is a fact table). It also
has two flag fields, T_LoadingDB and T_QueryingDB
which will indicate, in real-time, if the table is being
currently updated by the 24/7 RTDW Tool Loader or
queried by the Query Executor. These flags are required for
checking routines, such as if they are being used for OLAP
or by database reoptimization procedures, for example.

Figure 8. The 24/7 real-time data warehouse tool database.

Tables Transactions and Transactions_Tables
play a main role in our loading methodology, acting as
master and detail tables for defining a set of tables, which
are all interconnected for a given transaction. For example,
a typical star schema has a central fact table referenced
with all dimensional tables belonging to it, similar to the
schema in Figure 6. Each sales transaction is cross
referenced with its foreign key tables (Customers,
Products, Promotions and Time). Before a sales
transaction is loaded, all foreign dimensional key values
need to be checked to verify if they already exist in the
database, ensuring referential integrity is not compromised.
Therefore, a record in Transactions is created to define a
transaction, giving a unique identifier value in TX_ID and
the timespan between each load using TX_LoadFrequency
(in seconds). In table Transactions_Tables we define
which tables belong to each transaction defined in
Transactions. In the former table, we indicate the
physical address where the ETL flat file will be for loading,
TXT_LoadFile, as well as the physical address of the log
file for reporting loading success status, TXT_LogFile,
and the control file for bulk loading, TXT_ControlFile,
(the CTL file is used by Oracle bulk loader, SQL*Loader,
for instance, comprising the data column and format
instructions for the bulk loader), along with the number of
fields to update per row, TXT_NumberOfValues. Field
TXT_FileNumber acts as a unique counter for each
complete flat file upload, for load checking purposes.

Table Dim_Tables_Keys contains a definition of
which columns compose each dimensional tables’s (defined
in DB_Tables) primary key. Dim_Tables_Keys
references each dimensional table in DB_Tables,
containing all the existing primary key values. This is done
for checking each dimensional table data upload done by
the 24/7 RTDW Tool Loader, where an SQL UPDATE is
executed on the DW dimensional table if the dimensional
primary key value already exists in a reference table,
otherwise an SQL INSERT is done. In practice, using the
schema from Figure 6, when the Loader receives an update
for dimensional table Customers where
S_CustomerID equals to 1, it checks for the value 1 in
the reference table by DTK_TableID corresponding to the
Customers table defined by TXT_TableID. If it is
found, the customer already exists in Customers, and
therefore executes an UPDATE, otherwise the record is
INSERTed. On the other hand, before loading a Sales
fact table flat file, a cross check is done for each
dimensional table to see if the referring foreign key value
exists, using Dim_Tables_Keys. If it does exist, this
means the dimensional record to which the fact record
refers to does not exist yet in the DW, and therefore is set
aside to be subsequently loaded. This guarantees that
referential integrity is assured.

Tables Stat_Loads and Stat_Reopts are included
for measuring the time spent in each complete transactional
data load and database reoptimization, respectively,
allowing to monitor the tool’s performance for optimization
purposes. For instance, Stat_Loads table is useful for
detecting if overlapping data loading threads are occurring
for a certain table/transaction. If any value of
SL_LoadTime is greater than TX_LoadInterval for a
certain table/transaction, at least one data load procedure
for that table was still executing while another had already
started. Monitoring this, TX_LoadInterval is easy to tune
for optimizing load performance, by what we have shown
in [24], meaning that TX_LoadInterval’s value should
be increased for that table/transaction. The time spent in
database reoptimization, SR_ReoptTime, can also aid the
DBA to decide how often to reoptimize each database,
given in DB_ReoptType and DB_ReoptLimit.

 Table Transactions_Tables_Columns is used
for defining all fields that belong to each table managed by
the 24/7 RTDW Tool. The tool’s database is managed by
the DBA, through the 24/7 RTDW Tool Manager.

Supposing we use the tool for the schema shown in
Figure 6, for loading transactions every 30 seconds, the
values for the main tables in the 24/7 RTDW Tool Database
would be similar to what is shown in Figure 9.

B. The 24/7 Real-Time Data Warehouse Manager
This component allows the DBA to manage the tool’s

database and monitor data loading executions, according to
what we have previously described. It also allows the DBA
to have an option for building the original DW schema
duplicates and setting up all the values, when the tool is to
be used for the first time. This component is also
responsible for reoptimizing the databases.

C. The 24/7 Real-Time Data Warehouse Loader
This component is responsible for executing the DW

refreshment procedures, loading new data into its OLAP
databases. All actions are executing according to what has
been explained in the previous subsection A.

D. The 24/7 Real-Time Data Warehouse Query Executor
This component handles the queries issued by DW end

users and OLAP tools, selecting which replicated database
to use. It simply redirects the requested queries, according to
the tool’s database referring which is the available database
for querying, and supplies the results to the query origin. It
will also mark the flag field, T_QueryingDB, for each
table, when it initiates or finishes querying.

IV. EXPERIMENTAL EVALUATION

To evaluate our tool, we used a real-world sales DW,
based on the schema in Figure 6. The size of the sales DW
is more than 2GB, corresponding to one year of
commercial data, as shown in Table I. To build it, we used
Oracle 11g DBMS on a 2.8 GHz Pentium IV CPU, with 1
GByte RAM, 7200 rpm hard disk.

Table DB

Table DB_Tables Table DB_Indexes

Table Dim_Tables_Keys

Table Transactions

Table Transactions_Tables

Figure 9. The 24/7 Real-Time DW Tool Database main tables for the Sales DW (loading every 30 seconds).

To obtain results for decision making, a set of 12 OLAP
queries was selected. These queries represent a sample of
typical decision making information, such as customer
product and promotion sales daily, monthly, quarterly and
annually values. This set of queries represents a typical real-
world workload, with a diversity of table joins, filtering,
grouping and sorting actions, against the union of historical
and recent business data.

TABLE I. Dimensional features of the Sales Data Warehouse
 Times Customers Products Promotions Sales

Number
of Rows 8 760 250 000 50 000 89 812 31M

Storage
Size (MB) 0,12 90 7 10 1 927

We have measured the feasibility and performance of the
OLAP query workload execution in scenarios with 1, 2, 4,
8, 16 and 32 concurrent users, while simultaneously
updating the database with six different amounts of
transactions on each loading procedure. The Oracle
SQL*Loader was used every 15 seconds for inserting
batches of 174, 348, 696, 1392, 2784, and 5568
transactions, each time. Inserting this amount of transactions
every 15 seconds corresponds to a volume of 1, 2, 4, 8, 16
and 32 million transactions for the DW, on a 24-hour
schedule.

Figure 10 shows experimental evaluation results, based
on the OLAP workload execution time for each of the
scenarios. As shown, the increase of execution time ranged
from a minimal overhead of 4,55%, representing an increase

of 35 seconds (from 764 to 799) for the scenario with only 1
OLAP user executing the workload while inserting 134
transactions every 15 seconds, to a maximum overhead of
42,82%, representing an increase of 5809 seconds (from
13566 to 19375) for the scenario with 32 users
simultaneously executing the OLAP workload while
inserting 5568 transactions every 15 seconds. This is the
price to pay to build an effective 24/7 RTDW that better
answers the needs of decision makers for obtaining near
real-time continuous data integration and ongoing OLAP
availability using our proposal, for the tested sales DW
scenarios.

We also tested our solution using the 1GB and 10GB
scales of the TPC-H benchmark [28], which represents a
decision support DW, using the same software and hardware
as for the Sales DW. A workload composed of all TPC-H
queries using its fact table (queries 1, 3, 5, 6, 7, 8, 9, 10, 12,
14, 15, 17, 18, 19 and 20 of the benchmark) was used. The
standard full query workload execution time measured for
comparison, i.e., without performing continuous data load,
is 812 and 8155 seconds, for the 1GB and 10GB TPC-H
database, respectively. Several rates of data loading were
tested (loading intervals of 10, 30 and 60 seconds between
each batch of load transactions), as well as different
amounts of data for each loading batch (sets of 60, 600 and
6000 transactions for each load). The results for each tested
scenario are shown in Figures 11 and 12.

Figure 10. Query OLAP execution times using the 24/7 RTDW Tool with the real-world sales DW.

Figure 11. Query OLAP execution times using the 24/7 RTDW
Tool with the 1GB TPC-H database.

Figure 12. Query OLAP execution times using the 24/7 RTDW
Tool with the 10GB TPC-H database.

As seen, the query execution time overheads range from
5% (853/812 seconds) to 36% (1104/812 seconds), for the
1GB database, and from 6% (8644/8155 seconds) to 39%
(11335/8155 seconds) for the 10GB database. These are the
workload response time overhead costs for implementing
our proposed 24/7 RTDW, for the tested TPC-H scenarios.

V. RELATED WORK

From the early days, research in data warehousing has
mostly dealt with maintaining the DW in its traditional
periodical update setup [4, 25]. Related literature presents
tools and algorithms to load data in an off-line fashion. In a
different line of research, data streams [5, 10, 17] are an
alternative solution. However, research in data streams has
focused on topics concerning the front-end, such as on-the-

fly query computation without a systematic treatment of the
back-end issues of a DW [11]. Many solutions for enabling
RTDW have been proposed in the last two decades, both by
IT business corporations and the research community. Much
recent work dedicated to RTDW is focused on conceptual
ETL modelling. A large number of papers and technical
reports have been published concerning optimization of
conceptual and logical ETL scenarios and workflows [1, 21,
24]. However, they lack the presentation of concrete
specific ETL algorithms, along with their consequent OLTP
and OLAP performance issues. DW updating processes are
usually composed by a labor-intensive ETL workflow. To
deal with this workflow, specialized tools are available in
the market [7, 14, 15, 20, 22].

Nevertheless, not all transactional information needs to
be immediately dealt with in real-time decision making
requirements. We can define which groups of data are more
important to include rapidly in the DW and other groups of
data which can be updated in latter time. More recently, in
[9], the authors present an interesting architecture on how to
define the types of update and time priorities (immediate, at
specific time intervals or only on DW offline updates) and
respective synchronization for each group of transactional
data items. This has also been explained and discussed in
other recent publications [23]. In [23] the authors propose
using SQL INSERT-like loading instructions with bulk load
speed, taking advantage of in-memory databases as the data
structures for data integration in the DW.

As mentioned before, DW is the core back-end for
Business Intelligence (BI) [13]. The work presented in [6]
refers to both query execution and data integration in
analytical environments, discussing a comparison between
techniques for loading and querying data simultaneously. A
report published by Forrester Research [13] presents a

survey on ETL tools that look at enterprise DW as
information-as-a-service means, considers BEA Systems,
IBM and Oracle the leading companies in this field. The
most recent solutions are based on the micro-batch load of
small sets of data at the highest frequency possible, without
jeopardising OLAP performance.

The approach presented in this paper is similar to Aster
Data [27] in the sense of database duplication. Aster Data is
the first commercial DW with 24/7 availability. However,
their solution does not allow live data loading in the DW. In
spite of all the published research and commercial tools
available, as we mentioned earlier, none provides a concrete
solution or, at least, a way of using their proposals or
products for enabling RTDW on a 24/7 schedule, that is our
paper’s main contribution.

VI. CONCLUSIONS AND FUTURE WORK

Data warehousing are no longer seen as a task that is
physically separated from operational database systems and
performed at specific time slots only, but that is further
integrated into online systems operations. Indeed, data
warehousing is more and more done in real-time. In this
context, we have proposed a solution for the field area of
24/7 RTDW, maintaining the database online and available
for OLAP on a 24/7 schedule while continuously integrating
new data, and minimizing the impact in OLAP execution.
This is achieved using data structure replication and
mirroring, with our tool used as middleware between the
usually employed ETL tool and the databases. The proposed
schemas also act as fault tolerant mechanisms, potentially
increasing DW quality and disaster recovery procedures by
supplying an additional form of data replication.

Our proposal allows harvesting the benefits of seamless
batch and real-time integration, without disabling any ETL
procedure already in use by the enterprise DW. It takes
advantage of the fastest data insertion methods in databases,
just using frequent fast bulk loading or SQL-like INSERTs
from small dimensioned flat files. This allows us to state that
the apparent cost for enabling 24/7 RTDW according to our
methodology is relatively small and acceptable on behalf of
its users. The hardware costs involved in double storage data
seem to be the most significant negative aspect of our
solution, but in our opinion, these costs seem acceptable
when comparing with the gains of enabling 24/7 RTDW.

As future work, we intend to test our ideas in various
business contexts, namely in broader data volumes and
update frequencies, e-business, etc. The drawbacks pointed
out in our previous work [18] also need to be dealt with.
Another aspect that can improve data loading performance is
to use in-memory databases such as Oracle TimesTen [16]
and IBM SolidDB [8], which can be explored in our methods
for storing the temporary fact table’s data. We also intend to
extend the tool’s capabilities towards data extraction and
transformation, for developing an open source ETL suite.

REFERENCES
[1] Agrawal, H., Chafle, G., Goyal, S., Mittal, S., Mukherjea, S.: “An

Enhanced Extract-Transform-Load System for Migrating Data in
Telecom Billing”, Int. Conf. on Data Engineering (ICDE), 2008.

[2] Baer, H.: “On-Time Data Warehousing with Oracle Database 10g
– Information at the Speed of your Business”, Oracle Corporation,
Oracle White Paper, 2004.

[3] Bruckner, R. M., List, B., Schiefer, J.: “Striving Towards Near
Real-Time Data Integration for Data Warehouses”, Int. Conf. Data
W. and Knowledge Discovery (DAWAK), 2002.

[4] Bruckner, R. M., Tjoa, A. M.: “Capturing Delays and Valid Times
in Data Warehouses – Towards Timely Consistent Analyses”,
Journal of Intelligent Information Systems, 2002.

[5] Golab, L. et al.: “Stream Warehousing with DataDepot”, Int.
Conference on Management of Data (SIGMOD), 2009.

[6] Graefe, G.: “Fast Loads and Fast Queries”, International Conf. on
Data Warehousing and Knowledge Discovery (DAWAK), 2009.

[7] IBM Corporation: IBM DW Manager & Data Integration -
InfoSphere, www.ibm.com

[8] IBM Corporation: IBM SolidDB Memory DB, www.ibm.com
[9] Italiano, I. C., Ferreira, J. E.: “Synchronization Options for Data

Warehouse Designs”, IEEE Computer Magazine, 2006.
[10] Jain, N., Mishra, S., Srinivasan, A., Gehrke, J., Widom, J.,

Balakrishnan, H., Çetintemel, U., Cherniack, M., Tibbetts, R.,
Zdonik, S. B.: “Towards a Streaming SQL Standard”, Int. Conf.
Very Large Data Bases (VLDB), 1(2): 1379-1390, 2008.

[11] Karakasidis, A., Vassiliadis, P., Pitoura, E.: “ETL Queues for
Active Data Warehousing”, ACM SIGMOD Int. Workshop
Information Quality in Information Systems (IQIS), 2005.

[12] Kimball, R., Caserta, J.: The Data Warehouse ETL Toolkit, Wiley
Computer Pub., 2004.

[13] Kobielus, J.: “The Forrester Wave: Enterprise Data Warehousing
Platforms”, Forrester Research, Q1, 2009.

[14] Microsoft Corporation: Microsoft SQL Server & Microsoft SQL
Server Information Integration Services, www.microsoft.com

[15] Oracle Corporation: Oracle Database Server & Oracle Data
Integrator Enterprise Edition, www.oracle.com

[16] Oracle Corporation: Oracle TimesTen In-Memory Database,
www.oracle.com

[17] Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A.,
Frantzell, N.: “Meshing Streaming Updates with Persistent Data in
an Active Data Warehouse”, IEEE Transactions on Knowledge and
Data Engineering, 20(7): 976-991, 2008.

[18] Santos, R. J., Bernardino, J.: “Real-Time Data Warehouse Loading
Methodology”, International Database Engineering and
Applications Symposium (IDEAS), 2008.

[19] Santos, R. J., Bernardino, J.: “Optimizing Data Warehouse
Loading Procedures for Enabling Useful-Time Data
Warehousing”, Int. Database Eng. App. Symp. (IDEAS), 2008.

[20] SAS Institute, Inc: SAS Enterprise ETL Server & SAS ETL Studio,
www.sas.com

[21] Simitsis, A., Vassiliadis, P.: “A method for the mapping of
conceptual designs to logical blueprints for ETL processes”,
Decision Support Systems (45) 22–40, 2008.

[22] Talend, Open Source ETL Solution, www.talend.com
[23] Thomsen, C., Pedersen, T. B., Lehner, W.: “RiTE: Providing On-

Demand Data for Right-Time Data Warehousing”, International
Conference on Data Engineering (ICDE), 2008.

[24] Vassiliadis, P., et al.: “A generic and customizable framework for
the design of ETL scenarios”, Information Systems, 30(7), 2005.

[25] Yang, J., Widom, J.: “Incremental Computation and Maintenance
of Temporal Aggregates”, I. Conf. Data Engineering (ICDE), 2001.

[26] N. Yuhanna, and M. Gilpin, “The Forrester Wave: Information-As-
A-Service”, Forrester Research Inc, Q1 2008.

[27] Aster Data, Aster Data nCluster: “Always On” Availability, Aster
Data Systems, 2009.

[28] Transaction Processing Council, Decision Support Benchmark
TPC-H, www.tpc.org/tpch/

