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Abstract - Technological evolution has redefined many business 
models. Many decision makers are now required to act near 
real-time, instead of periodically, given the latest transactional 
information. Decision-making occurs much more frequently 
and considers the latest business data. Since data warehouses 
(DWs) are the core of business intelligence, decision support 
systems need to deal with 24/7 real-time requirements. Thus, 
the ability to deal with continuous data loading and decision 
support availability simultaneously is critical, for producing 
continuous actionable knowledge. The main challenge in this 
context is to efficiently manage the DW’s refreshment, when 
data sources change, to recapture consistency and accuracy 
with those sources, while maintaining OLAP availability and 
database performance. This paper proposes a simple, fast and 
efficient solution based on database replication and temporary 
tables to change a traditional enterprise DW into a real-time 
DW, enabling continuous data loading and OLAP availability 
on a 24/7 schedule. Experimental evaluations using a real-
world DW and the TPC-H decision support benchmark show 
its advantages and analyze its impact in OLAP performance. 

Keywords: Real-time data warehousing, ETL, Continuous 
data loading, OLAP, Availability, Actionable knowledge 

I.  INTRODUCTION 

Data warehouses (DWs) are the main decision-support 
assets in many business fields. Using data mining on DWs 
enables producing business knowledge. DWs typically store 
the complete business history, producing decision support 
information by using On-Line Analytical Processing 
(OLAP) tools. Transactional systems (TS) store only current 
information for supporting business transactions. Extraction, 
Transformation and Loading (ETL) tools are used for 
extracting TS business data, transforming and cleansing it 
into an analytical format, and finally loading it into the DW 
database(s). It has been well accepted that DW databases 
have been updated periodically, typically in a daily, weekly 
or even monthly basis [12]. This update policy was defined 
as common practice due to two major assumptions:  

1) Since it stores the whole business history, it has huge 
tables and complex optimization data structures (such as 
indexes, partitions, etc). Executing data updating procedures 
continuously and frequently (similar to TS), while 
simultaneously executing OLAP, would create huge 
bottlenecks, due to time and resource consumption implied 
in executing those actions simultaneously; and  

2) Business decisions were made on a daily, weekly or 
monthly basis, dismissing recent real-time business data.  

This type of update policy meant that DW data was 
never up-to-date; transactional data saved between those 
updates was not included in its databases, excluding the 
most recent transactional data from OLAP results. Today, 
technological evolution has pushed forward and redefined 
business models operating on a 24/7 schedule, requiring 
decision makers to act almost immediately after the original 
transactional data is written, instead of making decisions on 
a daily or weekly basis [3, 26]. A paper by Oracle [2] states 
that the “Holy Grail” of data warehousing is to support 
analysis at the speed of the business, affirming the concept 
of “on-time information” as having information available 
whenever it is needed. This means that decision-making 
occurs much more frequently and continuously.  

DW refreshment (integration of new data) has 
traditionally been done in an offline fashion. This meant that 
while updating the DW, OLAP applications could not 
access any data. Since DWs are currently the core back-end 
of decision support and Business Intelligence (BI) systems 
[13], they need to deal with 24/7 real-time enterprise 
requirements, coping with both continuous data integration 
and decision support availability in these business scenarios. 
In some scenarios, update delays greater than a few seconds 
or minutes may jeopardize the whole system’s usefulness.  

Thus, the 24/7 real-time enterprise requires a decision 
support tool able to continuously acquire and process the 
latest business data, supplying business knowledge at all 
times for aiding decision making that can take effect while 
the business transactions occur. For example, airlines and 
government agencies need to be able to analyze the most 
current information when detecting suspicious passengers or 
potentially illegal activity. Fast-paced changes in financial 
markets may make personalized suggestions on a 
stockbroker's website obsolete by the time they are viewed. 
Effectively, supplying decision support in useful time is 
what we consider actionable knowledge. 

Our work focuses on the DW perspective, and for that 
reason, our contribution is a simple and easy-to-implement 
solution that enables efficient 24/7 continuous data loading 
in DW, while simultaneously keeping the database available 
for OLAP execution at all times, i.e., enabling everlasting 
availability. Much research on Real-Time DW (RTDW) has 
been published, but it has mainly focused on ETL workflow 
or data integration issues, lacking OLAP performance and 
availability aspects. We focus on Loading procedures, using 
a middleware tool to accomplish our aims, which uses fast 



data insertion techniques for minimizing impact in database 
performance. Issues on Extracting and Transforming 
transactional data are not within the scope of this paper. Our 
tool acts as a data manager between the DW ETL tool and 
its databases, accomplishing three functions: managing the 
DW database schemas, updating the databases, and aiding 
OLAP querying against them. 

The remainder of this paper is organized as follows. In 
Section 2, we present requirements for 24/7 RTDW and 
explain our methodology. Section 3 presents an experimental 
evaluation of our proposal. Section 4 presents background 
and related work in RTDW, and the final section summarizes 
our conclusions and actions for future work. 

II. DESIGNING A 24/7 REAL-TIME DATA WAREHOUSE 

One of the most difficult parts of building any DW is the 
process of extracting, transforming, cleansing, and loading 
the data from the source system. According to [12], 70% of 
the warehouse implementation and maintenance effort is 
spent on ETL procedures. Real-time ETL brings additional 
challenges. Almost all ETL tools and systems operate in 
batch mode, assuming data becomes available as some sort 
of extract file on a certain schedule, usually nightly, weekly, 
or monthly. Then, the system transforms and cleanses the 
data and loads it into the DW. This process typically 
involves DW downtime, so users are unable to access it 
while the load takes place. In what concerns DW, near zero 
latency between TS and OLAP systems consists on ensuring 
continuous data integration in the DW and guaranteeing that 
decision makers may request decision support information 
at all times [3]. Therefore, in RTDW, we need to cope with 
two radical data state changes:  

1) Performing continuous data update actions, which 
should mostly concern row insertions;  

2) These updates must be performed simultaneously with 
OLAP execution, which – due to its new real-time nature – 
will probably be requested much more often.  

This implies that the DW should be able to cope with 
database access failure, involving fault tolerance procedures 
to ensure its continuous availability. Given the purpose of 
the 24/7 real-time DW, besides the needs and issues behind 

traditional periodic updated DW and used ETL tools, the 
main new requirements that must be considered are: 

• Loading the new data into the DW databases as soon 
as possible, as quickly and as frequently as possible; 

• Minimizing the impact in OLAP performance due to 
the simultaneous execution of data update procedures; 

• Assuring OLAP is always possible and available on a 
24/7 schedule/strategy. 

Figure 1 shows a classic DW architecture, illustrating 
the data flow between transactional operational systems and 
the DW databases and OLAP users and applications. The 
Database Administrator (DBA) is responsible for managing 
and monitoring the ETL processes, as well as the databases.  

To use our tool, the DW database schemas need to be 
adapted, using a replica of each fact table, empty of contents 
and without any optimization structure such as primary keys 
or referential integrity constraints, for loading the new 
factual DW data, as described in detail in previous work 
[18, 19]. We shall now summarily explain how this 
adaptation should be made, as explained in [18, 19]. 

Suppose a simple sales DW, with a schema as shown in 
Figure 2; two dimensional tables (Store and Customer, 
representing business descriptor entities) and one fact table 
(Sales, storing business facts aggregated from 
transactions). To simplify the figure, the Date dimension is 
not shown. This DW stores the sales value per store, per 
customer, and per day. Primary keys are in bold, while the 
referential integrity constraints with foreign keys are shown 
in italic. The factual attribute S_Value is additive. This 
property in fact data is very important for our methodology, 
as we shall demonstrate further on. For the data area 
concerning DW schema, we adopt the following method: 

DW schema adaptation for supporting Real-Time DW: 
Creation of a structural replica of each original table of the DW 
that could eventually receive new data. These tables (referred 
also as temporary tables) are created empty of contents, with 
no defined indexes, primary key, or constraints of any kind, 
including referential integrity. For each table, an extra attribute 
is created, for storing a unique sequential identifier related to 
the insertion of each row within the temporary tables. 

Figure 3 shows the sub-schema to be appended to the 
original schema. 

 
Figure 1. A classical data warehouse architecture.  



 
Figure 2. Sample sales data warehouse schema. 

A temporary table is created for each original schema 
table. The unique sequential identifier attribute in each 
temporary table (xTmp_Counter) records the sequence in 
which each row is appended in the database. This allows 
identifying the exact sequence for each new inserted row, 
useful for restoring prior data states in disaster recovery 
procedures, and also for discarding dimensional rows which 
have more recent updates. For instance, if one customer has 
had two updates in the OLTP systems which, consequently, 
lead to the insertion of two new rows in the temporary table 
CustomerTmp, only the most recent one is relevant. This is 
done by considering as most recent the row with highest 
CTmp_Counter for that same customer (CTmp_CustKey). 

CustomerTmp

CTmp_CustKey
CTmp_Name
CTmp_Address
CTmp_PostalCode
CTmp_Phone
CTmp_EMail
CTmp_Counter

SalesTmp

STmp_StoreKey
STmp_CustomerKey
STmp_Date
STmp_Value
STmp_Counter

StoreTmp

StTmp_StoreKey
StTmp_Description
StTmp_Address
StTmp_PostalCode
StTmp_Phone
StTmp_EMail
StTmp_Manager
StTmp_Counter

 

Figure 3. Sample sales DW appended sub-schema. 

As demonstrated in [18,19], making the factual attributes 
additive is crucial for our solution, in spite of eventual 
drawbacks, for enabling the update of DW fact tables just by 
inserting new records, instead of using UPDATE or 
DELETE actions. However, Kimball refers in [12] that 
many ETL tools use a UPDATE ELSE INSERT function for 
loading data, considering this as a performance killer. With 
our method, any appending, updating or eliminating factual 
data tasks on OLTP systems only generate as new record 
insertions in the DW, allowing to minimize row, block and 
table locks and other concurrent data access problems. 
Physical database tablespace fragmentation is also avoided, 
once there is no deletion of data, only sequential increments. 
INSERT is much faster than UPDATE or DELETE row 
operations, since these need to previously perform a lookup 

in order to know which rows to update, allowing us to state 
that our method uses the fastest methods to refresh the DW 
[12, 19]. In the solution proposed in our paper, all 
dimensional data is to be updated or inserted directly in the 
existing tables. The definition of which attributes are 
additive and which are not should be the responsibility of 
the DW design team. According to [11], the most useful 
facts in a DW are numeric and additive. Our method for 
data loading uses the simplest method for writing data: 
appending new records. Any other type of writing method 
needs to execute more time consuming and complex tasks. 

Regarding the sample sales DW of Figures 2 and 3, we 
shall now describe an example for loading new data. Figure 
4 presents the insertion of a row in the data warehouse 
temporary fact table for the recording of a sales transaction 
of value 100 which took place at 2008-05-02 in store with 
St_StoreKey = 1 related to customer with C_CustKey 
= 10, identified by STmp_Counter = 1001. Meanwhile, 
other transactions occurred, and the organization’s OLTP 
system recorded that instead of a value of 100 for the 
mentioned transaction, it should be 1000. The rows in the 
temporary fact table with STmp_Counter = 1011 and 
STmp_Counter = 1012 reflect this modification of values. 
The first eliminates the value of the initial transactional row 
and the second has the new real value, due to the additivity 
of the STmp_Value attribute.  

Many issues involving the use of ETL tools do not focus 
only on performance problems (as would be expected), but 
also in aspects such as complexity, practicability and price 
[12]. By using only record insertion procedures to enable 
continuous data integration, using empty or small sized 
tables without any kind of constraint or attached physical 
file related to it, we guarantee the simplest and fastest 
logical and physical support for achieving our goals [12]. 

The fact that the only significant change in the logical 
and physical structure of the DW’s schema is the simple 
adaptation shown in Figure 3, allows implementing ETL 
procedures in a manner to maximize its operability. Data 
loading may be done by simple standard SQL instructions 
or DBMS batch loading software such as SQL*Loader [16], 
with a minimum of complexity. There is no need for 
developing complex routines for updating the data area, 
since the needed data is easily accessible, independently 
from the used ETL tools. 

 
Figure 4. Partial contents of temporary fact table SalesTmp with exemplification record insertions.



Since the data schemas are modified, OLAP queries 
need to be adapted in order to take advantage of the most 
recent integrated data, which resides in the temporary tables. 
For the sample sales DW, consider the following query, 
calculating the total revenue per store in the last 7 days: 
SELECT S_StoreKey,  
       Sum(S_Value) AS Last7DaysSV 
FROM Sales  
WHERE S_Date>=SystemDate()-7  
GROUP BY S_StoreKey 

To take advantage of our method and include the most 
recent data in the OLAP query response, queries should be 
rewritten taking under consideration the following rule: the 
FROM clause should join all rows from the required 
original and temporary tables with relevant data, excluding 
all fixed restriction predicate values from the WHERE 
clause whenever possible. The modification for the prior 
instruction is illustrated below. It can be seen that the 
relevant rows from both issue tables are joined for supplying 
the query answer, filtering the rows used in the resulting 
dataset given its restrictions in the original instruction. 
SELECT S_StoreKey,  
       Sum(S_Value) AS Last7DaysSV 
FROM (SELECT S_StoreKey, S_Value  
      FROM Sales 
      WHERE S_Date>=SystemDate()-7)  
      UNION ALL 
     (SELECT STmp_StoreKey, STmp_Value  
      FROM SalesTmp 
      WHERE STmp_Date>=SystemDate()-7) 
GROUP BY S_StoreKey 

An interesting and relevant aspect of the proposed 
methodology is that if users wish to query only the most 
recent information, they only need to do so against the 
temporary replicated tables. For instance, if the temporary 
tables are meant to be filled with data for each business day 
before they are recreated, and we want to know the sales 
value of the current day, per store, the adequate response 
could be obtained from the following SQL instruction: 
SELECT STmp_StoreKey,  
       Sum(STmp_Value) AS TodaysValue 
FROM SalesTmp  
WHERE STmp_Date=SystemDate() 
GROUP BY STmp_StoreKey 

This way, our method aids in processing the DW’s most 
recent data, since this kind of data is stored within the 
temporary replica tables, assumed to be small in size. This 
minimizes CPU, memory and I/O costs involved in most 
recent data query processing. Theoretically, this would 
enable it to deliver the most recent decision making 
information while the business transaction itself occurs.  

In our previous work, we also point out other advantages 
and disadvantages of our loading method, which are not 
included here due to lack of space, since the current paper is 
focused on engineering its applications. The performance 
and functional issues of this method for DW data loading 
are thoroughly presented and discussed in the mentioned 
previous work [18, 19]. Our data loading and database 
schema managing procedures lie between the used ETL tool 
and the DW databases. Since the original database schemas 
need to be modified, we also supply methods for querying 
the new schemas, making the OLAP querying procedure 
public for DW end users and applications. The proposed 
architecture for our 24/7 real-time DW is shown in Figure 5. 
 To enable 24/7 OLAP availability, we use the following 
method: every DW database schema will be replicated, 
creating exact duplicates of all their components (tables, 
indexes, materialized views, etc). Both databases will be 
updated simultaneously by our 24/7 RTDW Tool, but only 
one at a time will be made available for OLAP users and 
applications.  

Since our data loading is done mainly into fact table 
replicas lacking performance optimization structures of any 
kind, as their size increases, OLAP performance decreases. 
This happens until it is time to reoptimize the system, which 
is done by transferring the data in the fact table replicas into 
the original ones, as explained in [18, 19], recreating the fact 
tables replicas empty of contents once more, and rebuilding 
the performance optimization structures, for the database 
which is offline to OLAP users. After this, the reoptimized 
database is made available to OLAP users, switching places 
with its duplicate, and vice-versa, continuously rotating the 
availability of both databases. The next section explains 
how 24/7 RTDW Tool works and presents its components. 

 
Figure 5. The 24/7 real-time data warehouse architecture. 



III. THE 24/7 REAL-TIME DATA WAREHOUSE TOOL 

Our 24/7 RTDW Tool has 3 main components: the 24/7 
RTDW Tool Manager, the Loader and the Query Executor. 
The first manages the DW database schemas and supplies 
an interface for monitoring loading tasks performed by the 
Loader. The Loader is responsible for refreshing the DW 
databases according to the methodology presented in [18, 
19], briefly explained in section II. It also checks if all data 
has been loaded and completes all loading tasks that did not 
finish with success. The Query Executor will redirect 
querying to the database that is available for the DW end 
users and applications. To demonstrate our methodology, in 
Figure 6 we present a data schema of a real-world 
commercial sales enterprise DW, having four dimensional 
tables (Time, Customers, Products and Promotions, 
representing business descriptor entities) and one fact table 
(Sales, storing business measures aggregated from 
transactions). In what concerns the fact table, S_SaleID 
and S_LineNumber are primary key columns, S_TimeID, 
S_CustomerID, S_ProductID and S_PromotionID 
foreign keys for referencing the dimensional tables. 
Columns S_ShipToCost, S_SalesAmount, S_Quantity 
and S_Profit are additive factual attributes, while 
S_SalesMean and S_Tax are descriptive attributes. 

Figure 7 shows the 24/7 RTDW Tool, along with the 
related objects and people that interact with it. DB1 and 
DB2 represent the duplicated database schemas, with a 
temporary replica table of the Sales fact table, named 
SalesTmp. Our methodology requires the ETL tool to 
produce flat files for updating each table of the DW. This 
requirement should be easy to fulfill, since all ETL tools 
we know are able to do this [7, 14, 15, 22]. The 24/7 RTDW 

Tool Loader will then use those flat files for updating the 
tables in the DW, using bulk loading whenever possible (in 
order to achieve the highest magnitude of speed) or SQL 
INSERTs (for instance, Oracle and MySQL allow using 
high speed bulk loaders, SQL*Loader and Load Data Infile, 
respectively, for appending new data). The following 
subsections explain the 24/7 RTDW Tool Database and 
each of the tools’ components. 

 
Figure 6. Real-world commercial sales DW schema. 

 
Figure 7. The 24/7 RTDW Tool middleware scenario (interaction and data flow). 



A. The Real-Time DW Tool Database 
The 24/7 RTDW Tool Database represents the data 

structures for managing our tool’s functionality. Its schema 
is shown in Figure 8. The DB table is for defining the 
access to each DW database to be managed, defining its 
DBMS (Oracle, MySQL, SQL Server, etc), the ODBC 
driver name to access the database, DBMS database service 
name, DBA username and password. There are also fields 
concerning database reoptimization and OLAP usage: 

RB_ReoptimizingDB, which indicates the number of 
the database that is currently being reoptimized (1 or 2), or 
a zero value if the database isn’t reoptimizing; 

RB_ReoptType and RB_ReoptLimit which indicates 
how the database will be reoptimized (after loading every N 
transactions, after every N seconds, or every day at N 
o’clock); and  

RB_CurrentDB that indicates which is the currently 
available database for OLAP querying (1 or 2).  

Tables DB_Indexes and DB_MatViews will store the 
names and stored SQL scripts for all the indexes and 
materialized views to be rebuilt, respectively, belonging to 
each database in DB, whenever that database’s 
reoptimization procedure is executed. The DB_Tables 
table is for defining each table in each database. Each table 
has a unique identifier, T_ID, and is characterized by its 
name, T_TableName, and type, T_TableType (where D 
means dimensional and F means it is a fact table). It also 
has two flag fields, T_LoadingDB and T_QueryingDB 
which will indicate, in real-time, if the table is being 
currently updated by the 24/7 RTDW Tool Loader or 
queried by the Query Executor. These flags are required for 
checking routines, such as if they are being used for OLAP 
or by database reoptimization procedures, for example.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The 24/7 real-time data warehouse tool database. 



Tables Transactions and Transactions_Tables 
play a main role in our loading methodology, acting as 
master and detail tables for defining a set of tables, which 
are all interconnected for a given transaction. For example, 
a typical star schema has a central fact table referenced 
with all dimensional tables belonging to it, similar to the 
schema in Figure 6. Each sales transaction is cross 
referenced with its foreign key tables (Customers, 
Products, Promotions and Time). Before a sales 
transaction is loaded, all foreign dimensional key values 
need to be checked to verify if they already exist in the 
database, ensuring referential integrity is not compromised. 
Therefore, a record in Transactions is created to define a 
transaction, giving a unique identifier value in TX_ID and 
the timespan between each load using TX_LoadFrequency 
(in seconds). In table Transactions_Tables we define 
which tables belong to each transaction defined in 
Transactions. In the former table, we indicate the 
physical address where the ETL flat file will be for loading, 
TXT_LoadFile, as well as the physical address of the log 
file for reporting loading success status, TXT_LogFile, 
and the control file for bulk loading, TXT_ControlFile, 
(the CTL file is used by Oracle bulk loader, SQL*Loader, 
for instance, comprising the data column and format 
instructions for the bulk loader), along with the number of 
fields to update per row, TXT_NumberOfValues. Field 
TXT_FileNumber acts as a unique counter for each 
complete flat file upload, for load checking purposes. 

Table Dim_Tables_Keys contains a definition of 
which columns compose each dimensional tables’s (defined 
in DB_Tables) primary key. Dim_Tables_Keys 
references each dimensional table in DB_Tables, 
containing all the existing primary key values. This is done 
for checking each dimensional table data upload done by 
the 24/7 RTDW Tool Loader, where an SQL UPDATE is 
executed on the DW dimensional table if the dimensional 
primary key value already exists in a reference table, 
otherwise an SQL INSERT is done. In practice, using the 
schema from Figure 6, when the Loader receives an update 
for dimensional table Customers where 
S_CustomerID equals to 1, it checks for the value 1 in 
the reference table by DTK_TableID corresponding to the 
Customers table defined by TXT_TableID. If it is 
found, the customer already exists in Customers, and 
therefore executes an UPDATE, otherwise the record is 
INSERTed. On the other hand, before loading a Sales 
fact table flat file, a cross check is done for each 
dimensional table to see if the referring foreign key value 
exists, using Dim_Tables_Keys. If it does exist, this 
means the dimensional record to which the fact record 
refers to does not exist yet in the DW, and therefore is set 
aside to be subsequently loaded. This guarantees that 
referential integrity is assured. 

Tables Stat_Loads and Stat_Reopts are included 
for measuring the time spent in each complete transactional 
data load and database reoptimization, respectively, 
allowing to monitor the tool’s performance for optimization 
purposes. For instance, Stat_Loads table is useful for 
detecting if overlapping data loading threads are occurring 
for a certain table/transaction. If any value of 
SL_LoadTime is greater than TX_LoadInterval for a 
certain table/transaction, at least one data load procedure 
for that table was still executing while another had already 
started. Monitoring this, TX_LoadInterval is easy to tune 
for optimizing load performance, by what we have shown 
in [24], meaning that TX_LoadInterval’s value should 
be increased for that table/transaction. The time spent in 
database reoptimization, SR_ReoptTime, can also aid the 
DBA to decide how often to reoptimize each database, 
given in DB_ReoptType and DB_ReoptLimit. 

 Table Transactions_Tables_Columns is used 
for defining all fields that belong to each table managed by 
the 24/7 RTDW Tool. The tool’s database is managed by 
the DBA, through the 24/7 RTDW Tool Manager.  

Supposing we use the tool for the schema shown in 
Figure 6, for loading transactions every 30 seconds, the 
values for the main tables in the 24/7 RTDW Tool Database 
would be similar to what is shown in Figure 9.  

B. The 24/7 Real-Time Data Warehouse Manager 
This component allows the DBA to manage the tool’s 

database and monitor data loading executions, according to 
what we have previously described. It also allows the DBA 
to have an option for building the original DW schema 
duplicates and setting up all the values, when the tool is to 
be used for the first time. This component is also 
responsible for reoptimizing the databases. 

C. The 24/7 Real-Time Data Warehouse Loader 
This component is responsible for executing the DW 

refreshment procedures, loading new data into its OLAP 
databases. All actions are executing according to what has 
been explained in the previous subsection A. 

D. The 24/7 Real-Time Data Warehouse Query Executor 
This component handles the queries issued by DW end 

users and OLAP tools, selecting which replicated database 
to use. It simply redirects the requested queries, according to 
the tool’s database referring which is the available database 
for querying, and supplies the results to the query origin. It 
will also mark the flag field, T_QueryingDB, for each 
table, when it initiates or finishes querying. 

IV. EXPERIMENTAL EVALUATION 

To evaluate our tool, we used a real-world sales DW, 
based on the schema in Figure 6. The size of the sales DW 
is more than 2GB, corresponding to one year of 
commercial data, as shown in Table I. To build it, we used 
Oracle 11g DBMS on a 2.8 GHz Pentium IV CPU, with 1 
GByte RAM, 7200 rpm hard disk. 



Table DB 
 
 
Table DB_Tables            Table DB_Indexes 
 
 
 
 
 
 
 
Table Dim_Tables_Keys 
 
 
 
 
 
Table Transactions 
 
 
 
Table Transactions_Tables 
 
 
 
 
 

Figure 9. The 24/7 Real-Time DW Tool Database main tables for the Sales DW (loading every 30 seconds).

To obtain results for decision making, a set of 12 OLAP 
queries was selected. These queries represent a sample of 
typical decision making information, such as customer 
product and promotion sales daily, monthly, quarterly and 
annually values. This set of queries represents a typical real-
world workload, with a diversity of table joins, filtering, 
grouping and sorting actions, against the union of historical 
and recent business data. 

TABLE I. Dimensional features of the Sales Data Warehouse 
 Times Customers Products Promotions Sales 

Number 
of Rows 8 760 250 000 50 000 89 812 31M 

Storage 
Size (MB) 0,12 90 7 10 1 927 

We have measured the feasibility and performance of the 
OLAP query workload execution in scenarios with 1, 2, 4, 
8, 16 and 32 concurrent users, while simultaneously 
updating the database with six different amounts of 
transactions on each loading procedure. The Oracle 
SQL*Loader was used every 15 seconds for inserting 
batches of 174, 348, 696, 1392, 2784, and 5568 
transactions, each time. Inserting this amount of transactions 
every 15 seconds corresponds to a volume of 1, 2, 4, 8, 16 
and 32 million transactions for the DW, on a 24-hour 
schedule.  

Figure 10 shows experimental evaluation results, based 
on the OLAP workload execution time for each of the 
scenarios. As shown, the increase of execution time ranged 
from a minimal overhead of 4,55%, representing an increase 

of 35 seconds (from 764 to 799) for the scenario with only 1 
OLAP user executing the workload while inserting 134 
transactions every 15 seconds, to a maximum overhead of 
42,82%, representing an increase of 5809 seconds (from 
13566 to 19375) for the scenario with 32 users 
simultaneously executing the OLAP workload while 
inserting 5568 transactions every 15 seconds. This is the 
price to pay to build an effective 24/7 RTDW that better 
answers the needs of decision makers for obtaining near 
real-time continuous data integration and ongoing OLAP 
availability using our proposal, for the tested sales DW 
scenarios. 

We also tested our solution using the 1GB and 10GB 
scales of the TPC-H benchmark [28], which represents a 
decision support DW, using the same software and hardware 
as for the Sales DW. A workload composed of all TPC-H 
queries using its fact table (queries 1, 3, 5, 6, 7, 8, 9, 10, 12, 
14, 15, 17, 18, 19 and 20 of the benchmark) was used. The 
standard full query workload execution time measured for 
comparison, i.e., without performing continuous data load, 
is 812 and 8155 seconds, for the 1GB and 10GB TPC-H 
database, respectively. Several rates of data loading were 
tested (loading intervals of 10, 30 and 60 seconds between 
each batch of load transactions), as well as different 
amounts of data for each loading batch (sets of 60, 600 and 
6000 transactions for each load). The results for each tested 
scenario are shown in Figures 11 and 12.  

 



 
Figure 10. Query OLAP execution times using the 24/7 RTDW Tool with the real-world sales DW.

 
Figure 11. Query OLAP execution times using the 24/7 RTDW 
Tool with the 1GB TPC-H database. 

 
Figure 12. Query OLAP execution times using the 24/7 RTDW 
Tool with the 10GB TPC-H database. 

As seen, the query execution time overheads range from 
5% (853/812 seconds) to 36% (1104/812 seconds), for the 
1GB database, and from 6% (8644/8155 seconds) to 39% 
(11335/8155 seconds) for the 10GB database. These are the 
workload response time overhead costs for implementing 
our proposed 24/7 RTDW, for the tested TPC-H scenarios. 

V. RELATED WORK 

From the early days, research in data warehousing has 
mostly dealt with maintaining the DW in its traditional 
periodical update setup [4, 25]. Related literature presents 
tools and algorithms to load data in an off-line fashion. In a 
different line of research, data streams [5, 10, 17] are an 
alternative solution. However, research in data streams has 
focused on topics concerning the front-end, such as on-the-

fly query computation without a systematic treatment of the 
back-end issues of a DW [11]. Many solutions for enabling 
RTDW have been proposed in the last two decades, both by 
IT business corporations and the research community. Much 
recent work dedicated to RTDW is focused on conceptual 
ETL modelling. A large number of papers and technical 
reports have been published concerning optimization of 
conceptual and logical ETL scenarios and workflows [1, 21, 
24]. However, they lack the presentation of concrete 
specific ETL algorithms, along with their consequent OLTP 
and OLAP performance issues. DW updating processes are 
usually composed by a labor-intensive ETL workflow. To 
deal with this workflow, specialized tools are available in 
the market [7, 14, 15, 20, 22].  

Nevertheless, not all transactional information needs to 
be immediately dealt with in real-time decision making 
requirements. We can define which groups of data are more 
important to include rapidly in the DW and other groups of 
data which can be updated in latter time. More recently, in 
[9], the authors present an interesting architecture on how to 
define the types of update and time priorities (immediate, at 
specific time intervals or only on DW offline updates) and 
respective synchronization for each group of transactional 
data items. This has also been explained and discussed in 
other recent publications [23]. In [23] the authors propose 
using SQL INSERT-like loading instructions with bulk load 
speed, taking advantage of in-memory databases as the data 
structures for data integration in the DW. 

As mentioned before, DW is the core back-end for 
Business Intelligence (BI) [13]. The work presented in [6] 
refers to both query execution and data integration in 
analytical environments, discussing a comparison between 
techniques for loading and querying data simultaneously. A 
report published by Forrester Research [13] presents a 



survey on ETL tools that look at enterprise DW as 
information-as-a-service means, considers BEA Systems, 
IBM and Oracle the leading companies in this field. The 
most recent solutions are based on the micro-batch load of 
small sets of data at the highest frequency possible, without 
jeopardising OLAP performance.  

The approach presented in this paper is similar to Aster 
Data [27] in the sense of database duplication. Aster Data is 
the first commercial DW with 24/7 availability. However, 
their solution does not allow live data loading in the DW. In 
spite of all the published research and commercial tools 
available, as we mentioned earlier, none provides a concrete 
solution or, at least, a way of using their proposals or 
products for enabling RTDW on a 24/7 schedule, that is our 
paper’s main contribution. 

VI. CONCLUSIONS AND FUTURE WORK 

Data warehousing are no longer seen as a task that is 
physically separated from operational database systems and 
performed at specific time slots only, but that is further 
integrated into online systems operations. Indeed, data 
warehousing is more and more done in real-time. In this 
context, we have proposed a solution for the field area of 
24/7 RTDW, maintaining the database online and available 
for OLAP on a 24/7 schedule while continuously integrating 
new data, and minimizing the impact in OLAP execution. 
This is achieved using data structure replication and 
mirroring, with our tool used as middleware between the 
usually employed ETL tool and the databases. The proposed 
schemas also act as fault tolerant mechanisms, potentially 
increasing DW quality and disaster recovery procedures by 
supplying an additional form of data replication.  

Our proposal allows harvesting the benefits of seamless 
batch and real-time integration, without disabling any ETL 
procedure already in use by the enterprise DW. It takes 
advantage of the fastest data insertion methods in databases, 
just using frequent fast bulk loading or SQL-like INSERTs 
from small dimensioned flat files. This allows us to state that 
the apparent cost for enabling 24/7 RTDW according to our 
methodology is relatively small and acceptable on behalf of 
its users. The hardware costs involved in double storage data 
seem to be the most significant negative aspect of our 
solution, but in our opinion, these costs seem acceptable 
when comparing with the gains of enabling 24/7 RTDW.  

As future work, we intend to test our ideas in various 
business contexts, namely in broader data volumes and 
update frequencies, e-business, etc. The drawbacks pointed 
out in our previous work [18] also need to be dealt with. 
Another aspect that can improve data loading performance is 
to use in-memory databases such as Oracle TimesTen [16] 
and IBM SolidDB [8], which can be explored in our methods 
for storing the temporary fact table’s data. We also intend to 
extend the tool’s capabilities towards data extraction and 
transformation, for developing an open source ETL suite. 
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