
A Data Masking Technique for Data Warehouses
Ricardo Jorge Santos
CISUC – DEI – FCTUC
University of Coimbra

Coimbra, Portugal

lionsoftware.ricardo@gmail.com

Jorge Bernardino
CISUC – DEIS – ISEC

Polytechnic Institute of Coimbra
Coimbra, Portugal

jorge@isec.pt

Marco Vieira
CISUC – DEI – FCTUC
University of Coimbra

Coimbra, Portugal

mvieira@dei.uc.pt

ABSTRACT
Data Warehouses (DWs) are the enterprise’s most valuable asset
in what concerns critical business information, making them an
appealing target for attackers. Packaged database encryption
solutions are considered the best solution to protect sensitive data.
However, given the volume of data typically processed by DW
queries, the existing encryption solutions heavily increase storage
space and introduce very large overheads in query response time,
due to decryption costs. In many cases, this performance
degradation makes encryption unfeasible for use in DWs. In this
paper we propose a transparent data masking solution for
numerical values in DWs based on the mathematical modulus
operator, which can be used without changing user application
and DBMS source code. Our solution provides strong data
security while introducing small overheads in both storage space
and database performance. Several experimental evaluations
using the TPC-H decision support benchmark and a real-world
DW are included. The results show the overall efficiency of our
proposal, demonstrating that it is a valid alternative to existing
standard encryption routines for enforcing data confidentiality in
DWs.

Keywords
Data security, Data confidentiality, Data privacy, Encryption,
Data masking, Data warehousing.

1. INTRODUCTION
Data confidentiality focuses on protecting data from unauthorized
disclosure. Currently, data is a major asset for any enterprise, not
only for knowing the past, but also for aiding today’s business or
predicting future trends [6, 15]. Given its decision support nature,
Data Warehouses (DWs) translate data into business knowledge,
providing information for adding business value. Consequently,
DWs are the core of enterprise sensitive data. Unfortunately, this
makes them a major target for attackers [29]. Consequently,
efficiently securing sensitive data has become an imperative
concern in many enterprises [17, 29].

Data used for analyzing business performance is mostly stored in
specific attributes, called facts. Facts are stored in fact tables,

which typically take up at least 90% of DW storage space [14].
To protect those attributes, data masking actions (also called data
obfuscation, i.e., changing data values so that their real values are
not known) and encryption techniques are widely used to enforce
the confidentiality of data.

Encryption at the database level has proved to be the best method
to protect sensitive data and deliver performance [16, 23].
However, since DWs are usually huge, with millions or billions of
rows in their fact tables, and user queries are typically ad hoc and
access large amounts of data, encryption overheads are a major
concern [4]. Although encryption solutions are efficient in their
security purpose, they introduce several key costs:

• Extra storage space of encrypted data, which is usually a
considerable overhead, given the typically large storage space
size occupied by DW databases;

• Time and resources needed for encrypting sensitive data; and

• Overhead in query response time and allocated resources for
decrypting data to process queries, probably the most
significant drawback for using encryption in DWs.

As demonstrated throughout our paper, these overheads imply
that the standard encryption algorithms provided by current
DBMS dramatically degrade database performance, a critical
issue in data warehousing. This ultimately jeopardizes their
usefulness. Thus, developing a data masking/encryption strategy
for DWs must balance between the requirements for security and
desire for high performance [10, 16, 19, 27].

In this paper, we describe and analyze the currently available
masking and encryption techniques at the database level. We
thoroughly discuss the issues involving their use in what concerns
database performance and requirements from a data warehousing
perspective. We show that they are extremely inefficient in DW
performance, introducing huge query response time overheads for
many queries.

To ensure their security strength, standard encryption algorithms
such as AES[2] and DES[8] are complex routines requiring high
computational efforts and focus on ensuring security regardless
from performance issues. In this paper we propose a masking
technique for DW data based on the MOD-modulus operation
(which returns the remainder of a division expression) and simple
arithmetic operations, which balances strong data security with
database performance. The proposed solution is not to be regarded
as an alternative to standard encryption in terms of security
strength, but rather as an efficient alternate data confidentiality
solution in what concerns the tradeoff between performance and
security. Our proposal aims for masking data while introducing
low computational efforts, focusing on balancing security strength
with performance to make it feasible for use in DWs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IDEAS11 2011, September 21-23, Lisbon [Portugal]
Editors: Bernardino, Cruz, Desai
Copyright ©2011 ACM 978-1-4503-0627-0/11/09 $10.00

The proposed technique uses three masking keys for each masked
value. These keys are also encrypted and stored in what we call a
“black box” file, placed in the operating system directories and
file structures of the database server machine disk(s), as explained
in section 4. All SQL commands and actions required by users are
also encrypted and stored in this black box, in a log which can be
audited by any user with database, enterprise administration or
management privileges. This allows super users to watch over
each other, being able to detect malicious actions.

The proposed solution is transparent, not requiring changes to the
code of both DBMS and user applications. Its usage is based on
rewriting user queries. The data processed in the database is
encrypted at all times, never allowing breaches before the user
queries are processed. Only the final processed results are
returned to the authorized user applications that required them.
This also allows using the database (or creating instant replicas)
for testing purposes in software application development, i.e., for
production purposes, since the masked data is realistic but not
real. Moreover, it also allows protecting the data against attackers
that gain direct access to the database server.

As shown in the experimental results, our solution significantly
decreases both data storage space and processing overheads, both
in inserting and querying data from the DW, when compared with
standard encryption algorithms like AES and 3DES, provided by
major Database Management Systems (DBMS), such as Oracle
and SQL Server, for nearly all queries in all tested scenarios. The
experiments show that our technique’s overall results make it a
valid alternative to those standard solutions.

The remainder of this paper is organized as follows. In section 2,
we present related work, describing and analyzing the issues in
state-of-the-art masking and encryption solutions for providing
data privacy. Section 3 presents the packaged encryption routines
provided by Oracle Database 11g and points out the main issues
involved in their use for DWs. In section 4 we present and
describe our solution. Section 5 presents experimental evaluations
using the well-known TPC-H decision support benchmark and a
real-world DW. Finally, section 6 concludes the paper by
summarizing the main findings of our research.

2. RELATED WORK ANALYSIS
Web-based applications require supporting cooperative processes
while ensuring the confidentiality of data. This research area is
characterized by a number of different approaches and techniques,
including privacy-preserving data mining [26], privacy-preserving
information retrieval [28], and database systems specifically
tailored toward enforcing privacy [3]. A selective encryption
model is proposed in [28], for data access control purposes.

A light-weighted database encryption scheme with low decryption
overhead in column-oriented DBMS is proposed in [10]. They
claim their solution is as secure as any underlying block cipher,
while demonstrating the inherent insecurity of any order
preserving encryption scheme, such as [4], under straightforward
attack scenarios. However, their experimental evaluations show
an overhead of at least 50% in query response time to retrieve the
encrypted tuples, which is a very large cost for DW queries.

An Order Preserving Encryption Scheme for numeric data is
proposed in [4], by flattening and transforming the plain text
distribution onto a target distribution of value-based buckets. This
solution allows any comparison operation to be directly applied

on encrypted data, such as equality and range queries, as well as
MAX, MIN and COUNT queries. However, storage space
overhead depends on the skew of the plaintext and target
distributions, which can be a big problem in DWs. The mapping
function for the buckets introduces a greater overhead than the
technique proposed in our paper, and the definition of how the
bucket distribution should be built and how it should scale is not a
trivial task. A similar type of solution for processing queries
without decrypting data was proposed earlier by [11], suffering
from the same problems. This last solution uses only one
encryption key to encrypt data, which reduces the number of
hypothesis the attacker needs to consider in order to be successful.

The work in [5] presents data perturbation techniques for
preserving privacy. They propose implementing perturbed tables
and explain data reconstruction for responding to queries, in a
DW environment. Although providing strong guarantees against
privacy breaching, perturbation methods produce errors in data
reconstruction, which we pretend to avoid.

The Oracle Enterprise Manager Data Masking Pack [21] enables
replacing sensitive data with realist-looking values based on
masking rules. It provides out-of-the-box mask primitives for
various types of data, such as random numbers, random digits,
random dates, and constants. However, the process is irreversible,
i.e., it is not possible to retrieve the original true values, which
makes it useless for DWs. Oracle recognizes this and recommends
using the Data Masking Pack mainly for production databases,
where it can be used as an easy, efficient and fast solution to mask
real data and transform it into realistic but false data, to be
integrated in the development lifecycle of user applications [21].

The work in [23] proposes a security middleware that acts as a
wrapper/interface between user applications and the encrypted
database server, for ensuring data integrity and efficient query
execution. They evaluate queries at the application server and
retrieve only the required rows from the server. They use only one
TPC-H query for measuring the database server costs of their
solution. The results show those costs rise by a factor proportional
to the size of the tested data subset, which in their experiments is
extremely small (it ranges from 10MB to 50MB, where query
execution time rises up to 5 times for the last). This is not a
realistic dataset for data warehousing scenarios, since the network
bandwidth in communication costs with the wrapper is much
smaller than in a typical DW scenario, where the data size would
be equal or bigger than 1GB. The fact that they only test one
query is also somewhat inconclusive, due to the large scope of
possibilities in building and executing decision support queries.

The Data Encryption Standard (DES) became the first encryption
standard in 1977 [8]. DES is a 64 bit block cipher and uses a 56
bit encryption key. This has implications in short data lengths.
Even 8 bit data, when encrypted by the algorithm will always
result in a 64 bit chunk. At that time, this encryption standard
suffered many attacks and methods that demonstrated it is an
insecure block cipher [13]. There has considerable controversy
over its design, particularly in the choice of a 56 bit key [19].

As an enhancement of DES, the Triple DES (3DES) standard [1]
was proposed. In this algorithm, the encryption method is similar
to original DES, but applied three times to increase the encryption
level, using three different 56 bit keys. Thus, the effective key
length is 168 bits. Since the algorithm increases the number of
cryptographic operations to execute, it is a well known fact that
the 3DES algorithm is one of the slowest block cipher methods.

The Advanced Encryption Standard (AES) is the most recent
encryption standard, proposed to replace DES algorithms [2]. The
AES block ciphers have a significant increase in the block size
(from the old standard of 64 bits up to 128 bits). AES provides
three approved key lengths: 128, 192 and 256 bits. AES is
considered fast and able to provide stronger encryption than other
encryption algorithms such as DES [19, 20, 23]. Brute force
attack is the only known effective attack known against it.

The Blowfish encryption algorithm [24] is a public domain
algorithm. Blowfish is a variable length key, 64 bit block cipher.
This algorithm was first introduced in 1993. Though it suffers
from the weak keys problem, no attack is known to be successful
against it [19].

The work in [19] implemented the DES, 3DES, AES and
Blowfish algorithms and conducted several experiments to
compare their performance. This study demonstrated the Blowfish
algorithm was the fastest algorithm. However, it is a public
domain solution and not an encryption standard, reason why
major DBMS such as Oracle, MySQL and Microsoft SQL Server
do not provide it with their database servers. Regarding the open
encryption standards, the AES was the best solution, both in
execution time and throughput. On the other hand, 3DES
presented the worst performance.

3. PACKAGED DBMS ENCRYPTION –
THE ORACLE TDE
In the recent past, Oracle has integrated standard data encryption
routines within their DBMS [12, 20, 22]. The Oracle Transparent
Data Encryption (TDE) solution was introduced in Oracle
Database 10g Release 2. TDE enables transparently applying
encryption within the database avoiding expensive changes to
application source code, including database triggers and views.
Data is transparently encrypted when written to disk and
transparently decrypted after a user application has been
successfully authenticated. The TDE allows the user to choose
from various standard algorithms, such as AES (with 128, 192
and 256 bit keys), and 3DES. Oracle does not allow to plug-in
other encryption algorithms within the DBMS core.

3.1 How the Oracle TDE works
Oracle TDE uses a two tier encryption key architecture,
consisting of a master key and one or more table and/or
tablespace keys. The table and tablespace keys are encrypted
using the master key. Key management is done by creating an
Oracle Wallet for each case. The Oracle Wallet is an encrypted
container, physically a specific folder in the directory tree of the
hard disk, used to store authentication and signing credentials,
including passwords, the TDE master key, PKI tablespace and
table private keys, and certificates needed by SSL/TLS for data
communication and access purposes. If a wallet is damaged or
missing, or if the user is not authorized to open it, no encrypted
data linked to that wallet can be accessed. This implies that any
authorized backup of the encrypted data should also include
backing up its respective wallet. File and directory permissions
should be defined by the DW manager for determining who is
allowed access to the wallet directory, avoiding its disclosure.

Oracle TDE allows two types of encryption: tablespace
encryption (where all data stored in the tablespace is encrypted)
or column encryption, for encrypting specific table columns.
Since the proposal in this paper is a column-based solution, we

shall compare it with column-based encryption. Moreover, Oracle
recommends that column encryption should be preferred when it
is easy to determine which columns are sensitive and which are
not, or when a small number of well defined columns are sensitive
[12, 22], which is typically what happens in DWs [14].

When using column encryption, a storage space overhead
between 1 and 52 bytes per encrypted value is added. The
generation of independently encrypted values for the same
column is done by using an explicit option, implying 16 bytes of
storage space overhead. If that option is not used, those extra 16
bytes are saved, but all encrypted values in the column rely on
one key only in the encryption algorithm, which lowers the
privacy level. TDE does not support encrypting columns with
foreign key constraints, due to the fact that individual tables have
their own unique encryption key. However, joining tables is
transparent and allowed to users and applications, even if the
columns for the join condition are encrypted.

3.2 Testing Oracle TDE for DW scenarios
Given the assumption that encryption has proved to be the best
method to protect sensitive data and deliver performance [16, 23],
in order to evaluate its use in data warehousing scenarios, we
have performed an experimental evaluation of column-data
encryption solutions provided by Oracle 11g TDE, using the well
known TPC-H benchmark [25]. In these tests, we measured
performance impact on a workload composed of all the
benchmark’s queries that access the fact table LineItem, on its
1GB scale database. We used a Pentium 2.8GHz CPU, with 2GB
of RAM, where 512MB were dedicated for use by Oracle
database memory area (SGA), on a 1.5TByte SATA hard disk.

For fairness, the database was optimized in a standard best
practice manner for all scenarios (including primary keys, foreign
keys, referential integrity constraints, and bitmap join indexes).
Response times for each TPC-H query, shown in Table 1, are an
average obtained from six executions, for each scenario. Three
scenarios were defined: 1) without using encrypted data (Standard
Query Exec. Time); 2) against numerical columns encrypted with
AES 128 bit (Query Exec. Time Using AES128); and 3) with
3DES (Query Exec. Time Using 3DES168). Before each
execution, the database server was restarted.

We chose the AES128 and 3DES168 algorithms for the tests
because they are, respectively, the simplest (and fastest) and most
complex (and slowest) of the available algorithms, according to
Oracle [12, 22]. This is consistent with what we discussed in
section 2, given that AES is the algorithm which requires less
computational resources, while 3DES requires the most.

Although Oracle argues using TDE will only increase response
time between 5% and 10%, on average, [22], the results clearly
show that this is not true for the tested scenarios. The results in
Table 1 show that response time overhead is, on average, much
higher than 10%. In fact, all overheads are much greater than
10%, registering 171% or 185% for the whole workload (last
table line), depending on which encryption algorithm is used.
Moreover, the individual query execution time overhead for more
than a half of the queries registered more than 100% for both
encryption algorithms. This also happens with higher scales of the
benchmark database, as shown in section 5 of this paper, as well
as in a real-world sales DW, which we also used for the
experimental evaluation of our proposal.

Table 1. Oracle 11g standard query response time vs. TDE column-encryption using 1GByte TPC-H DB (in seconds)

Queries Standard Query
Exec. Time

Query Exec. Time
Using AES128

% Overhead Using
AES128

Query Exec. Time
Using 3DES168

% Overhead
Using 3DES168

Q1 11 904 8118% 977 8782%
Q3 10 23 130% 24 140%
Q5 10 23 130% 25 150%
Q6 8 30 275% 32 300%
Q7 10 24 140% 24 140%
Q8 312 373 20% 377 21%
Q9 127 192 51% 197 55%
Q10 10 23 130% 23 130%
Q12 10 22 120% 24 140%
Q14 8 24 200% 25 213%
Q15 14 21 50% 22 57%
Q17 38 52 37% 54 42%
Q18 49 184 276% 191 290%
Q19 90 121 34% 127 41%
Q20 105 184 75% 188 79%
TOTALS 812 2200 171% 2310 185%

4. MOBAT: A MODULUS-BASED
TECHNIQUE FOR DATA MASKING IN DW
As shown in the previous section, the query response time
overheads are extremely large, jeopardizing their usefulness in
DW scenarios. A data encryption algorithm is not of much use if
it is secure enough to assure data confidentiality but too slow to
be acceptable in terms of performance [19]. Thus, a privacy
technique that can minimize the number of required operations
could make the difference between acceptable and unacceptable
performance overhead. In this sense, this paper aims to provide a
specific feasible column masking solution for ensuring strong
privacy in DWs, while registering an acceptable measure of
performance degradation and storage space overhead.

4.1 The MOBAT Data Security Architecture
The proposed architecture for the system, which can be seen in
Figure 1, is comprised of three entities: 1) the masked database
and its DBMS; 2) the MOBAT Security Application (MOBAT-
SA); and 3) user/client applications that query data in the masked
database. The MOBAT-SA acts as a middleware between the
masked database DBMS and the user applications, using secure
SSL/TLS connections, ensuring that the queried data is securely
processed and proper results are returned to those applications.

Figure 1. The MOBAT Data Security Architecture

Our solution is based on a formula that depends on three masking
keys; two are private (i.e., not available to any DW user,
including DBAs) and one is public. The private keys for each

table and column to mask that are generated for our method are
encrypted and stored in the “black box”. The black box works like
the Oracle Wallet, explained in the previous sections, and is
hidden in the directories and file structure of the operating system
of the database server.

Technically, if a DBA or enterprise manager is allowed to control
security without any restriction (which may happen in the Oracle
TDE solution, for instance), the whole system becomes
vulnerable to malicious DBA/manager actions. To manage this,
our black box can never be manually accessed or updated by
anyone, except the MOBAT-SA itself. All submitted logins and
queries to the MOBAT-SA are stored and encrypted in the black
box as a read-only action log. All actions executed on the DW can
be controlled and audited by whoever has administration rights,
e.g. DBA’s, CEO’s, managers, etc, so anyone can watch over
anyone to check for misuse. If an attacker manages to bypass the
MOBAT-SA, s/he is able to directly access the database server;
however, since all sensitive stored data is masked, s/he will never
be able to access its true values.

In typical topologies with encryption middleware solutions, such
as [23], when a user application requests data, after ensuring the
request is authorized, the security application retrieves encrypted
data from the database and executes the decryption process. To do
this, it must send the data over the network to be decrypted.
However, once decrypted, we have clear-text information that
needs to be sent back over the wire to the database server. This
requires re-securing the information in transit, typically through
secure communication processes such as SSL/TLS. When the data
arrives at the agent on the database server, it has to be returned to
clear-text, and then it is served up to the calling application.

This type of topology has shown to be a poor solution. Since all
the data to decrypt needs to pass through the encryption agent, the
whole process gets strangled due to bandwidth consumption
between itself and the database, jeopardizing data throughput and
consequently, query response time. In these cases, the network
roundtrips for data in DWs would become an unbearable cost,
making this kind of solution unfeasible. Therefore, proposals
involving encrypting and decrypting data at the database server
are better solutions, because they eliminate network and
computational overheads from the critical path.

Our method relies on query rewriting, avoiding expensive
invocation of user defined functions for masking or retrieving true
data. Only the user queries are rewritten by MOBAT-SA and sent
to the DBMS to be processed, sending the results back to the user
application that requested their execution, instead of retrieving
encrypted data for processing them. This avoids overflowing
network bandwidth in the critical path, improving response time
and throughput when compared with other solutions.
Communication between the MOBAT-SA and the DBMS are
made through secure SSL/TLS connections for protecting the
rewritten queries and their results. The MOBAT-SA also disables
the DBMS history log, ensuring that the rewritten query
instruction is not kept in the database history, since it passes on
the values of the masking keys. After the query results are
returned, the MOBAT-SA restores the history log status.

4.2 The MOBAT Data Masking Technique
Most facts in DWs are columns with numerical values [14].
MOBAT aims on masking the DW’s numerical values, in a way
that makes it difficult for any unauthorized user to discover their
original values, while introducing minimum overhead in the
necessary operations needed to retrieve the original values for
query processing. We aim to ensure that sensitive data is replaced
by realistic but not real data.

Suppose a table T with a set of N numerical columns Ci = {C1, C2,
C3, …, CN} to be masked and a total set of M rows Rj = {R1, R2,
R3, …, RM}. Each value to mask in the table will be identified as a
pair (Rj, Ci), where Rj and Ci respectively represent the row and
column to which the value refers. The masking formula for each
value of T depends on the following predefinitions:

• K1 and K2 are private keys stored in the black box, thus,
accessible only by the MOBAT-SA;

• K1 is a 128 bit integer random generated value between 1 and
2127, constant for table T;

• K2 is a random generated value between 1 and the maximum
positive integer value of column Ci, given the maximum
storage size of Ci. There is one K2 for each column Ci,
represented by K2, i;

• K3 is a public key based on a 128 bit integer column appended
to each row Rj in T, filled in with a random value between 1
and 2127, represented by K3, j.

Each new masked value (Rj, Ci)’ is obtained by applying the
following formula (1) for row j and column i of table T:

 (Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i) + K2, i (1)

Since K1 and K2, i are constants for the table and each column,
respectively, and K3, j is also a constant, stored with each row in
the table, the formula (2) for retrieving the original value is:

 (Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i) – K2, i (2)

This technique implies that the values of K3, j must be stored along
with each row j in table T. If the values of K3, j where to be stored
in a lookup table separate from table T, a heavy join operation
between them is required, whenever there is a need to unmask
data. Given the typical immense number of rows in fact tables,
this should be avoided at all cost. Thus, to avoid table joins in
query processing when using MOBAT, there are two possible
solutions for including K3, j in each row of table T:

1) A MODIFY TABLE … ADD COLUMN is done for
creating K3, j as a new column in table T; or

2) Table T is rebuilt with inclusion of K3, j in the CREATE
TABLE statement before restoring the data.

The second option will imply a certain effort and amount of time,
depending on table T’s size, in order to rebuild it. However, it
should reveal a gain in query response time, since the new column
K3, j is physically included in each row from the start, instead of
appended to the database after it has already been filled in, which
makes it physically stored apart from the previous existing data.

A third option for defining K3, j values and increasing performance
is to use any long integer typed column CZ, which is already part
of the original data structure of table T, as K3, j, instead of creating
an extra column for K3, j in T. In this case, there is no need to
change the data structure of T, avoiding storage space overhead in
T. However, this somewhat limits the strength of the masking
formula, since the value of K3, j also depends on the range and
cardinality of the values of CZ, and the predictability of knowing
the values of CZ on behalf of an attacker.

4.3 Apparent Randomness and Security
Generating randomness for cryptographic or masking applications
is a costly and security-critical operation [7]. There is a need to
guarantee that the generated values for masking the real data is
not deductible between them. Therefore, two same original real
data values must generically originate different masking
generated values, so a minimum level of apparent randomness is
ensured. Given that our masking formula (1) uses MOD
operations in conjunction with randomly generated realistic
values, the generated masked values for the same original data
values are mostly different. Thus, the referred minimal level of
apparent randomness is assured in the new masked values, which
allows achieving acceptable security strength in this sense.

Our masking formula (1) is based on the use of two consecutive
MOD operations. Since the MOD function has no inverse
function [10], there is no way of deducing an inverse function of
(1) without applying our reverse masking function (2) to retrieve
the original data values (except for trying a brute force attack). To
demonstrate this, suppose a table T with two masked columns,
Column1 and Column2. Suppose the MOBAT-SA generated the
values K1=7432 for table T and K2,1=34 and K2,2=17251 for each
column. Table 2 shows the original data for T on the left and its
resulting masked content on the right, using the masking formula
(1). In Table 2, it can be seen that the same original values of
Column1 result in different masked values Column1’, achieving
the referred apparent randomness. Therefore, the only way to
bypass our security solution is to obtain the values of the private
masking keys K1 and K2.

Table 2. Example of an original and resulting masked
dataset using MOBAT

T – Original dataset T‘ – Masked dataset
Column1 Column2 K3,j Column1‘ Column2‘ K3,j
12 9 1873 817721 15 108923 817721
23 9 4129 936154 43 104226 936154
12 7 1624 61437 37 86894 61437
12 3 8824 94725 13 50534 94725
23 8 4624 497624 51 94763 497624

Given encryption or masking key lengths, a brute force attack is
done by generating the total number of possible combinations for
testing the algorithm, given a certain input. Taking the minimum
128 bit length key for AES, the total number of possible
combinations for this algorithm is 2128. Therefore, the average
number of tests that attackers need to execute for discovering
each encryption key is, roughly, half that number, i.e., 2127.

In our proposal, since K3 is public, only K1 and K2 need to be
discovered. K1 is a 128 bit integer key. K2 is also a 128 bit integer,
which depends on the maximum integer storage size defined for
each column, and is therefore variable between 1 and 128 bits.
This means that our technique implies a minimum number of 2129
key combinations, for K1 and K2 together (at least 128 bits + 1
bit), and roughly needs an average number of 2128 tests for
discovering the keys using brute force, for each masked column in
the table, since K2 is column dependant. Thus, the average
number of combinations to discover all the needed key values for
an i number of columns is i * 2128 brute force tests. Periodically,
the values of all or any one of the K1, K2, and K3 keys may be
refreshed and rebuild the masked table values, in order to ensure
data is properly protected. Although it is not possible to prove that
a particular algorithm is secure [9, 19], we believe that our
technique is secure enough to be considered as acceptable for use.

4.4 Implementing the Masked Database
To mask a database, a DBA must require this action through the
MOBAT-SA. Entering the DBA login and database connection
data, this application will attempt to login to the respective
database. If it succeeds, MOBAT-SA will scan all relevant data
access policy definitions in the database, for identifying
authorized users and respective permissions. The black box will
then be updated with the user access definitions for that database.

After the previous step, the MOBAT-SA will ask the DBA which
tables and columns are to be masked. After confirmation of this
information, the database is masked. At this point, the DBA will
have to define how the K3, j masking keys are to be created for
each table (which has to be one of the three options mentioned in
the explanation of the MOBAT masking technique): 1) an extra
added column to each table to mask, without rebuilding them; 2)
an added column to the structure of each table, rebuilding it
entirely; or 3) using one of the numerical columns of the table.

According to the chosen options for each table, the K3, j masking
keys will be generated and stored in the j rows of each respective
table to which it refers, and all K1 and K2, i masking keys for each
table and column will also be generated, encrypted and stored in
the respective black box. All key values are generated according
to what we have explained in section 4.3. Finally, the MOBAT-
SA will apply the data masking formula (1) on all rows of all
columns which are to be masked, updating their value with the
new masked value. Whenever the database needs to be updated
with the insertion of new data or the modification or deletion of
existing data, this should be performed by the MOBAT-SA,
which will apply the masking routine to any value which refers to
any masked column, storing the masked value directly in place.

4.5 Querying the Masked Database
When client applications request the execution of a query, they
submit it to the MOBAT-SA, instead of directly querying the
database. The MOBAT-SA then rewrites the query using the
formula (2) to replace the respective masked columns used in the

query, checking the user access definitions in the black box to see
if it comes from an authorized user. To rewrite the query, the
MOBAT-SA searches for the tables and columns it needs to
process, and looks up the security black box for retrieving the K1
and K2, i data masking keys for those tables and columns,
respectively, as well as the names of the needed K3, j key fields to
be used by the MOBAT-SA in those tables.

As an example, suppose the LineItem table of the TPC-H
benchmark has four numerical fact columns (I = 4) (L_Quantity,
L_ExtendedPrice, L_Tax and L_Discount) masked by MOBAT.
Suppose also that MOBAT has generated and filled in a new
column L_KeyK3 for the j rows of the LineItem table, which will
act as the K3, j key values for our method, and has stored the value
of 9342 (for example) for key K1 referring to the LineItem table,
as well as K2, L_Quantity = 12, K2, L_ExtendedPrice = 51234, K2, L_Tax = 6,
and K2, L_Discount = 4 (for example also). Consider TPC-H query Q6
with the masked fields, for showing the total ordered quantity,
income, discounts and tax value of each customer order:

SELECT SUM(L_ExtendedPrice * L_Discount) AS
 Total_Revenue
FROM LineItem
WHERE L_ShipDate>=TO_DATE('1994-01-01',
 'YYYY-MM-DD') AND
 L_ShipDate<TO_DATE('1995-01-01',
 'YYYY-MM-DD') AND

 L_Discount BETWEEN 0.05 AND 0.07 AND
 L_Quantity<24

The new query, rewritten by the security application and
submitted to the DBMS server, would be:

SELECT
 SUM((L_ExtendedPrice+MOD(MOD(L_KeyK3,9342),
 51234)-51234) *
 (L_Discount+MOD(MOD(L_KeyK3,9342),
 4)-4)) AS Total_Revenue
FROM LineItem
WHERE L_ShipDate>=TO_DATE('1994-01-01',
 'YYYY-MM-DD') AND
 L_ShipDate<TO_DATE('1995-01-01',
 'YYYY-MM-DD') AND
 (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4)
 BETWEEN 0.05 AND 0.07 AND

 (L_Quantity+MOD(MOD(L_KeyK3,9342),12)-12)<24

The changes to the user queries are handled transparently by the
MOBAT-SA and kept hidden from the users. Only the query
results are passed back to the users after they have been
processed. The only change user applications need is to query the
MOBAT-SA, instead of the database. This makes MOBAT a
transparent solution and also addresses the trend towards
embedding business logic within a DBMS through the use of
stored procedures and triggers [16]. On the other hand, the
masked database may be used for testing user software
development, allowing direct queries, since the data is masked but
the data schemas maintain all their original definitions. A direct
query on the masked database will be harmless, producing
realistic results, but with different values from the real ones.

5. EXPERIMENTAL EVALUATION
To evaluate our proposal, we used the 1GB and 10GB scale sizes
of the TPC-H decision support benchmark, and a real-world sales
DW storing one year of commercial data. To build the DWs, we
used the Oracle 11g DBMS, on a Pentium CPU with 2GB RAM
and 1.5TB SATA hard disk. 512MB were dedicated for Oracle
memory cache (SGA). All results shown in this section were

obtained under the exact same conditions as referred in section 3
of this paper (see subsection 3.2). The data schema of TPC-H is a
database with one fact table (LineItem), and seven dimension
tables attached to it. The data schema of the real-world sales DW
is a database with one fact table (Sales) and four dimension tables
attached to it. The storage size and number of rows for each TPC-
H table and sales DW are shown in Tables 3 and 4, respectively.

Table 3. TPC-H decision support benchmark table sizes
 1GB TPC-H Database 10GB TPC-H Database
Table Nr. of Rows Table Size Nr. of Rows Table Size
LineItem 6.001.215 740MB 59.986.052 7.386MB
Orders 1.500.000 152MB 15.000.000 1.520MB
Customers 150.000 32MB 1.500.000 320MB
Suppliers 10.000 4MB 100.000 40MB
Part 200.000 32MB 2.000.000 312MB
PartSupp 800.000 112MB 8.000.000 1.120MB
Nation 25 <1MB 25 <1MB
Region 5 <1MB 5 <1MB
TOTALS 8.661.245 1.072MB 86.586.082 10.968MB

Table 4. Sales DW table sizes
Sales DW Database

Table Nr. Of Rows Table Size
Sales 31.536.124 1.927MB
Products 50.109 7MB
Customers 251.514 90MB
Promotions 89.812 10MB
Time 8.760 <1MB
TOTALS 31.936.319 2.034MB

In the TPC-H setups, four columns of the LineItem fact table were
chosen for masking (L_Quantity, L_ExtendedPrice, L_Tax and
L_Discount), given that they are the numerical fact columns used
in the benchmark queries. In the Sales DW, five numerical
columns were chosen (S_ShipToCost, S_Tax, S_Quantity,
S_SalesAmount, and S_Profit), for the same reasons.

For the TPC-H workload we used the benchmark queries 1, 3, 6,
7, 8, 10, 12, 14, 15, 17, 19, and 20, which access the masked table
LineItem. For the Sales DW, the workload was composed by a set

of 29 queries, all processing the Sales fact table, representing a
sample of typical decision support queries. All data schemas,
queries and results may be consulted at [18]. The results show
each query’s average response time (with standard deviations
between [0.52, 54.65] for 1GB TPC-H, between [0.64, 70.10] for
10GB TPC-H, and between [0.57, 71.20] for the Sales DW). The
experimental scenarios are shown in Table 5.

Table 6 shows data loading time and storage space results for
each scenario. Without masking or encrypting, the storage size of
the LineItem fact table for the 1GB TPC-H measured 772MB,
taking up 310 seconds to perform a complete load using the
Oracle SQL*Loader. As seen in Table 6, with MOBAT the
storage size grows from 0% (when using column L_OrderKey as
the masking key K3, j) to a maximum of 5.7%, while loading time
overhead respectively ranges from 0% (for the same scenario) to
7.7%. When using the Oracle TDE column encryption scenarios,
both storage space and loading time overheads are much greater
(at least 100% more storage space and loading time overheads).

Figure 2 shows each individual TPC-H query execution time
result for the 10GByte scale database, while Figure 3 show query
execution time overheads (in percentage) referring to each data
encryption/masking scenario, for the same database. Figures 4
and 5 show the query response time and respective overheads, for
the Sales DW database. The results for the 1GByte TPC-H
database where similar to those of the 10GByte TPC-H database.

Observing Figures 2 to 5, almost all MOBAT results are better
than those obtained by the AES128 and 3DES168 Oracle TDE
encryption algorithms, for all the TPC-H and real-world Sales
DW setups. MOBAT response time overheads in TPC-H are
smaller than 10% for almost all the queries, except Q1 and Q17,
while the data encryption scenarios show overheads mainly
around 100%, except for Q1 (where they reach 10000%), Q17,
Q19 and Q20. In the results concerning the 2GByte Sales DW,
shown in Figures 4 and 5, MOBAT results are also much better,
where queries Q1, Q2, Q3, Q5, Q7 and Q9 registered almost no
significant query response time overheads at all, while with the
encryption algorithms AES128 and 3DES168, 26 out of all 29
queries presented an overhead equal or greater than 100%.

Table 5. Experimental Data Encryption/Masking Scenarios
Reference Graphic Description
Standard Unencrypted/Unmasked data

AES128 Column Data encrypted with Oracle TDE AES128 column
3DES168 Column Data encrypted with Oracle TDE 3DES168 column

MOBAT AddCol Data masked by MOBAT formula (1), where masking key column K3, j has been added to the fact table

MOBAT CreateCol
Data masked by MOBAT formula (1), where masking key column K3, j was added to the fact table, which has
been completely recreated

MOBAT ColKey
Data masked by MOBAT formula (1), using a numerical column from the original fact table data structure as
key K3, j

Table 6. TPC-H 1GB LineItem storage size and data loading

Figure 2. 10GB TPC-H Data Warehouse Query Execution Times

Figure 3. 10GB TPC-H Data Warehouse Query Execution Time Overheads per Encryption/Masking Algorithm

Figure 4. Sales Data Warehouse Query Execution Times

Figure 5. Sales Data Warehouse Query Execution Time Overheads per Encryption/Masking Algorithm

Figure 6. Complete Query Workload Execution Time Overheads per Encryption/Masking Algorithm

Figure 6 shows the overheads for the whole workload of each
experimental setup. Comparing the overheads introduced by each
technique, they confirm that MOBAT is much better than both
AES128 and 3DES168 Oracle Column TDE, given the complete
query workload in each setup. MOBAT ranges from at least 5.32
(187.7/35.3) times better than the standard encryption solutions
for the 1GB TPC-H database, to 9.23 (203/22) times better. In the
10GB TPC-H database, the gains range from 6.05 (131.8/21.8) to
8.58 (144.2/16.8) times better, and for the Sales DW, from 5.39
(688.3/127.7) to 10.5 (814.7/77.6) times better. All results also
show that the performance of CreateCol Masking is better than
AddCol Masking, which was expected, as we mentioned in
section 4.3, when explaining the MOBAT technique. The
performance results of ColKey Masking experiments are the best

for MOBAT, since there was no need for creating an extra column
in the fact tables, which allowed maintaining fact table storage
size and to avoid retrieving an extra column for processing the
queries, when compared to AddCol Masking and CreateCol
Masking.

6. CONCLUSIONS AND FUTURE WORK
In this paper we discussed the existing solutions for data privacy
and the issues involving their use in DWs. We demonstrated that
the introduced storage space and performance overheads can
make their use unfeasible from a data warehousing perspective.
This leads us to state that the existing techniques are too complex
to be used in DW scenarios.

Given that business data in DWs mainly consist on numerical
values, we have proposed a data masking technique for numerical
values. The solution is based on a masking formula with two
modulus (division remainder) and two simple arithmetic
operations. The formula introduces low computational efforts and,
consequently, relatively small overheads in query response time,
while providing a considerable level of security, given the length
of the masking keys and non-invertible properties of the modulus
operation. It also requires a very small overhead in storage space,
compared with other column-based data privacy solutions.

By simply rewriting user queries, it avoids network bandwidth
overflow. Stored data is masked at all times, which allows using
the masked database for testing software production; directly
querying the database will retrieve realistic data, but never real
data. This also avoids access to real original data if any attacker is
able to bypass access control and retrieve data directly from the
database. MOBAT also allows authorized database and enterprise
managers and administrators to audit the actions of everyone else
and each other, by being able to lookup the masking actions and
SQL commands history executed by the MOBAT-SA.

Experimental evaluations show the overheads produced by our
proposal in both appending and consulting data are lower than
those of standard encryption algorithms such as AES and 3DES,
provided by major DBMS. The results show that our technique is
a more efficient overall solution, making it a valid alternative for
protecting DW numerical data.

As future work, we will develop our technique to accomplish
masking alphanumeric values also, to provide a complete data
protection solution. We will also strive to prove and improve its
security strength without jeopardizing database performance. We
also intend to take advantage of the inclusion of the extra column
in the masked tables for detecting malicious or incorrect data
changes in each row, broadening the scope of our solution to
embrace data integrity issues.

7. REFERENCES
[1] 3DES, Triple DES, National Institute of Standards and

Technology (NIST), Federal Information Processing
Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3, 2005.

[2] AES, “Advanced Encryption Standard”, National Inst. of
Standards and Technology (NIST), FIPS-197, 2001.

[3] R. Agarwal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic
Databases”, Int. Conf. Very Large DataBases (VLDB), 2002.

[4] R. Agarwal, J. Kiernan, R. Srikant, and Y. Xu, “Order-
Preserving Encryption for Numeric Data”, ACM SIG Conf.
on Management Of Data (SIGMOD), 2004.

[5] R. Agrawal, R. Srikant, and D. Thomas, “Privacy Preserving
OLAP”, ACM SIG Conf. Management Of Data (SIGMOD),
2005.

[6] H. Baer, “On-Time Data Warehousing with Oracle Database
10g – Information at the Speed of Your Business”, Oracle
Whitepaper, Oracle Corporation, 2004.

[7] M. Barbosa and P. Farshim, “Randomness Reuse: Extensions
and Improvements”, Inst. Mathematics and its Applications
(IMA) Int. Conference on Cryptography and Coding, 2009.

[8] DES, Data Encryption Standard, National Institute of
Standards and Technology (NIST), Federal Information
Processing Standards (FIPS) Publication 46, 1977.

[9] N. Ferguson, “AES-CBC + Elephant Diffuser – A Disk
Encryption Algorithm for Windows Vista”, Microsoft Corp.
Whitepaper, 2006.

[10] T. Ge and S. Zdonik, “Fast, Secure Encryption for Indexing
in a Column-Oriented DBMS”, Int. Conf. Data Engineering
(ICDE), 2007.

[11] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra,
“Executing SQL over Encrypted Data in the Database-
Service-Provider Model”, ACM SIG International
Conference on Management Of Data (SIGMOD), 2002.

[12] P. Huey, “Oracle Database Security Guide 11g”, Oracle
Corp., 2008.

[13] J. Kim, Y. Lee, and S. Lee, “DES with any reduced masked
rounds is not secure against side-channel attacks”, Elsevier
Int. Journal Computers and Mathematics with Applications,
60, 2010, www.elsevier.com/locate/camwa

[14] R. Kimball and M. Ross, “The Data Warehouse Toolkit”, 2nd
Edition, Wiley & Sons, Inc., 2002.

[15] J. Kobielus, “The Forrester Wave: Enterprise Data
Warehousing Platforms”, Forrester Research Report, 2009.

[16] U. T. Mattson, “Database Encryption – How to Balance
Security with Performance”, Protegrity Corporation
Technical Paper, 2004.

[17] J. McKendrick, “IOUG Data Security 2009: Budget Pressure
Lead to Increased Risks”, The Independent Oracle Users
Group (IOUG) Security Report, 2009.

[18] MOBAT Testing Queries, available at
http://213.13.123.56/MOBAT/queries.html

[19] A. Nadeem and M. Y. Javed, “A Performance Comparison of
Data Encryption Algorithms”, IEEE Int. Conference on
Inform. and Communication Technologies (ICICT), 2005.

[20] Oracle Corporation, “Security and the Data Warehouse”,
Oracle White Paper, 2005.

[21] Oracle Corporation, “Data Masking Best Practices”, Oracle
White Paper, 2010.

[22] Oracle Corporation, “Oracle Advanced Security Transparent
Data Encryption Best Practices”, Oracle White Paper, 2010.

[23] V. Radha and N. H. Kumar, “EISA – An Enterprise
Application Security Solution for Databases”, Int. Conf. on
Information Systems Security (ICISS), S. Jajodia and C.
Mazumdar (Eds), Springer LNCS 3803, 2005.

[24] B. Schneier, “Description of a New Variable-Length Key,
Block Cipher (Blowfish), Fast Software Encryption”,
Cambridge Security Workshop, 1994.

[25] Transaction Processing Council, “The TPC Decision Support
Benchmark H”, http://www.tpc.org/tpch/default.asp

[26] J. Vaidya and C. Clifton, “Privacy Preserving Association
Rule Mining in Vertically Partitioned Data”, ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, 2002.

[27] M. Vieira and H. Madeira, “Towards a Security Benchmark
for Database Management Systems”, Int. Conference on
Dependable Systems and Networks (DSN), 2005.

[28] S. C. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P.
Samarati, “Over-encryption: Management of Access Control
Evolution on Oursourced Data”, Int. Conf. on Very Large
DataBases (VLDB), 2007.

[29] N. Yuhanna, “Your Enterprise Database Security Strategy
2010”, Forrester Research, September 2009.

