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ABSTRACT 
Data Warehouses (DWs) are the enterprise’s most valuable asset 
in what concerns critical business information, making them an 
appealing target for attackers. Packaged database encryption 
solutions are considered the best solution to protect sensitive data. 
However, given the volume of data typically processed by DW 
queries, the existing encryption solutions heavily increase storage 
space and introduce very large overheads in query response time, 
due to decryption costs. In many cases, this performance 
degradation makes encryption unfeasible for use in DWs. In this 
paper we propose a transparent data masking solution for 
numerical values in DWs based on the mathematical modulus 
operator, which can be used without changing user application 
and DBMS source code. Our solution provides strong data 
security while introducing small overheads in both storage space 
and database performance. Several experimental evaluations 
using the TPC-H decision support benchmark and a real-world 
DW are included. The results show the overall efficiency of our 
proposal, demonstrating that it is a valid alternative to existing 
standard encryption routines for enforcing data confidentiality in 
DWs.   
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1. INTRODUCTION 
Data confidentiality focuses on protecting data from unauthorized 
disclosure. Currently, data is a major asset for any enterprise, not 
only for knowing the past, but also for aiding today’s business or 
predicting future trends [6, 15]. Given its decision support nature, 
Data Warehouses (DWs) translate data into business knowledge, 
providing information for adding business value. Consequently, 
DWs are the core of enterprise sensitive data. Unfortunately, this 
makes them a major target for attackers [29]. Consequently, 
efficiently securing sensitive data has become an imperative 
concern in many enterprises [17, 29]. 

Data used for analyzing business performance is mostly stored in 
specific attributes, called facts. Facts are stored in fact tables, 

which typically take up at least 90% of DW storage space [14]. 
To protect those attributes, data masking actions (also called data 
obfuscation, i.e., changing data values so that their real values are 
not known) and encryption techniques are widely used to enforce 
the confidentiality of data. 

Encryption at the database level has proved to be the best method 
to protect sensitive data and deliver performance [16, 23]. 
However, since DWs are usually huge, with millions or billions of 
rows in their fact tables, and user queries are typically ad hoc and 
access large amounts of data, encryption overheads are a major 
concern [4]. Although encryption solutions are efficient in their 
security purpose, they introduce several key costs: 

• Extra storage space of encrypted data, which is usually a 
considerable overhead, given the typically large storage space 
size occupied by DW databases; 

• Time and resources needed for encrypting sensitive data; and 

• Overhead in query response time and allocated resources for 
decrypting data to process queries, probably the most 
significant drawback for using encryption in DWs. 

As demonstrated throughout our paper, these overheads imply 
that the standard encryption algorithms provided by current 
DBMS dramatically degrade database performance, a critical 
issue in data warehousing. This ultimately jeopardizes their 
usefulness. Thus, developing a data masking/encryption strategy 
for DWs must balance between the requirements for security and 
desire for high performance [10, 16, 19, 27].  

In this paper, we describe and analyze the currently available 
masking and encryption techniques at the database level. We 
thoroughly discuss the issues involving their use in what concerns 
database performance and requirements from a data warehousing 
perspective. We show that they are extremely inefficient in DW 
performance, introducing huge query response time overheads for 
many queries. 

To ensure their security strength, standard encryption algorithms 
such as AES[2] and DES[8] are complex routines requiring high 
computational efforts and focus on ensuring security regardless 
from performance issues. In this paper we propose a masking 
technique for DW data based on the MOD-modulus operation 
(which returns the remainder of a division expression) and simple 
arithmetic operations, which balances strong data security with 
database performance. The proposed solution is not to be regarded 
as an alternative to standard encryption in terms of security 
strength, but rather as an efficient alternate data confidentiality 
solution in what concerns the tradeoff between performance and 
security. Our proposal aims for masking data while introducing 
low computational efforts, focusing on balancing security strength 
with performance to make it feasible for use in DWs. 
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The proposed technique uses three masking keys for each masked 
value. These keys are also encrypted and stored in what we call a 
“black box” file, placed in the operating system directories and 
file structures of the database server machine disk(s), as explained 
in section 4. All SQL commands and actions required by users are 
also encrypted and stored in this black box, in a log which can be 
audited by any user with database, enterprise administration or 
management privileges. This allows super users to watch over 
each other, being able to detect malicious actions. 

The proposed solution is transparent, not requiring changes to the 
code of both DBMS and user applications. Its usage is based on 
rewriting user queries. The data processed in the database is 
encrypted at all times, never allowing breaches before the user 
queries are processed. Only the final processed results are 
returned to the authorized user applications that required them. 
This also allows using the database (or creating instant replicas) 
for testing purposes in software application development, i.e., for 
production purposes, since the masked data is realistic but not 
real. Moreover, it also allows protecting the data against attackers 
that gain direct access to the database server. 

As shown in the experimental results, our solution significantly 
decreases both data storage space and processing overheads, both 
in inserting and querying data from the DW, when compared with 
standard encryption algorithms like AES and 3DES, provided by 
major Database Management Systems (DBMS), such as Oracle 
and SQL Server, for nearly all queries in all tested scenarios. The 
experiments show that our technique’s overall results make it a 
valid alternative to those standard solutions. 

The remainder of this paper is organized as follows. In section 2, 
we present related work, describing and analyzing the issues in 
state-of-the-art masking and encryption solutions for providing 
data privacy. Section 3 presents the packaged encryption routines 
provided by Oracle Database 11g and points out the main issues 
involved in their use for DWs. In section 4 we present and 
describe our solution. Section 5 presents experimental evaluations 
using the well-known TPC-H decision support benchmark and a 
real-world DW. Finally, section 6 concludes the paper by 
summarizing the main findings of our research. 

2. RELATED WORK ANALYSIS 
Web-based applications require supporting cooperative processes 
while ensuring the confidentiality of data. This research area is 
characterized by a number of different approaches and techniques, 
including privacy-preserving data mining [26], privacy-preserving 
information retrieval [28], and database systems specifically 
tailored toward enforcing privacy [3]. A selective encryption 
model is proposed in [28], for data access control purposes. 

A light-weighted database encryption scheme with low decryption 
overhead in column-oriented DBMS is proposed in [10]. They 
claim their solution is as secure as any underlying block cipher, 
while demonstrating the inherent insecurity of any order 
preserving encryption scheme, such as [4], under straightforward 
attack scenarios. However, their experimental evaluations show 
an overhead of at least 50% in query response time to retrieve the 
encrypted tuples, which is a very large cost for DW queries. 

An Order Preserving Encryption Scheme for numeric data is 
proposed in [4], by flattening and transforming the plain text 
distribution onto a target distribution of value-based buckets. This 
solution allows any comparison operation to be directly applied 

on encrypted data, such as equality and range queries, as well as 
MAX, MIN and COUNT queries. However, storage space 
overhead depends on the skew of the plaintext and target 
distributions, which can be a big problem in DWs. The mapping 
function for the buckets introduces a greater overhead than the 
technique proposed in our paper, and the definition of how the 
bucket distribution should be built and how it should scale is not a 
trivial task. A similar type of solution for processing queries 
without decrypting data was proposed earlier by [11], suffering 
from the same problems. This last solution uses only one 
encryption key to encrypt data, which reduces the number of 
hypothesis the attacker needs to consider in order to be successful. 

The work in [5] presents data perturbation techniques for 
preserving privacy. They propose implementing perturbed tables 
and explain data reconstruction for responding to queries, in a 
DW environment. Although providing strong guarantees against 
privacy breaching, perturbation methods produce errors in data 
reconstruction, which we pretend to avoid. 

The Oracle Enterprise Manager Data Masking Pack [21] enables 
replacing sensitive data with realist-looking values based on 
masking rules. It provides out-of-the-box mask primitives for 
various types of data, such as random numbers, random digits, 
random dates, and constants. However, the process is irreversible, 
i.e., it is not possible to retrieve the original true values, which 
makes it useless for DWs. Oracle recognizes this and recommends 
using the Data Masking Pack mainly for production databases, 
where it can be used as an easy, efficient and fast solution to mask 
real data and transform it into realistic but false data, to be 
integrated in the development lifecycle of user applications [21]. 

The work in [23] proposes a security middleware that acts as a 
wrapper/interface between user applications and the encrypted 
database server, for ensuring data integrity and efficient query 
execution. They evaluate queries at the application server and 
retrieve only the required rows from the server. They use only one 
TPC-H query for measuring the database server costs of their 
solution. The results show those costs rise by a factor proportional 
to the size of the tested data subset, which in their experiments is 
extremely small (it ranges from 10MB to 50MB, where query 
execution time rises up to 5 times for the last). This is not a 
realistic dataset for data warehousing scenarios, since the network 
bandwidth in communication costs with the wrapper is much 
smaller than in a typical DW scenario, where the data size would 
be equal or bigger than 1GB. The fact that they only test one 
query is also somewhat inconclusive, due to the large scope of 
possibilities in building and executing decision support queries. 

The Data Encryption Standard (DES) became the first encryption 
standard in 1977 [8]. DES is a 64 bit block cipher and uses a 56 
bit encryption key. This has implications in short data lengths. 
Even 8 bit data, when encrypted by the algorithm will always 
result in a 64 bit chunk. At that time, this encryption standard 
suffered many attacks and methods that demonstrated it is an 
insecure block cipher [13]. There has considerable controversy 
over its design, particularly in the choice of a 56 bit key [19]. 

As an enhancement of DES, the Triple DES (3DES) standard [1] 
was proposed. In this algorithm, the encryption method is similar 
to original DES, but applied three times to increase the encryption 
level, using three different 56 bit keys. Thus, the effective key 
length is 168 bits. Since the algorithm increases the number of 
cryptographic operations to execute, it is a well known fact that 
the 3DES algorithm is one of the slowest block cipher methods. 



The Advanced Encryption Standard (AES) is the most recent 
encryption standard, proposed to replace DES algorithms [2]. The 
AES block ciphers have a significant increase in the block size 
(from the old standard of 64 bits up to 128 bits). AES provides 
three approved key lengths: 128, 192 and 256 bits. AES is 
considered fast and able to provide stronger encryption than other 
encryption algorithms such as DES [19, 20, 23]. Brute force 
attack is the only known effective attack known against it. 

The Blowfish encryption algorithm [24] is a public domain 
algorithm. Blowfish is a variable length key, 64 bit block cipher. 
This algorithm was first introduced in 1993. Though it suffers 
from the weak keys problem, no attack is known to be successful 
against it [19]. 

The work in [19] implemented the DES, 3DES, AES and 
Blowfish algorithms and conducted several experiments to 
compare their performance. This study demonstrated the Blowfish 
algorithm was the fastest algorithm. However, it is a public 
domain solution and not an encryption standard, reason why 
major DBMS such as Oracle, MySQL and Microsoft SQL Server 
do not provide it with their database servers. Regarding the open 
encryption standards, the AES was the best solution, both in 
execution time and throughput. On the other hand, 3DES 
presented the worst performance. 

3. PACKAGED DBMS ENCRYPTION – 
THE ORACLE TDE 
In the recent past, Oracle has integrated standard data encryption 
routines within their DBMS [12, 20, 22]. The Oracle Transparent 
Data Encryption (TDE) solution was introduced in Oracle 
Database 10g Release 2. TDE enables transparently applying 
encryption within the database avoiding expensive changes to 
application source code, including database triggers and views. 
Data is transparently encrypted when written to disk and 
transparently decrypted after a user application has been 
successfully authenticated. The TDE allows the user to choose 
from various standard algorithms, such as AES (with 128, 192 
and 256 bit keys), and 3DES. Oracle does not allow to plug-in 
other encryption algorithms within the DBMS core. 

3.1 How the Oracle TDE works 
Oracle TDE uses a two tier encryption key architecture, 
consisting of a master key and one or more table and/or 
tablespace keys. The table and tablespace keys are encrypted 
using the master key. Key management is done by creating an 
Oracle Wallet for each case. The Oracle Wallet is an encrypted 
container, physically a specific folder in the directory tree of the 
hard disk, used to store authentication and signing credentials, 
including passwords, the TDE master key, PKI tablespace and 
table private keys, and certificates needed by SSL/TLS for data 
communication and access purposes. If a wallet is damaged or 
missing, or if the user is not authorized to open it, no encrypted 
data linked to that wallet can be accessed. This implies that any 
authorized backup of the encrypted data should also include 
backing up its respective wallet. File and directory permissions 
should be defined by the DW manager for determining who is 
allowed access to the wallet directory, avoiding its disclosure. 

Oracle TDE allows two types of encryption: tablespace 
encryption (where all data stored in the tablespace is encrypted) 
or column encryption, for encrypting specific table columns. 
Since the proposal in this paper is a column-based solution, we 

shall compare it with column-based encryption. Moreover, Oracle 
recommends that column encryption should be preferred when it 
is easy to determine which columns are sensitive and which are 
not, or when a small number of well defined columns are sensitive 
[12, 22], which is typically what happens in DWs [14]. 

When using column encryption, a storage space overhead 
between 1 and 52 bytes per encrypted value is added. The 
generation of independently encrypted values for the same 
column is done by using an explicit option, implying 16 bytes of 
storage space overhead. If that option is not used, those extra 16 
bytes are saved, but all encrypted values in the column rely on 
one key only in the encryption algorithm, which lowers the 
privacy level. TDE does not support encrypting columns with 
foreign key constraints, due to the fact that individual tables have 
their own unique encryption key. However, joining tables is 
transparent and allowed to users and applications, even if the 
columns for the join condition are encrypted. 

3.2 Testing Oracle TDE for DW scenarios 
Given the assumption that encryption has proved to be the best 
method to protect sensitive data and deliver performance [16, 23], 
in order to evaluate its use in data warehousing scenarios, we 
have performed an experimental evaluation of column-data 
encryption solutions provided by Oracle 11g TDE, using the well 
known TPC-H benchmark [25]. In these tests, we measured 
performance impact on a workload composed of all the 
benchmark’s queries that access the fact table LineItem, on its 
1GB scale database. We used a Pentium 2.8GHz CPU, with 2GB 
of RAM, where 512MB were dedicated for use by Oracle 
database memory area (SGA), on a 1.5TByte SATA hard disk. 

For fairness, the database was optimized in a standard best 
practice manner for all scenarios (including primary keys, foreign 
keys, referential integrity constraints, and bitmap join indexes). 
Response times for each TPC-H query, shown in Table 1, are an 
average obtained from six executions, for each scenario. Three 
scenarios were defined: 1) without using encrypted data (Standard 
Query Exec. Time); 2) against numerical columns encrypted with 
AES 128 bit (Query Exec. Time Using AES128); and 3) with 
3DES (Query Exec. Time Using 3DES168). Before each 
execution, the database server was restarted. 

We chose the AES128 and 3DES168 algorithms for the tests 
because they are, respectively, the simplest (and fastest) and most 
complex (and slowest) of the available algorithms, according to 
Oracle [12, 22]. This is consistent with what we discussed in 
section 2, given that AES is the algorithm which requires less 
computational resources, while 3DES requires the most. 

Although Oracle argues using TDE will only increase response 
time between 5% and 10%, on average, [22], the results clearly 
show that this is not true for the tested scenarios. The results in 
Table 1 show that response time overhead is, on average, much 
higher than 10%. In fact, all overheads are much greater than 
10%, registering 171% or 185% for the whole workload (last 
table line), depending on which encryption algorithm is used. 
Moreover, the individual query execution time overhead for more 
than a half of the queries registered more than 100% for both 
encryption algorithms. This also happens with higher scales of the 
benchmark database, as shown in section 5 of this paper, as well 
as in a real-world sales DW, which we also used for the 
experimental evaluation of our proposal. 



Table 1. Oracle 11g standard query response time vs. TDE column-encryption using 1GByte TPC-H DB (in seconds) 

Queries Standard Query 
Exec. Time 

Query Exec. Time 
Using AES128 

% Overhead Using
AES128

Query Exec. Time
Using 3DES168

% Overhead 
Using 3DES168 

Q1 11 904 8118% 977 8782%
Q3 10 23 130% 24 140%
Q5 10 23 130% 25 150%
Q6 8 30 275% 32 300%
Q7 10 24 140% 24 140%
Q8 312 373 20% 377 21%
Q9 127 192 51% 197 55%
Q10 10 23 130% 23 130%
Q12 10 22 120% 24 140%
Q14 8 24 200% 25 213%
Q15 14 21 50% 22 57%
Q17 38 52 37% 54 42%
Q18 49 184 276% 191 290%
Q19 90 121 34% 127 41%
Q20 105 184 75% 188 79%
TOTALS 812 2200 171% 2310 185%

 

4. MOBAT: A MODULUS-BASED 
TECHNIQUE FOR DATA MASKING IN DW 
As shown in the previous section, the query response time 
overheads are extremely large, jeopardizing their usefulness in 
DW scenarios. A data encryption algorithm is not of much use if 
it is secure enough to assure data confidentiality but too slow to 
be acceptable in terms of performance [19]. Thus, a privacy 
technique that can minimize the number of required operations 
could make the difference between acceptable and unacceptable 
performance overhead. In this sense, this paper aims to provide a 
specific feasible column masking solution for ensuring strong 
privacy in DWs, while registering an acceptable measure of 
performance degradation and storage space overhead. 

4.1 The MOBAT Data Security Architecture 
The proposed architecture for the system, which can be seen in 
Figure 1, is comprised of three entities: 1) the masked database 
and its DBMS; 2) the MOBAT Security Application (MOBAT-
SA); and 3) user/client applications that query data in the masked 
database. The MOBAT-SA acts as a middleware between the 
masked database DBMS and the user applications, using secure 
SSL/TLS connections, ensuring that the queried data is securely 
processed and proper results are returned to those applications. 

 
Figure 1. The MOBAT Data Security Architecture 

Our solution is based on a formula that depends on three masking 
keys; two are private (i.e., not available to any DW user, 
including DBAs) and one is public. The private keys for each 

table and column to mask that are generated for our method are 
encrypted and stored in the “black box”. The black box works like 
the Oracle Wallet, explained in the previous sections, and is 
hidden in the directories and file structure of the operating system 
of the database server. 

Technically, if a DBA or enterprise manager is allowed to control 
security without any restriction (which may happen in the Oracle 
TDE solution, for instance), the whole system becomes 
vulnerable to malicious DBA/manager actions. To manage this, 
our black box can never be manually accessed or updated by 
anyone, except the MOBAT-SA itself. All submitted logins and 
queries to the MOBAT-SA are stored and encrypted in the black 
box as a read-only action log. All actions executed on the DW can 
be controlled and audited by whoever has administration rights, 
e.g. DBA’s, CEO’s, managers, etc, so anyone can watch over 
anyone to check for misuse. If an attacker manages to bypass the 
MOBAT-SA, s/he is able to directly access the database server; 
however, since all sensitive stored data is masked, s/he will never 
be able to access its true values. 

In typical topologies with encryption middleware solutions, such 
as [23], when a user application requests data, after ensuring the 
request is authorized, the security application retrieves encrypted 
data from the database and executes the decryption process. To do 
this, it must send the data over the network to be decrypted. 
However, once decrypted, we have clear-text information that 
needs to be sent back over the wire to the database server. This 
requires re-securing the information in transit, typically through 
secure communication processes such as SSL/TLS. When the data 
arrives at the agent on the database server, it has to be returned to 
clear-text, and then it is served up to the calling application.  

This type of topology has shown to be a poor solution. Since all 
the data to decrypt needs to pass through the encryption agent, the 
whole process gets strangled due to bandwidth consumption 
between itself and the database, jeopardizing data throughput and 
consequently, query response time. In these cases, the network 
roundtrips for data in DWs would become an unbearable cost, 
making this kind of solution unfeasible. Therefore, proposals 
involving encrypting and decrypting data at the database server 
are better solutions, because they eliminate network and 
computational overheads from the critical path. 



Our method relies on query rewriting, avoiding expensive 
invocation of user defined functions for masking or retrieving true 
data. Only the user queries are rewritten by MOBAT-SA and sent 
to the DBMS to be processed, sending the results back to the user 
application that requested their execution, instead of retrieving 
encrypted data for processing them. This avoids overflowing 
network bandwidth in the critical path, improving response time 
and throughput when compared with other solutions. 
Communication between the MOBAT-SA and the DBMS are 
made through secure SSL/TLS connections for protecting the 
rewritten queries and their results. The MOBAT-SA also disables 
the DBMS history log, ensuring that the rewritten query 
instruction is not kept in the database history, since it passes on 
the values of the masking keys. After the query results are 
returned, the MOBAT-SA restores the history log status. 

4.2 The MOBAT Data Masking Technique 
Most facts in DWs are columns with numerical values [14]. 
MOBAT aims on masking the DW’s numerical values, in a way 
that makes it difficult for any unauthorized user to discover their 
original values, while introducing minimum overhead in the 
necessary operations needed to retrieve the original values for 
query processing. We aim to ensure that sensitive data is replaced 
by realistic but not real data. 

Suppose a table T with a set of N numerical columns Ci = {C1, C2, 
C3, …, CN} to be masked and a total set of M rows Rj = {R1, R2, 
R3, …, RM}. Each value to mask in the table will be identified as a 
pair (Rj, Ci), where Rj and Ci respectively represent the row and 
column to which the value refers. The masking formula for each 
value of T depends on the following predefinitions: 

• K1 and K2 are private keys stored in the black box, thus, 
accessible only by the MOBAT-SA; 

• K1 is a 128 bit integer random generated value between 1 and 
2127, constant for table T; 

• K2 is a random generated value between 1 and the maximum 
positive integer value of column Ci, given the maximum 
storage size of Ci. There is one K2 for each column Ci, 
represented by K2, i; 

• K3 is a public key based on a 128 bit integer column appended 
to each row Rj in T, filled in with a random value between 1 
and 2127, represented by K3, j. 

Each new masked value (Rj, Ci)’ is obtained by applying the 
following formula (1) for row j and column i of table T: 

   (Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i) + K2, i              (1) 

Since K1 and K2, i are constants for the table and each column, 
respectively, and K3, j is also a constant, stored with each row in 
the table, the formula (2) for retrieving the original value is: 

   (Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i) – K2, i                 (2) 

This technique implies that the values of K3, j must be stored along 
with each row j in table T. If the values of K3, j where to be stored 
in a lookup table separate from table T, a heavy join operation 
between them is required, whenever there is a need to unmask 
data. Given the typical immense number of rows in fact tables, 
this should be avoided at all cost. Thus, to avoid table joins in 
query processing when using MOBAT, there are two possible 
solutions for including K3, j in each row of table T: 

1) A MODIFY TABLE … ADD COLUMN is done for 
creating K3, j as a new column in table T; or  

2) Table T is rebuilt with inclusion of K3, j in the CREATE 
TABLE statement before restoring the data. 

The second option will imply a certain effort and amount of time, 
depending on table T’s size, in order to rebuild it. However, it 
should reveal a gain in query response time, since the new column 
K3, j is physically included in each row from the start, instead of 
appended to the database after it has already been filled in, which 
makes it physically stored apart from the previous existing data.  

A third option for defining K3, j values and increasing performance 
is to use any long integer typed column CZ, which is already part 
of the original data structure of table T, as K3, j, instead of creating 
an extra column for K3, j in T. In this case, there is no need to 
change the data structure of T, avoiding storage space overhead in 
T. However, this somewhat limits the strength of the masking 
formula, since the value of K3, j also depends on the range and 
cardinality of the values of CZ, and the predictability of knowing 
the values of CZ on behalf of an attacker.  

4.3 Apparent Randomness and Security 
Generating randomness for cryptographic or masking applications 
is a costly and security-critical operation [7]. There is a need to 
guarantee that the generated values for masking the real data is 
not deductible between them. Therefore, two same original real 
data values must generically originate different masking 
generated values, so a minimum level of apparent randomness is 
ensured. Given that our masking formula (1) uses MOD 
operations in conjunction with randomly generated realistic 
values, the generated masked values for the same original data 
values are mostly different. Thus, the referred minimal level of 
apparent randomness is assured in the new masked values, which 
allows achieving acceptable security strength in this sense. 

Our masking formula (1) is based on the use of two consecutive 
MOD operations. Since the MOD function has no inverse 
function [10], there is no way of deducing an inverse function of 
(1) without applying our reverse masking function (2) to retrieve 
the original data values (except for trying a brute force attack). To 
demonstrate this, suppose a table T with two masked columns, 
Column1 and Column2. Suppose the MOBAT-SA generated the 
values K1=7432 for table T and K2,1=34 and K2,2=17251 for each 
column. Table 2 shows the original data for T on the left and its 
resulting masked content on the right, using the masking formula 
(1). In Table 2, it can be seen that the same original values of 
Column1 result in different masked values Column1’, achieving 
the referred apparent randomness. Therefore, the only way to 
bypass our security solution is to obtain the values of the private 
masking keys K1 and K2. 

Table 2. Example of an original and resulting masked 
dataset using MOBAT 

T – Original dataset  T‘ – Masked dataset 
Column1 Column2 K3,j  Column1‘  Column2‘ K3,j 
12 9 1873 817721   15  108923 817721 
23 9 4129 936154   43  104226 936154 
12 7 1624 61437   37  86894 61437 
12 3 8824 94725   13  50534 94725 
23 8 4624 497624   51  94763 497624 



Given encryption or masking key lengths, a brute force attack is 
done by generating the total number of possible combinations for 
testing the algorithm, given a certain input. Taking the minimum 
128 bit length key for AES, the total number of possible 
combinations for this algorithm is 2128. Therefore, the average 
number of tests that attackers need to execute for discovering 
each encryption key is, roughly, half that number, i.e., 2127. 

In our proposal, since K3 is public, only K1 and K2 need to be 
discovered. K1 is a 128 bit integer key. K2 is also a 128 bit integer, 
which depends on the maximum integer storage size defined for 
each column, and is therefore variable between 1 and 128 bits. 
This means that our technique implies a minimum number of 2129 
key combinations, for K1 and K2 together (at least 128 bits + 1 
bit), and roughly needs an average number of 2128 tests for 
discovering the keys using brute force, for each masked column in 
the table, since K2 is column dependant. Thus, the average 
number of combinations to discover all the needed key values for 
an i number of columns is i * 2128 brute force tests. Periodically, 
the values of all or any one of the K1, K2, and K3 keys may be 
refreshed and rebuild the masked table values, in order to ensure 
data is properly protected. Although it is not possible to prove that 
a particular algorithm is secure [9, 19], we believe that our 
technique is secure enough to be considered as acceptable for use. 

4.4 Implementing the Masked Database 
To mask a database, a DBA must require this action through the 
MOBAT-SA. Entering the DBA login and database connection 
data, this application will attempt to login to the respective 
database. If it succeeds, MOBAT-SA will scan all relevant data 
access policy definitions in the database, for identifying 
authorized users and respective permissions. The black box will 
then be updated with the user access definitions for that database. 

After the previous step, the MOBAT-SA will ask the DBA which 
tables and columns are to be masked. After confirmation of this 
information, the database is masked. At this point, the DBA will 
have to define how the K3, j masking keys are to be created for 
each table (which has to be one of the three options mentioned in 
the explanation of the MOBAT masking technique): 1) an extra 
added column to each table to mask, without rebuilding them; 2) 
an added column to the structure of each table, rebuilding it 
entirely; or 3) using one of the numerical columns of the table. 

According to the chosen options for each table, the K3, j masking 
keys will be generated and stored in the j rows of each respective 
table to which it refers, and all K1 and K2, i masking keys for each 
table and column will also be generated, encrypted and stored in 
the respective black box. All key values are generated according 
to what we have explained in section 4.3. Finally, the MOBAT-
SA will apply the data masking formula (1) on all rows of all 
columns which are to be masked, updating their value with the 
new masked value. Whenever the database needs to be updated 
with the insertion of new data or the modification or deletion of 
existing data, this should be performed by the MOBAT-SA, 
which will apply the masking routine to any value which refers to 
any masked column, storing the masked value directly in place. 

4.5 Querying the Masked Database 
When client applications request the execution of a query, they 
submit it to the MOBAT-SA, instead of directly querying the 
database. The MOBAT-SA then rewrites the query using the 
formula (2) to replace the respective masked columns used in the 

query, checking the user access definitions in the black box to see 
if it comes from an authorized user. To rewrite the query, the 
MOBAT-SA searches for the tables and columns it needs to 
process, and looks up the security black box for retrieving the K1 
and K2, i data masking keys for those tables and columns, 
respectively, as well as the names of the needed K3, j key fields to 
be used by the MOBAT-SA in those tables. 

As an example, suppose the LineItem table of the TPC-H 
benchmark has four numerical fact columns (I = 4) (L_Quantity, 
L_ExtendedPrice, L_Tax and L_Discount) masked by MOBAT. 
Suppose also that MOBAT has generated and filled in a new 
column L_KeyK3 for the j rows of the LineItem table, which will 
act as the K3, j key values for our method, and has stored the value 
of 9342 (for example) for key K1 referring to the LineItem table, 
as well as K2, L_Quantity = 12, K2, L_ExtendedPrice = 51234, K2, L_Tax = 6, 
and K2, L_Discount = 4 (for example also). Consider TPC-H query Q6 
with the masked fields, for showing the total ordered quantity, 
income, discounts and tax value of each customer order: 

SELECT SUM(L_ExtendedPrice * L_Discount) AS    
       Total_Revenue 
FROM LineItem  
WHERE L_ShipDate>=TO_DATE('1994-01-01', 
      'YYYY-MM-DD') AND 
      L_ShipDate<TO_DATE('1995-01-01', 
      'YYYY-MM-DD') AND 

         L_Discount BETWEEN 0.05 AND 0.07 AND  
         L_Quantity<24 

The new query, rewritten by the security application and 
submitted to the DBMS server, would be: 

SELECT  
    SUM((L_ExtendedPrice+MOD(MOD(L_KeyK3,9342),  
         51234)-51234) *   
        (L_Discount+MOD(MOD(L_KeyK3,9342),  
         4)-4)) AS Total_Revenue 
FROM LineItem  
WHERE L_ShipDate>=TO_DATE('1994-01-01', 
      'YYYY-MM-DD') AND 
      L_ShipDate<TO_DATE('1995-01-01', 
      'YYYY-MM-DD') AND 
     (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4)  
      BETWEEN 0.05 AND 0.07 AND 

      (L_Quantity+MOD(MOD(L_KeyK3,9342),12)-12)<24 

The changes to the user queries are handled transparently by the 
MOBAT-SA and kept hidden from the users. Only the query 
results are passed back to the users after they have been 
processed. The only change user applications need is to query the 
MOBAT-SA, instead of the database. This makes MOBAT a 
transparent solution and also addresses the trend towards 
embedding business logic within a DBMS through the use of 
stored procedures and triggers [16]. On the other hand, the 
masked database may be used for testing user software 
development, allowing direct queries, since the data is masked but 
the data schemas maintain all their original definitions. A direct 
query on the masked database will be harmless, producing 
realistic results, but with different values from the real ones. 

5. EXPERIMENTAL EVALUATION 
To evaluate our proposal, we used the 1GB and 10GB scale sizes 
of the TPC-H decision support benchmark, and a real-world sales 
DW storing one year of commercial data. To build the DWs, we 
used the Oracle 11g DBMS, on a Pentium CPU with 2GB RAM 
and 1.5TB SATA hard disk. 512MB were dedicated for Oracle 
memory cache (SGA). All results shown in this section were 



obtained under the exact same conditions as referred in section 3 
of this paper (see subsection 3.2). The data schema of TPC-H is a 
database with one fact table (LineItem), and seven dimension 
tables attached to it. The data schema of the real-world sales DW 
is a database with one fact table (Sales) and four dimension tables 
attached to it. The storage size and number of rows for each TPC-
H table and sales DW are shown in Tables 3 and 4, respectively. 

Table 3. TPC-H decision support benchmark table sizes 
 1GB TPC-H Database 10GB TPC-H Database 
Table Nr. of Rows Table Size Nr. of Rows Table Size 
LineItem 6.001.215 740MB 59.986.052 7.386MB
Orders 1.500.000 152MB 15.000.000 1.520MB
Customers 150.000 32MB 1.500.000 320MB
Suppliers 10.000 4MB 100.000 40MB
Part 200.000 32MB 2.000.000 312MB
PartSupp 800.000 112MB 8.000.000 1.120MB
Nation 25 <1MB 25 <1MB
Region 5 <1MB 5 <1MB
TOTALS 8.661.245 1.072MB 86.586.082 10.968MB
 

Table 4. Sales DW table sizes 
Sales DW Database 

Table Nr. Of Rows Table Size
Sales 31.536.124 1.927MB
Products 50.109 7MB
Customers 251.514 90MB
Promotions 89.812 10MB
Time 8.760 <1MB
TOTALS 31.936.319 2.034MB

 

In the TPC-H setups, four columns of the LineItem fact table were 
chosen for masking (L_Quantity, L_ExtendedPrice, L_Tax and 
L_Discount), given that they are the numerical fact columns used 
in the benchmark queries. In the Sales DW, five numerical 
columns were chosen (S_ShipToCost, S_Tax, S_Quantity, 
S_SalesAmount, and S_Profit), for the same reasons. 

For the TPC-H workload we used the benchmark queries 1, 3, 6, 
7, 8, 10, 12, 14, 15, 17, 19, and 20, which access the masked table 
LineItem. For the Sales DW, the workload was composed by a set 

of 29 queries, all processing the Sales fact table, representing a 
sample of typical decision support queries. All data schemas, 
queries and results may be consulted at [18]. The results show 
each query’s average response time (with standard deviations 
between [0.52, 54.65] for 1GB TPC-H, between [0.64, 70.10] for 
10GB TPC-H, and between [0.57, 71.20] for the Sales DW). The 
experimental scenarios are shown in Table 5. 

Table 6 shows data loading time and storage space results for 
each scenario. Without masking or encrypting, the storage size of 
the LineItem fact table for the 1GB TPC-H measured 772MB, 
taking up 310 seconds to perform a complete load using the 
Oracle SQL*Loader. As seen in Table 6, with MOBAT the 
storage size grows from 0% (when using column L_OrderKey as 
the masking key K3, j) to a maximum of 5.7%, while loading time 
overhead respectively ranges from 0% (for the same scenario) to 
7.7%. When using the Oracle TDE column encryption scenarios, 
both storage space and loading time overheads are much greater 
(at least 100% more storage space and loading time overheads). 

Figure 2 shows each individual TPC-H query execution time 
result for the 10GByte scale database, while Figure 3 show query 
execution time overheads (in percentage) referring to each data 
encryption/masking scenario, for the same database. Figures 4 
and 5 show the query response time and respective overheads, for 
the Sales DW database. The results for the 1GByte TPC-H 
database where similar to those of the 10GByte TPC-H database. 

Observing Figures 2 to 5, almost all MOBAT results are better 
than those obtained by the AES128 and 3DES168 Oracle TDE 
encryption algorithms, for all the TPC-H and real-world Sales 
DW setups. MOBAT response time overheads in TPC-H are 
smaller than 10% for almost all the queries, except Q1 and Q17, 
while the data encryption scenarios show overheads mainly 
around 100%, except for Q1 (where they reach 10000%), Q17, 
Q19 and Q20. In the results concerning the 2GByte Sales DW, 
shown in Figures 4 and 5, MOBAT results are also much better, 
where queries Q1, Q2, Q3, Q5, Q7 and Q9 registered almost no 
significant query response time overheads at all, while with the 
encryption algorithms AES128 and 3DES168, 26 out of all 29 
queries presented an overhead equal or greater than 100%. 

Table 5. Experimental Data Encryption/Masking Scenarios 
Reference Graphic Description 
Standard  Unencrypted/Unmasked data 

AES128 Column  Data encrypted with Oracle TDE AES128 column 
3DES168 Column  Data encrypted with Oracle TDE 3DES168 column 

MOBAT AddCol  Data masked by MOBAT formula (1), where masking key column K3, j has been added to the fact table 

MOBAT CreateCol  
Data masked by MOBAT formula (1), where masking key column K3, j was added to the fact table, which has 
been completely recreated 

MOBAT ColKey  
Data masked by MOBAT formula (1), using a numerical column from the original fact table data structure as 
key K3, j 

 

Table 6. TPC-H 1GB LineItem storage size and data loading 

 
 



Figure 2. 10GB TPC-H Data Warehouse Query Execution Times  

 
Figure 3. 10GB TPC-H Data Warehouse Query Execution Time Overheads per Encryption/Masking Algorithm 

 
Figure 4. Sales Data Warehouse Query Execution Times 

 
Figure 5. Sales Data Warehouse Query Execution Time Overheads per Encryption/Masking Algorithm 

 
Figure 6. Complete Query Workload Execution Time Overheads per Encryption/Masking Algorithm 

Figure 6 shows the overheads for the whole workload of each 
experimental setup. Comparing the overheads introduced by each 
technique, they confirm that MOBAT is much better than both 
AES128 and 3DES168 Oracle Column TDE, given the complete 
query workload in each setup. MOBAT ranges from at least 5.32 
(187.7/35.3) times better than the standard encryption solutions 
for the 1GB TPC-H database, to 9.23 (203/22) times better. In the 
10GB TPC-H database, the gains range from 6.05 (131.8/21.8) to 
8.58 (144.2/16.8) times better, and for the Sales DW, from 5.39 
(688.3/127.7) to 10.5 (814.7/77.6) times better. All results also 
show that the performance of CreateCol Masking is better than 
AddCol Masking, which was expected, as we mentioned in 
section 4.3, when explaining the MOBAT technique. The 
performance results of ColKey Masking experiments are the best 

for MOBAT, since there was no need for creating an extra column 
in the fact tables, which allowed maintaining fact table storage 
size and to avoid retrieving an extra column for processing the 
queries, when compared to AddCol Masking and CreateCol 
Masking. 

6. CONCLUSIONS AND FUTURE WORK 
In this paper we discussed the existing solutions for data privacy 
and the issues involving their use in DWs. We demonstrated that 
the introduced storage space and performance overheads can 
make their use unfeasible from a data warehousing perspective. 
This leads us to state that the existing techniques are too complex 
to be used in DW scenarios. 



Given that business data in DWs mainly consist on numerical 
values, we have proposed a data masking technique for numerical 
values. The solution is based on a masking formula with two 
modulus (division remainder) and two simple arithmetic 
operations. The formula introduces low computational efforts and, 
consequently, relatively small overheads in query response time, 
while providing a considerable level of security, given the length 
of the masking keys and non-invertible properties of the modulus 
operation. It also requires a very small overhead in storage space, 
compared with other column-based data privacy solutions. 

By simply rewriting user queries, it avoids network bandwidth 
overflow. Stored data is masked at all times, which allows using 
the masked database for testing software production; directly 
querying the database will retrieve realistic data, but never real 
data. This also avoids access to real original data if any attacker is 
able to bypass access control and retrieve data directly from the 
database. MOBAT also allows authorized database and enterprise 
managers and administrators to audit the actions of everyone else 
and each other, by being able to lookup the masking actions and 
SQL commands history executed by the MOBAT-SA. 

Experimental evaluations show the overheads produced by our 
proposal in both appending and consulting data are lower than 
those of standard encryption algorithms such as AES and 3DES, 
provided by major DBMS. The results show that our technique is 
a more efficient overall solution, making it a valid alternative for 
protecting DW numerical data. 

As future work, we will develop our technique to accomplish 
masking alphanumeric values also, to provide a complete data 
protection solution. We will also strive to prove and improve its 
security strength without jeopardizing database performance. We 
also intend to take advantage of the inclusion of the extra column 
in the masked tables for detecting malicious or incorrect data 
changes in each row, broadening the scope of our solution to 
embrace data integrity issues. 

7. REFERENCES 
[1] 3DES, Triple DES, National Institute of Standards and 

Technology (NIST), Federal Information Processing 
Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3, 2005. 

[2] AES, “Advanced Encryption Standard”, National Inst. of 
Standards and Technology (NIST), FIPS-197, 2001. 

[3] R. Agarwal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic 
Databases”, Int. Conf. Very Large DataBases (VLDB), 2002. 

[4] R. Agarwal, J. Kiernan, R. Srikant, and Y. Xu, “Order-
Preserving Encryption for Numeric Data”, ACM SIG Conf. 
on Management Of Data (SIGMOD), 2004. 

[5] R. Agrawal, R. Srikant, and D. Thomas, “Privacy Preserving 
OLAP”, ACM SIG Conf. Management Of Data (SIGMOD), 
2005. 

[6] H. Baer, “On-Time Data Warehousing with Oracle Database 
10g – Information at the Speed of Your Business”, Oracle 
Whitepaper, Oracle Corporation, 2004. 

[7] M. Barbosa and P. Farshim, “Randomness Reuse: Extensions 
and Improvements”, Inst. Mathematics and its Applications 
(IMA) Int. Conference on Cryptography and Coding, 2009. 

[8] DES, Data Encryption Standard, National Institute of 
Standards and Technology (NIST), Federal Information 
Processing Standards (FIPS) Publication 46, 1977. 

[9] N. Ferguson, “AES-CBC + Elephant Diffuser – A Disk 
Encryption Algorithm for Windows Vista”, Microsoft Corp. 
Whitepaper, 2006. 

[10] T. Ge and S. Zdonik, “Fast, Secure Encryption for Indexing 
in a Column-Oriented DBMS”, Int. Conf. Data Engineering 
(ICDE), 2007. 

[11] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra, 
“Executing SQL over Encrypted Data in the Database-
Service-Provider Model”, ACM SIG International 
Conference on Management Of Data (SIGMOD), 2002. 

[12] P. Huey, “Oracle Database Security Guide 11g”, Oracle 
Corp., 2008. 

[13] J. Kim, Y. Lee, and S. Lee, “DES with any reduced masked 
rounds is not secure against side-channel attacks”, Elsevier 
Int. Journal Computers and Mathematics with Applications, 
60, 2010, www.elsevier.com/locate/camwa 

[14] R. Kimball and M. Ross, “The Data Warehouse Toolkit”, 2nd 
Edition, Wiley & Sons, Inc., 2002.   

[15] J. Kobielus, “The Forrester Wave: Enterprise Data 
Warehousing Platforms”, Forrester Research Report, 2009. 

[16] U. T. Mattson, “Database Encryption – How to Balance 
Security with Performance”, Protegrity Corporation 
Technical Paper, 2004. 

[17] J. McKendrick, “IOUG Data Security 2009: Budget Pressure 
Lead to Increased Risks”, The Independent Oracle Users 
Group (IOUG) Security Report, 2009. 

[18] MOBAT Testing Queries, available at 
http://213.13.123.56/MOBAT/queries.html  

[19] A. Nadeem and M. Y. Javed, “A Performance Comparison of 
Data Encryption Algorithms”, IEEE Int. Conference on 
Inform. and Communication Technologies (ICICT), 2005. 

[20] Oracle Corporation, “Security and the Data Warehouse”, 
Oracle White Paper, 2005. 

[21] Oracle Corporation, “Data Masking Best Practices”, Oracle 
White Paper, 2010. 

[22] Oracle Corporation, “Oracle Advanced Security Transparent 
Data Encryption Best Practices”, Oracle White Paper, 2010. 

[23] V. Radha and N. H. Kumar, “EISA – An Enterprise 
Application Security Solution for Databases”, Int. Conf. on 
Information Systems Security (ICISS), S. Jajodia and C. 
Mazumdar (Eds), Springer LNCS 3803, 2005. 

[24] B. Schneier, “Description of a New Variable-Length Key, 
Block Cipher (Blowfish), Fast Software Encryption”, 
Cambridge Security Workshop, 1994. 

[25] Transaction Processing Council, “The TPC Decision Support 
Benchmark H”, http://www.tpc.org/tpch/default.asp 

[26] J. Vaidya and C. Clifton, “Privacy Preserving Association 
Rule Mining in Vertically Partitioned Data”, ACM SIGKDD 
Int. Conf. on Knowledge Discovery and Data Mining, 2002. 

[27] M. Vieira and H. Madeira, “Towards a Security Benchmark 
for Database Management Systems”, Int. Conference on 
Dependable Systems and Networks (DSN), 2005. 

[28] S. C. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. 
Samarati, “Over-encryption: Management of Access Control 
Evolution on Oursourced Data”, Int. Conf. on Very Large 
DataBases (VLDB), 2007. 

[29] N. Yuhanna, “Your Enterprise Database Security Strategy 
2010”, Forrester Research, September 2009. 


