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Abstract—Data Warehouses (DWs) store the golden nuggets of 
the business, which makes them an appealing target. To ensure 
data privacy, encryption solutions have been used and proven 
efficient in their security purpose. However, they introduce 
massive storage space and performance overheads, making 
them unfeasible for DWs. We propose a data masking 
technique for protecting sensitive business data in DWs that 
balances security strength with database performance, using a 
formula based on the mathematical modular operator. Our 
solution manages apparent randomness and distribution of the 
masked values, while introducing small storage space and 
query execution time overheads. It also enables a false data 
injection method for misleading attackers and increasing the 
overall security strength. It can be easily implemented in any 
DataBase Management System (DBMS) and transparently 
used, without changes to application source code. 
Experimental evaluations using a real-world DW and TPC-H 
decision support benchmark implemented in leading 
commercial DBMS Oracle 11g and Microsoft SQL Server 2008 
demonstrate its overall effectiveness. Results show substantial 
savings of its implementation costs when compared with state 
of the art data privacy solutions provided by those DBMS and 
that it outperforms those solutions in both data querying and 
insertion of new data. 

Keywords-Data warehousing, Data masking, Data 
obfuscation, Data encryption, Data privacy, Data security 

I.  INTRODUCTION 
Data Warehouses (DWs) store sensitive enterprise data 

used by analytical, data mining and business intelligence 
solutions to produce business knowledge. Thus, DW 
databases store the golden nuggets of the business, making 
them a major target for inside and outside attackers [26]. As 
the number of attacks and their complexity increases, 
efficiently securing DW data is critical [15, 18, 26]. 

A. Motivation 
To protect the privacy of stored data, besides data access 

policies [7], data masking (alias data obfuscation, i.e., 
changing data values so their real values are unknown) and 
encryption algorithms are widely used. Published research 
has stated that encryption standards are the best method to 
protect sensitive data at the database level and deliver 
performance [17, 25, 26, 30]. However, although efficient in 
their security purpose, data masking and encryption 
techniques introduce key costs: 

• Large processing time/resources for masking or 
encrypting sensitive data, given routine or hardware access; 

• Extra storage space of masked/encrypted data. Since 
DWs usually have many millions/billions of rows, even 
small modification of any column size or the creation of 
masking reference tables introduces large storage space 
overheads; 

• Overhead query response time and allocated resources 
for retrieving/decrypting data to process queries. Given the 
huge amount of data typically accessed by DW queries, this 
is probably the most significant drawback for using data 
masking/encryption in DWs [3]. 

DW databases take up huge storage space. Business data 
is mostly stored in numerical attributes, called facts; fact 
tables usually take up at least 90% of storage space [13]. 
Decision support queries typically process huge amounts of 
data, resulting in substantial response time (usually from 
minutes or hours) [13]. Given the referred key costs, using 
encryption techniques introduces very considerable storage 
space and response time overheads, as shown in our 
experiments (section III). Moreover, many studies [9, 10, 
16, 24, 25] have shown that those overheads dramatically 
degrade database performance, a critical issue in DW 
scenarios, in a magnitude that ultimately jeopardizes their 
applicability. Thus, current data masking and encryption 
solutions are unsuitable for DWs. Specific DW data privacy 
solutions must always balance security requirements with 
the desire for high performance, ensuring strong security 
while keeping database performance acceptable [9, 16, 24]. 
This is a critical issue and remains a challenge. 

B. Our Proposal 
We wish to make it clear that our proposal does not 

intend to replace any standard encryption algorithm, rather it 
is an alternative solution specifically developed for DW data 
privacy. It is not our aim to propose a solution as strong in 
security as the state of the art encryption algorithms, rather a 
technique that provides an overall considerable level of 
security while introducing very small overheads in storage 
space and database performance, i.e., that presents better 
tradeoffs between security and performance, a critical issue 
to determine the feasibility of these solutions for DWs. 

A data privacy solution may be useless if it assures high 
security strength, but is too slow to be considered acceptable 
in practice [16]. In this sense, we propose a data masking 
technique for numerical facts, balancing tradeoffs between 



data security and database performance. It is low-cost and 
straightforward to implement in any DBMS, requiring small 
efforts to be used. Our proposal uses the MOD operator 
(which returns the remainder of a division expression) and 
simple arithmetic operations to mask data and provide a 
significant level of apparent randomness for the masked 
values. Our solution can also use one of the masking keys 
for injecting false data into the DW in order to mislead 
attackers and increase the overall security level, making 
them unable to distinguish true from false data. 

The proposed solution is transparent; to query the 
database, user applications need only to send their queries to 
a middleware security broker – which has access to the 
masking keys and rewrites user queries to correctly process 
the required data – instead of the DBMS. Only the final 
processed results are returned to the authorized user 
applications that requested them. All SQL commands and 
actions required to be executed are encrypted and stored in a 
log by the security broker, which can be audited by any user 
with administration rights. In the database, the processed 
data remains masked at all times, never allowing breaches 
before the queries finish execution. If an attacker bypasses 
the broker and gains direct access, s/he will only see masked 
values, as well as mixed true and false data rows.  

To evaluate our proposal, we include experiments using 
two leading commercial DBMS, Oracle 11g and Microsoft 
SQL Server 2008, and one open-source DBMS, MySQL 
Server 5.5. The results show that our technique is much 
better than those of standard data privacy algorithms, for 
nearly all queries in all tested scenarios. The overall results 
show that our proposal is a valid alternative and supplies the 
additional advantages of false data injection facilities. 

C. Main Contributions 
The main contributions of our solution are as follows: 
It presents better security and performance tradeoffs than 

standard data privacy solutions, by significantly decreasing 
data storage space and processing overheads in inserting as 
wells as querying DW data; 

Contrarily to other similar solutions that pre-fetch the 
data to process, by simply rewriting queries we avoid 
network bandwidth congestion; 

The stored data is masked at all times, which allows 
using the database (or “as-is” direct replicas) for testing 
purposes and direct querying during application software 
development, since the data is always realistic but not real 
and generates realistic but not real results; 

The solution can inject false data to increase the DW 
overall security level. To our knowledge, this is the first 
data privacy solution specifically proposed for DWs that 
integrates data injection features for enforcing data security. 

D. Paper Structure 
The remainder of this paper is organized as follows. In 

section II we describe our technique and point out the main 
issues involved in its use. In Section III, we discuss our 
solution’s security and performance issues. Section IV 
presents experimental evaluations using the TPC-H decision 

support benchmark and a real-world DW. Section V presents 
related work, describing standard and state of the art data 
masking and encryption solutions for providing data privacy 
and discussing the issues from a DW perspective. Finally, 
section VI presents our conclusions and future work. 

II. MOBAT: MODULUS BASED DATA MASKING 
TECHNIQUE FOR DATA WAREHOUSES 

A. MOBAT Functional Architecture 
The system’s architecture is shown in Figure 1, made up 

by three entities: 1) the masked database and its DBMS; 2) 
the MOBAT security application (MOBAT-SA); and 3) 
user/client applications to query the masked database. The 
MOBAT-SA is a middleware broker between the masked 
database DBMS and those applications, ensuring queried 
data is securely processed and proper results are returned to 
those applications. All communications are made through 
SSL/TLS secure connections, to protect SQL instructions 
and returned results between the entities, avoiding problems 
from intercepting messages by attackers on the network. 

 
Figure 1. The MOBAT Data Security Architecture 

The Black Box is a set of files in a directory of the file 
structure of the database server, created for each masked 
database. This process is similar to an Oracle Wallet, which 
keeps all encryption keys and definitions for each Oracle 
Database [11]. However, contrarily to Oracle, where a DBA 
is free to access the Wallet whenever s/he wishes, in our 
solution only MOBAT-SA can access the Black Box, i.e., 
absolutely no user has direct access to its content. In the 
Black Box, MOBAT-SA will store all the created masking 
keys and predefined data access policies for the concerned 
database. The MOBAT-SA will also create a history log for 
saving a duplicate of all instructions and actions executed in 
the database, for auditing and control purposes. All Black 
Box contents are encrypted using AES standard encryption 
algorithm [2] with a 256 bit key. In case of losing the Black 
Box of a certain database, there is no way to restore its true 
data, except to crack the masking keys. 

Our solution uses three masking keys; two are private 
and one is public. MOBAT-SA generates all masking keys 
and their values are never shown or known by the DBA or 
any other user. To obtain true results, user queries or actions 
must pass through MOBAT-SA, which will store a copy of 
those instructions in the history log. Each time a user 
requests any action, MOBAT-SA will receive and parse the 



instructions, fetch the necessary masking keys, rewrite the 
query, send it to process by the DBMS and retrieve the 
results, and finally send those results back to the application 
that issued the request. 

B. Implementing MOBAT on a Database 
A DBA requires masking a database through MOBAT-

SA. Entering DBA login and database connection data, 
MOBAT-SA will try to login to that database. If it succeeds, 
it will create the Black Box, scanning and storing all 
database data access policies for users and their permissions. 
An action log for saving all further user actions will also be 
created, as explained earlier. After that, MOBAT-SA will 
ask the DBA which tables and columns are to be masked. 
All needed private masking keys for each table and column 
will be generated, encrypted and stored in the Black Box. 
Finally, MOBAT-SA will apply the masking formula 
(explained in subsection II.C) on all data to mask. Whenever 
database updates are needed, they should be done through 
the MOBAT-SA, which will apply the masking routine to 
the referenced values and store them directly in place. 

C. The MOBAT Data Masking Technique 
Most facts in DWs are columns with numerical values 

[13]. Since fact tables usually represent more than 90% of 
the DW’s total size [13], numeric-type columns represent 
the largest portion of business data. MOBAT aims on 
masking the DW’s numerical values while introducing small 
overheads in computational efforts for query processing. 

Suppose a table T with a set of N numerical columns Ci 
= {C1, C2, C3, …, CN) to mask and a total set of M rows Rj = 
{R1, R2, R3, …, RM). Each value to mask in the table will be 
identified as a pair (Rj, Ci), where Rj and Ci respectively 
represent the row and column to which the value refers. The 
masking formula depends on the following predefinitions: 

• K1 and K2 are private keys stored in the Black Box, 
known only by MOBAT-SA; 

• K1 is a 128 bit random generated value, constant for T; 
• K2 is a 128 bit random generated value, ranging 

between the minimum and maximum positive integer 
value possible of column Ci. There is a K2 for each 
column Ci to be masked, represented by K2, i; 

• K3 is a public key based on a 128 bit column appended 
to each row Rj in T, filled in with a random value 
between 1 and 2128, represented by K3, j. 

Suppose each value to mask as (Rj, Ci). Each new 
masked value (Rj, Ci)’ is obtained by applying the following 
formula (1) for row j and column i of table T: 

(Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i) + K2, i (1) 
MOD is the modulus operator returning the remainder of 

a division expression. Since K1 and K2, i are constant values 
for the table and each column, respectively, and K3, j is 
stored with each row in the table, the inverse formula of (1) 
for retrieving the original value is shown as formula (2): 

(Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i) – K2, i  (2) 
If the values of K3, j were stored in a lookup table 

separate from table T, a heavy join operation between those 
tables would be required to unmask data. Given the typical 

enormous number of rows in fact tables, this should be 
avoided at all cost. To avoid table joins, the values of K3, j 
must be stored along with each row j in table T. To 
accomplish this, there are two possible solutions:  

1. A new column is created and added to table T for 
storing each K3, j value;  

2. Table T is recreated with the inclusion of K3, j in the 
CREATE TABLE statement from the start and then 
restoring the table’s data. 

The second option implies additional efforts and time to 
rebuild table T, depending on its size. However, it should 
speed up query response time compared to the first option, 
since the new column K3, j is included with the original data 
in each row; the second option stores it physically apart 
from the original data. Impact on performance is seen in 
section III (MOBAT_AddCol and MOBAT_CreateCol). A 
third option for defining K3, j values and speed up 
performance is to use any long integer typed column CZ, 
which is already part of the original data structure of table T, 
instead of creating an extra column for K3,j in T. In this case, 
no changes in table T data structure are needed, eliminating 
storage space overhead. The results for this third option are 
also shown in section III, where each primary key of the fact 
tables are used as K3,j (MOBAT_ColKey). 

D. Querying the MOBAT Masked Database 
Whenever user applications execute a query, they submit 

it to the MOBAT-SA, which rewrites the received query in 
order to process it with the real data values, using formula 
(2) to replace the respective masked columns used in the 
query, and checking the user access authorization in the 
Black Box. To rewrite the user query, MOBAT-SA searches 
for which tables and columns it needs to process, and looks 
up the Black Box for retrieving K1 and K2,i data masking 
keys, respectively, as well as the needed K3, j key fields in 
those tables. As an example, suppose the TPC-H benchmark 
LineItem table [23] has four numerical fact columns 
(L_Quantity, L_ExtendedPrice, L_Tax and L_Discount) to 
mask by MOBAT. Suppose that MOBAT has generated and 
filled in a new column L_KeyK3 for the j rows of that table, 
which will act as the public K3, j key values, and has stored 
the value of 9342 for key K1 referring to the LineItem table, 
K2, L_Quantity = 12, K2, L_ExtendedPrice = 51234, and K2, L_Discount = 
4 (for example). Consider TPC-H query 6: 
SELECT SUM(L_ExtendedPrice * L_Discount) AS 
Revenue 
FROM   LineItem  
WHERE  L_ShipDate>=TO_DATE('1994-01-01')  
   AND L_ShipDate<TO_DATE('1995-01-01')  
   AND L_Discount BETWEEN 0.05 AND 0.07 
   AND L_Quantity<24 

The new query, rewritten by the MOBAT-SA and 
submitted to the DBMS will be: 
SELECT   
 SUM((L_ExtendedPrice+MOD(MOD(L_KeyK3,9342),51234) 
 -51234) * (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4)) 
       AS Revenue 
FROM   LineItem  
WHERE  L_ShipDate>=TO_DATE('1994-01-01')  
   AND L_ShipDate<TO_DATE('1995-01-01')  
   AND (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4) 
         BETWEEN 0.05 AND 0.07  
  AND (L_Quantity+MOD(MOD(L_KeyK3,9342),12)-12)<24  



As seen in the example, query parsing and adaptation is 
a straightforward operation, replacing each masked column 
with their respective reverse formula (2). This is valid for 
any type of query, including equality and range queries, as 
well as built in functions. These changes are handled 
transparently by the broker and kept hidden from the users. 
Only the query results are returned to the user application. 

E. Using False Data Injection with MOBAT 
MOBAT can inject false rows amongst the fact tables, 

making it increasingly difficult to distinguish true and false 
data. To do this, instead of generating independent random 
numbers for K3,j keys in each row as shown in subsection 
2.3, we redefine K3,j as a multiple of the sum of the true 
values of all Ci, j columns to be masked, for each true row j: 

K3,j = ( Ci, j ) * k,  { i = 1…n } where k is a random 
integer constant that does not overflow 128 bits for K3,j 
and n is the number of masked columns C in row j (3) 

For false rows, random values for filling Ci,j would be 
generated, and the value of K3,j would be equal to any value 
different from those generated by formula (3). Thus, true 
rows are verifiable through testing if K3,j is a multiple of the 
sum of the true unmasked values of all masked columns, 
using the MOD remainder operator. Formula (4) shows how 
to test if a certain row j is true or false: 

Given R = K3,j MOD ( Ci, j ) ,  { i = 1…n }     
IF R=0 THEN row j is True ELSE row j is False  (4) 
There is a tradeoff when using this method: the more 

false data is injected, the stronger is the table’s security 
level. However, the more data injected, the more data is 
scanned and verified by queries, decreasing performance. 
The overall security strength for each fact table is directly 
dependent on how many false rows are injected into each 
table and how they are distributed throughout existing data. 

III. MOBAT SECURITY AND PERFORMANCE ISSUES 

A. Security Issues 
Handling transparency and securing communications. 

All user queries/instructions are managed by MOBAT-SA, 
which transparently parses and rewrites them to query the 
DBMS and retrieve the intended results. The users never see 
the rewritten instructions. For security, MOBAT-SA shuts 
off database historical logs on the DBMS before requesting 
execution of the rewritten instructions, so they are not stored 
in the DBMS, since this would disclose the private keys. All 
communications between user applications, MOBAT-SA 
and DBMS are through encrypted SSL/TLS connections. 
All these actions prevent attackers from accessing the 
masking keys, rewritten queries/instructions and true data. 

Generating apparent randomness for the masked values. 
Generating randomness for masking and cryptographic 
applications is a costly and security-critical operation [6]. In 
order to guarantee their security strength, two same original 
real data values must generically originate different masking 
generated values, so a level of apparent randomness is 
ensured. Given that our masking formula (1) uses two MOD 

operations in conjunction with randomly generated realistic 
values, the generated masked values for the same original 
values are mostly different. To demonstrate this, suppose a 
table T with two masked columns, Column1 and Column2. 
Suppose the MOBAT-SA generated the values K1 = 9264 
for table T and K2,1 = 12 and K2,2 = 78254 for each column. 
Table I shows the original data for T on the left and its 
resulting masked content on the right. It can be seen that the 
same original values of Column1 result in different masked 
values, achieving apparent randomness. Of course, this is a 
very small dataset used only to illustrate these features. 

TABLE I.  EXAMPLE OF ORIGINAL AND MOBAT DATASET 

T – Original dataset  T‘ – MOBAT Masked 
dataset 

Column1 Column2 K3,j  Column1‘ Column2‘ K3,j 
11 91873 7537  22 162590 7537 
2 94129 1808  6 170575 1808 

18 71624 29636  22 148034 29636 
15 84624 34997  22 155673 34997 
12 46926 41395  17 120841 41395 

Non-invertibility of the masking formula. For a function 
to be invertible, each output must correspond to no more 
than one input, i.e., more than one different input cannot 
generate the same output; a function with this property is 
called one-to-one, or injective. An injective function must 
preserve distinctness: it never maps distinct elements of its 
domain to the same element of its codomain. The MOD 
operator is non-injective, given that for X MOD Y = Z, the 
same output Z, considering Y a constant, can have an 
undetermined number of possibilities in X as an input that 
will generate the same value Z (e.g. 15 MOD 4=3, 19 MOD 
4=3, 23 MOD 4=3, 27 MOD 4=3, etc). Since MOD 
operations are non-injective, the MOBAT formula (1) is 
also non-injective. Given that injectivity is required property 
for having invertibility, MOBAT is non-invertible. The only 
way to break its security is to crack the masking key values. 

Key Management. As known, the level of security of 
data masking or encryption solutions does not depend on its 
secrecy, but on its keys [16]. In our proposal, since K3 is 
public (stored in the fact table), only keys K1 and K2 need to 
be cracked. K1 is a 16 byte integer, i.e., a set of 128 bits. K2 
depends on maximum storage size defined for each column, 
variable between 1 and 128 bits. This means our technique 
implies a minimum of 2129 key combinations, for K1 and K2 
together (at least 16 bytes+1 bit), and roughly needs an 
average number of 2128 tests (half of the total possible brute 
force tests – 50% chance) for discovering the keys using 
brute force, for each masked column in the table, since K2 is 
column dependant. Consequently, the minimum number of 
combinations needed to discover all key values for a i 
number of columns is i * 2129, resulting in an average of i * 
2128 ≈ i * 3.4 x 1038 brute force tests to discover the keys. 

The security strength of standard encryption algorithms 
is higher than our solution. However, we require much less 
computational resources while maintaining a considerable 
level of security, given the high number of possible brute 
key values. Periodically, the values of all or any one of the 
K1, K2, and K3 keys can be switched in order to ensure data 



is properly protected. Moreover, the data injection method 
also allows increasing our solution’s overall security 
strength. Although it is not possible to absolutely prove that 
a particular algorithm is secure [9, 12, 16, 17], we believe 
our technique is secure enough to be acceptable for use. 

B. Performance and Transparency Issues 
Performance in middleware data privacy solutions. 

Topologies involving middleware data privacy solutions 
such as [21] typically request all the masked/encrypted data 
from the database and perform the unmasking/decrypting 
actions themselves locally. This strangles the network due to 
communication costs with bandwidth consumption between 
middleware and database, jeopardizing data throughput and 
consequently, response time. In a DW, previously acquiring 
all the data from the database for processing a query at the 
middleware is unreasonable, given the amount of data 
accessed for decision support. In this sense, our MOBAT-
SA just rewrites queries and sends them to be processed 
directly by the DBMS, sending only the results back to the 
user. This eliminates network overhead from critical path 
when compared to similar middleware security solutions. 

Encryption in Microsoft SQL Server 2008 and MySQL 
5.5. Microsoft SQL Server and MySQL 5.5 only encrypt 
textual or varbinary type values (char, varchar, varbinary, 
etc). Given that most sensitive columns in DW fact tables 
store numerical values, when using these DBMS they must 
be converted to textual or varbinary format. Once decrypted, 
these values must also be transformed back into numerical 
format in order to apply arithmetic operations such as sums, 
averages, etc., adding computational overheads with impact 
in performance. On the contrary, our solution is specifically 
designed for masking numerical values, and in this sense, is 
therefore much more appropriate for protecting DW facts. 

Transparently querying masked data. Query instructions 
in our solution become longer due to replacing each masked 
column with the formulas for masking or unmasking their 
stored contents, but this is automatically and transparently 
managed by the MOBAT-SA. The only change the user 
applications need is to send the query to the MOBAT-SA, 
instead of querying the database directly. 

IV. EXPERIMENTAL EVALUATION 
We used the TPC-H benchmark [23] (1GB and 10GB 

scale sizes) and a real-world sales DW storing one year of 
commercial data (taking up 2GB of data). We tested all 
scenarios in the leading DBMS Oracle 11g and Microsoft 
SQL Server 2008, on a Pentium 2.8GHz CPU with a 1.5TB 
SATA hard disk and 2GB RAM (512MB of devoted to 
database memory cache). Oracle 11g ran on Windows XP 
Professional, while SQL Server on Windows 2003 Server.  

The TPC-H schema has one fact table (LineItem), and 
seven dimension tables. The Sales DW database schema has 
one fact table (Sales) and four dimension tables. In TPC-H 
setups, four columns of LineItem were masked (L_Quantity, 
L_ExtendedPrice, L_Tax and L_Discount), given they are 
the numerical fact columns. In the Sales DW, five numerical 
columns were masked (S_ShipToCost, S_Tax, S_Quantity, 
S_Profit, and S_SalesAmount), for the same reasons.  

Since our solution is column-based, for fairness we 
compare it with the column-based AES128 and 3DES168 
encryption algorithms, given that tablespace encryption has 
functional primitives that speedup performance, making it 
unfair to compare with column-based techniques [11, 20]. 
Moreover, best practice documentation for encryption from 
both DBMSs [11, 20] recommends column-based encryption 
when sensitive data consists on small number of well-defined 
columns. We used AES128 and 3DES168 for comparison 
because they are, respectively, the fastest and slowest 
available algorithms in those DBMS [11, 20]. Table II shows 
the defined experimental encryption/masking scenarios. 
TABLE II.  EXPERIMENTAL DATA ENCRYPTION/MASKING SCENARIOS 
Reference/Label Description 
Standard Standard data without masking/encryption 

AES128 Col Data encrypted with TDE AES 128 bit key column 
encryption 

3DES168 Col Data encrypted with TDE 3DES168 column 
encryption 

MOBAT AddCol 
Data masked by MOBAT formula (1), where a 
column for masking keys K3, j has been added to the 
existing fact table 

MOBAT CreateCol 
Data masked by MOBAT formula (1), where a 
column for masking keys K3, j was added to the fact 
table, completely recreated 

MOBAT ColKey 
Data masked by MOBAT formula (1), using a 
numerical column from the original fact table data 
structure as key K3, j 

A. Analyzing Storage Size and Data Loading 
Tables III and IV show the data storage size and loading 

time (in seconds) results, respectively, for loading the TPC-
H 1GB LineItem table in each defined scenario. Figures 2 
and 3 show their overhead percentages. The results in the 
remaining databases are similar, with absolute values nearly 
proportional to their database sizes, and due to lack of space 
are not included. The MOBAT ColKey setup is not included, 
since it does not require changing fact table data structure. 

In storage space, MOBAT has overheads ranging from 
4.1% (32MB) to 5.7% (44MB) in Oracle and 2.8% (35MB) 
in SQL Server. AES128 and 3DES168 present storage space 
overheads from 103.6% (800MB) to 153.9% (1188MB) in 
Oracle and 76.3% (944MB) to 94.8% (1173MB) in SQL 
Server. In data loading time, MOBAT’s overhead ranges 
from 3.5% (11 seconds) to 7.7% (24 seconds) in Oracle and 
from 4.3% (9 seconds) to 6.5% (14 seconds) in SQL Server. 
AES128 and 3DES168 present much greater loading time 
overheads, from 189.7% (588 seconds) to 191.6% (594 
seconds) in Oracle and 123.1% (261 seconds) to 129.2% 
(274 seconds) in SQL Server.  

Considering the results, MOBAT is much more efficient, 
introducing very small overheads. Since these results are for 
the 1GB database and the overhead percentages are similar 
for the remaining scenarios, for TPC-H 10GB, which is ten 
times bigger, the absolute values of the overheads are also 
approximately ten times bigger. Proportionally, this means 
that TPC-H 10GB has nearly 8GB to 12GB of increased 
storage space, and nearly 43 to 99 minutes of increased 
loading time. Given that 10GB is actually a small size for a 
DW database, it is easy to conjecture that the overheads 



introduced by DBMS data encryption algorithms in DWs 
are extremely significant and may in fact be impracticable. 

B. Analyzing Database Query Performance 
The TPC-H workload included the benchmark queries 1, 

3,6,7,8,10,12,14,15,17,19 and 20 (all queries accessing the 
masked table LineItem). For Sales DW, the workload was a 
set of 29 queries, all processing the Sales fact table, as a set 
of usual decision support queries, with daily (queries 1 to 9), 
monthly (10 to 18) and annual (19 to 29) values, including 
actions like row selection, joining, aggregates, and ordering. 
Response time results for each query are an average 
obtained from six executions in each scenario. 

Figures 4 and 5 show workload execution time overhead 
for each scenario. The Standard execution time (execution 
time of the workload against a non-encrypted/masked 
database) for each scenario is 626, 6155, and 2233 seconds 
in Oracle 11g, and 580, 5301, and 2211 seconds in SQL 
Server 2008, for the 1GB, 10GB TPC-H and Sales DW, 
respectively. In Oracle 11g, MOBAT ranges from 5.32 
(187.7/35.3) times better than standard column encryption 
solutions for the 1GB TPC-H database, to 9.23 (203/22) 
times better. In the 10GB TPC-H, gains range from 6.05 
(131.8/21.8) to 8.58 (144.2/16.8) times better, and for the 
Sales DW, from 5.39 (688.3/127.7) to 10.5 (814.7/77.6) 

Notice that column encryption introduces a minimum 
overhead of 131.8% (8112 seconds) in TPC-H 10GB setup 
(total workload response time takes almost 4 hours, instead 
of the standard time, which is less than 2 hours), and 
688.3% (15370 seconds) in the Sales DW setup (workload 
response time takes almost 5 hours, instead of the standard 
37 minutes). On the other hand, MOBAT introduces a 
maximum overhead of 21.8% (1342 seconds) in the TPC-H 
10GB setup (total workload response time takes little over 2 

hours), and 127.7% (2851 seconds) in the Sales DW setup 
(total workload response time takes almost 1.5 hours). 

In SQL Server 2008, shown in figure 5, MOBAT ranges 
from 4.35 (174.3/40.1) times better than standard column 
encryption solutions for the 1GB TPC-H database, to 8.60 
(195.2/22.7) times better. In the 10GB TPC-H database, the 
gains range from 7.15 (151.6/21.2) to 14.02 (183.7/13.1) 
times better, and for the Sales DW, from 5.38 (665.4/123.7) 
to 11.78 (758.6/64.4). Column encryption introduces a 
minimum overhead of 151.6% (8036 seconds) in the TPC-H 
10GB setup (total workload response time takes almost 4 
hours, instead of the standard time, less than 2 hours), and 
665.4% (14712 seconds) in the Sales DW setup (workload 
response time takes almost 5 hours, instead of the standard 
37 minutes). On the other hand, MOBAT introduces a 
maximum overhead of 21.2% (1124 seconds) in the TPC-H 
10GB setup (total workload response time still takes less 
than 2 hours), and 123.7% (2735 seconds) in the Sales DW 
setup (total workload response time takes almost 1.4 hours). 

The results for individual query execution time in Oracle 
11g for TPC-H 10GB scenarios are shown in figure 6. These 
results show that all queries have similar overhead to those 
of the complete workload. This is also true for all the other 
scenarios, making it redundant to include all in this section. 
It can be seen that mostly all queries processed by AES and 
3DES have overheads of several orders of magnitude higher 
than MOBAT. All the results in all scenarios in both DBMS 
also show that the performance of CreateCol Masking is 
better than AddCol Masking, which was expected as 
mentioned in section 2.3, when explaining the technique. 
The performance results of ColKey Masking are the best, 
given the absence of changes in the original fact table data 
structure and size. 
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Figure 2. Storage Space Overheads for TPC-H 1GB  Figure 3. Loading Time Overheads for TPC-H 1GB 

TABLE III.  TPC-H 1GB LINEITEM FACT TABLE STORAGE SIZES FOR EACH EXPERIMENTAL SCENARIO IN EACH DBMS 

DBMS Standard AES128 
Col 

Absolute/Relative 
Overhead 

3DES168 
Col 

Absolute/Relative 
Overhead 

MOBAT 
AddCol 

Absolute/Relative 
Overhead 

MOBAT 
CreateCol 

Absolute/Relative 
Overhead 

Oracle 11g 772MB 1960MB +1188MB / 154% 1572MB +800MB / 104% 816MB +44MB / 6% 804MB +32MB / 4% 
SQL Server 2008 1237MB 2410MB +1173MB / 95% 2181MB +944MB / 76% 1272MB +35MB / 3% 1272MB +35MB / 3% 

TABLE IV.  TPC-H 1GB LINEITEM FACT TABLE DATA LOADING TIME FOR EACH EXPERIMENTAL SCENARIO IN EACH DBMS 

DBMS Standard AES128 
Col 

Absolute/Relative 
Overhead 

3DES168 
Col 

Absolute/Relative 
Overhead 

MOBAT 
AddCol 

Absolute/Relative 
Overhead 

MOBAT 
CreateCol 

Absolute/Relative 
Overhead 

Oracle 11g 310s 898s +588s / 190% 904s +594s / 192% 334s +24s / 8% 321s +11s / 4% 
SQL Server 2008 212s 473s +261s / 123% 486s +274s / 129% 226s +14s / 7% 221s  +9s / 4% 



 
Figure 4. Query execution time overheads for each tested database in Oracle 11g 

 
Figure 5. Query execution time overheads for each tested database in SQL Server 2008 

 
Figure 6. 10GB TPC-H Individual Query Execution Time Overhead per Encryption/Masking Algorithm 

TABLE V.  TPC-H 1GB WORKLOAD EXECUTION TIME(SECONDS)/OVERHEAD (%) WITH FALSE DATA USING MO BAT IN ORACLE 11G 

 +25% False Data 
(Time/Overhead) 

+50% False Data 
(Time/Overhead) 

+75% False Data 
(Time/Overhead) 

+100% False Data 
(Time/Overhead) 

1G TPC-H MOBAT AddCol 1110 sec / 31% 1355 sec / 60%  1601 sec / 89% 1855 sec / 119% 
1G TPC-H MOBAT CreateCol 1045 sec / 29% 1264 sec / 56%  1482 sec / 83% 1709 sec / 111% 

 

C. Using False Data Injection with MOBAT 
In order to test false data injection scenarios, we inserted 

25%, 50%, 75% and 100% of false rows (relatively to the 
total number of true rows) into TPC-H 1GB. The false rows 
were uniformly distributed throughout the fact table. Table 
V shows the results. As it would be expected, the overhead 
in each scenario is nearly proportional to the amount of false 
data injected. The results for the remaining database setups, 
TPC-H 10GB and Sales DW, are similar to those in Table V 
and due to space restrictions are not included here. 

V. RELATED WORK 
Data masking solutions are mainly used for creating test 

databases for software development environments, or for 
camouflaging data values in publicly available published 
data [22, 25]. An extensive survey on data masking 
techniques is given in [22]. The Oracle EM Data Masking 
Pack (DMP) [19] provides mask primitives for various types 
of data, replacing real data with realistic-looking values.  

A lightweight database encryption scheme for column-
oriented DBMS is proposed in [9], with low decryption 
overhead. In [3] an Order Preserving Encryption Scheme for 
numeric data is proposed, by flattening and transforming the 
plain text distribution onto a target distribution, based on 
value-based buckets. This solution allows any comparison 
operation to be directly applied on encrypted data. A similar 
solution for processing queries without decrypting data was 
proposed by [10]. The work [4] proposes perturbed tables in 
a DW for preserving privacy and explain data reconstruction 
for executing queries. Although providing strong guarantees 
against privacy breaches, these methods produce errors in 
data reconstruction, which we pretend to avoid. 

The work in [21] presents an Enterprise Application 
Security solution, acting as a wrapper/interface between 
user applications and the encrypted database server. This 
solution aims to ensure data integrity and efficient query 
execution over encrypted databases, by evaluating most 
queries at the application server and retrieving only the 
necessary records from the database server. 



The Data Encryption Standard (DES) [8] is a 64 bit 
block cipher, meaning that data is encrypted/decrypted in 64 
bit chunks, using a 56 bit key. This encryption standard is an 
insecure block cipher [12]. As an enhancement of DES, the 
Triple DES (3DES) encryption standard was proposed [1]. 
The 3DES encryption method is similar to the original DES 
algorithm, but it is applied three times to increase the 
encryption level, using three different 56 bit keys. Thus, the 
effective key length is 168 bits. The algorithm increases the 
number of cryptographic operations, making it one of the 
slowest block cipher methods [16]. The Advanced 
Encryption Standard (AES) is the most used encryption 
standard [2]. AES provides three key lengths: 128, 192 and 
256 bits. It is fast and able to provide stronger encryption, 
compared to other algorithms such as DES [16]. Brute force 
attack is the only known effective attack known against it. 

Data injection has been mostly used for building 
synthetic datasets for benchmarking and production 
purposes, i.e., filling in databases for testing the 
development of databases and applications [5, 27]. To our 
knowledge, there are no data injection solutions for 
enforcing data privacy as we propose in our technique. 

VI. CONCLUSIONS AND FUTURE WORK 
We propose a data masking solution specifically 

designed for enhancing data privacy in DWs. We also use 
one of the masked fact tables masking key for enabling false 
data injection, increasing the overall security strength 
against attackers that gain direct access to the database.  

The data masking formula requires small computational 
efforts and can be straightforward and easily implemented 
in any DBMS. Since it basically works by transparently 
rewriting user queries, it minimizes efforts in changing user 
applications and does not jeopardize network bandwidth. 
The masked database can be directly used for production 
purposes, enabling developing applications to directly query 
it without passing through the MOBAT-SA, therefore 
retrieving realistic but not real data, for testing software 
development. This also avoids disclosure of the real original 
data if any attacker bypasses database access control and is 
able to retrieve data directly from the database. 

Although we did not conceive our solution as a direct 
alternative to standard encryption algorithms, we have 
compared it with the AES and 3DES algorithms provided by 
leading commercial DBMS. Experimental results show that 
the introduced storage space and database performance 
overhead by these standard solutions is very significant 
from the DW point of view. This enforces stating that those 
techniques are in fact unfeasible for DW scenarios. Since 
most DW data are numerical values, our masking technique 
is tailored for this kind of data. Our technique shows better 
database performance than the encryption standards, while 
providing considerable security strength, enforced by the 
false data injection method. Thus, it is an efficient overall 
solution and valid alternative for balancing the performance 
and security issues from the DW perspective.  

As future work, we will take advantage of the history log 
stored in the MOBAT-SA Black Box to manage intrusion 
detection. 
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