
Balancing Security and Performance for
Enhancing Data Privacy in Data Warehouses

Ricardo Jorge Santos
CISUC – DEI – FCTUC
University of Coimbra

Coimbra, Portugal
lionsoftware.ricardo@gmail.com

Jorge Bernardino
CISUC – DEIS – ISEC

Polytechnic Institute of Coimbra
Coimbra, Portugal

jorge@isec.pt

Marco Vieira
CISUC – DEI – FCTUC
University of Coimbra

Coimbra, Portugal
mvieira@dei.uc.pt

Abstract—Data Warehouses (DWs) store the golden nuggets of
the business, which makes them an appealing target. To ensure
data privacy, encryption solutions have been used and proven
efficient in their security purpose. However, they introduce
massive storage space and performance overheads, making
them unfeasible for DWs. We propose a data masking
technique for protecting sensitive business data in DWs that
balances security strength with database performance, using a
formula based on the mathematical modular operator. Our
solution manages apparent randomness and distribution of the
masked values, while introducing small storage space and
query execution time overheads. It also enables a false data
injection method for misleading attackers and increasing the
overall security strength. It can be easily implemented in any
DataBase Management System (DBMS) and transparently
used, without changes to application source code.
Experimental evaluations using a real-world DW and TPC-H
decision support benchmark implemented in leading
commercial DBMS Oracle 11g and Microsoft SQL Server 2008
demonstrate its overall effectiveness. Results show substantial
savings of its implementation costs when compared with state
of the art data privacy solutions provided by those DBMS and
that it outperforms those solutions in both data querying and
insertion of new data.

Keywords-Data warehousing, Data masking, Data
obfuscation, Data encryption, Data privacy, Data security

I. INTRODUCTION
Data Warehouses (DWs) store sensitive enterprise data

used by analytical, data mining and business intelligence
solutions to produce business knowledge. Thus, DW
databases store the golden nuggets of the business, making
them a major target for inside and outside attackers [26]. As
the number of attacks and their complexity increases,
efficiently securing DW data is critical [15, 18, 26].

A. Motivation
To protect the privacy of stored data, besides data access

policies [7], data masking (alias data obfuscation, i.e.,
changing data values so their real values are unknown) and
encryption algorithms are widely used. Published research
has stated that encryption standards are the best method to
protect sensitive data at the database level and deliver
performance [17, 25, 26, 30]. However, although efficient in
their security purpose, data masking and encryption
techniques introduce key costs:

• Large processing time/resources for masking or
encrypting sensitive data, given routine or hardware access;

• Extra storage space of masked/encrypted data. Since
DWs usually have many millions/billions of rows, even
small modification of any column size or the creation of
masking reference tables introduces large storage space
overheads;

• Overhead query response time and allocated resources
for retrieving/decrypting data to process queries. Given the
huge amount of data typically accessed by DW queries, this
is probably the most significant drawback for using data
masking/encryption in DWs [3].

DW databases take up huge storage space. Business data
is mostly stored in numerical attributes, called facts; fact
tables usually take up at least 90% of storage space [13].
Decision support queries typically process huge amounts of
data, resulting in substantial response time (usually from
minutes or hours) [13]. Given the referred key costs, using
encryption techniques introduces very considerable storage
space and response time overheads, as shown in our
experiments (section III). Moreover, many studies [9, 10,
16, 24, 25] have shown that those overheads dramatically
degrade database performance, a critical issue in DW
scenarios, in a magnitude that ultimately jeopardizes their
applicability. Thus, current data masking and encryption
solutions are unsuitable for DWs. Specific DW data privacy
solutions must always balance security requirements with
the desire for high performance, ensuring strong security
while keeping database performance acceptable [9, 16, 24].
This is a critical issue and remains a challenge.

B. Our Proposal
We wish to make it clear that our proposal does not

intend to replace any standard encryption algorithm, rather it
is an alternative solution specifically developed for DW data
privacy. It is not our aim to propose a solution as strong in
security as the state of the art encryption algorithms, rather a
technique that provides an overall considerable level of
security while introducing very small overheads in storage
space and database performance, i.e., that presents better
tradeoffs between security and performance, a critical issue
to determine the feasibility of these solutions for DWs.

A data privacy solution may be useless if it assures high
security strength, but is too slow to be considered acceptable
in practice [16]. In this sense, we propose a data masking
technique for numerical facts, balancing tradeoffs between

data security and database performance. It is low-cost and
straightforward to implement in any DBMS, requiring small
efforts to be used. Our proposal uses the MOD operator
(which returns the remainder of a division expression) and
simple arithmetic operations to mask data and provide a
significant level of apparent randomness for the masked
values. Our solution can also use one of the masking keys
for injecting false data into the DW in order to mislead
attackers and increase the overall security level, making
them unable to distinguish true from false data.

The proposed solution is transparent; to query the
database, user applications need only to send their queries to
a middleware security broker – which has access to the
masking keys and rewrites user queries to correctly process
the required data – instead of the DBMS. Only the final
processed results are returned to the authorized user
applications that requested them. All SQL commands and
actions required to be executed are encrypted and stored in a
log by the security broker, which can be audited by any user
with administration rights. In the database, the processed
data remains masked at all times, never allowing breaches
before the queries finish execution. If an attacker bypasses
the broker and gains direct access, s/he will only see masked
values, as well as mixed true and false data rows.

To evaluate our proposal, we include experiments using
two leading commercial DBMS, Oracle 11g and Microsoft
SQL Server 2008, and one open-source DBMS, MySQL
Server 5.5. The results show that our technique is much
better than those of standard data privacy algorithms, for
nearly all queries in all tested scenarios. The overall results
show that our proposal is a valid alternative and supplies the
additional advantages of false data injection facilities.

C. Main Contributions
The main contributions of our solution are as follows:
It presents better security and performance tradeoffs than

standard data privacy solutions, by significantly decreasing
data storage space and processing overheads in inserting as
wells as querying DW data;

Contrarily to other similar solutions that pre-fetch the
data to process, by simply rewriting queries we avoid
network bandwidth congestion;

The stored data is masked at all times, which allows
using the database (or “as-is” direct replicas) for testing
purposes and direct querying during application software
development, since the data is always realistic but not real
and generates realistic but not real results;

The solution can inject false data to increase the DW
overall security level. To our knowledge, this is the first
data privacy solution specifically proposed for DWs that
integrates data injection features for enforcing data security.

D. Paper Structure
The remainder of this paper is organized as follows. In

section II we describe our technique and point out the main
issues involved in its use. In Section III, we discuss our
solution’s security and performance issues. Section IV
presents experimental evaluations using the TPC-H decision

support benchmark and a real-world DW. Section V presents
related work, describing standard and state of the art data
masking and encryption solutions for providing data privacy
and discussing the issues from a DW perspective. Finally,
section VI presents our conclusions and future work.

II. MOBAT: MODULUS BASED DATA MASKING
TECHNIQUE FOR DATA WAREHOUSES

A. MOBAT Functional Architecture
The system’s architecture is shown in Figure 1, made up

by three entities: 1) the masked database and its DBMS; 2)
the MOBAT security application (MOBAT-SA); and 3)
user/client applications to query the masked database. The
MOBAT-SA is a middleware broker between the masked
database DBMS and those applications, ensuring queried
data is securely processed and proper results are returned to
those applications. All communications are made through
SSL/TLS secure connections, to protect SQL instructions
and returned results between the entities, avoiding problems
from intercepting messages by attackers on the network.

Figure 1. The MOBAT Data Security Architecture

The Black Box is a set of files in a directory of the file
structure of the database server, created for each masked
database. This process is similar to an Oracle Wallet, which
keeps all encryption keys and definitions for each Oracle
Database [11]. However, contrarily to Oracle, where a DBA
is free to access the Wallet whenever s/he wishes, in our
solution only MOBAT-SA can access the Black Box, i.e.,
absolutely no user has direct access to its content. In the
Black Box, MOBAT-SA will store all the created masking
keys and predefined data access policies for the concerned
database. The MOBAT-SA will also create a history log for
saving a duplicate of all instructions and actions executed in
the database, for auditing and control purposes. All Black
Box contents are encrypted using AES standard encryption
algorithm [2] with a 256 bit key. In case of losing the Black
Box of a certain database, there is no way to restore its true
data, except to crack the masking keys.

Our solution uses three masking keys; two are private
and one is public. MOBAT-SA generates all masking keys
and their values are never shown or known by the DBA or
any other user. To obtain true results, user queries or actions
must pass through MOBAT-SA, which will store a copy of
those instructions in the history log. Each time a user
requests any action, MOBAT-SA will receive and parse the

instructions, fetch the necessary masking keys, rewrite the
query, send it to process by the DBMS and retrieve the
results, and finally send those results back to the application
that issued the request.

B. Implementing MOBAT on a Database
A DBA requires masking a database through MOBAT-

SA. Entering DBA login and database connection data,
MOBAT-SA will try to login to that database. If it succeeds,
it will create the Black Box, scanning and storing all
database data access policies for users and their permissions.
An action log for saving all further user actions will also be
created, as explained earlier. After that, MOBAT-SA will
ask the DBA which tables and columns are to be masked.
All needed private masking keys for each table and column
will be generated, encrypted and stored in the Black Box.
Finally, MOBAT-SA will apply the masking formula
(explained in subsection II.C) on all data to mask. Whenever
database updates are needed, they should be done through
the MOBAT-SA, which will apply the masking routine to
the referenced values and store them directly in place.

C. The MOBAT Data Masking Technique
Most facts in DWs are columns with numerical values

[13]. Since fact tables usually represent more than 90% of
the DW’s total size [13], numeric-type columns represent
the largest portion of business data. MOBAT aims on
masking the DW’s numerical values while introducing small
overheads in computational efforts for query processing.

Suppose a table T with a set of N numerical columns Ci
= {C1, C2, C3, …, CN) to mask and a total set of M rows Rj =
{R1, R2, R3, …, RM). Each value to mask in the table will be
identified as a pair (Rj, Ci), where Rj and Ci respectively
represent the row and column to which the value refers. The
masking formula depends on the following predefinitions:

• K1 and K2 are private keys stored in the Black Box,
known only by MOBAT-SA;

• K1 is a 128 bit random generated value, constant for T;
• K2 is a 128 bit random generated value, ranging

between the minimum and maximum positive integer
value possible of column Ci. There is a K2 for each
column Ci to be masked, represented by K2, i;

• K3 is a public key based on a 128 bit column appended
to each row Rj in T, filled in with a random value
between 1 and 2128, represented by K3, j.

Suppose each value to mask as (Rj, Ci). Each new
masked value (Rj, Ci)’ is obtained by applying the following
formula (1) for row j and column i of table T:

(Rj, Ci)’ = (Rj, Ci) – ((K3, j MOD K1) MOD K2, i) + K2, i (1)
MOD is the modulus operator returning the remainder of

a division expression. Since K1 and K2, i are constant values
for the table and each column, respectively, and K3, j is
stored with each row in the table, the inverse formula of (1)
for retrieving the original value is shown as formula (2):

(Rj, Ci) = (Rj, Ci)’ + ((K3, j MOD K1) MOD K2, i) – K2, i (2)
If the values of K3, j were stored in a lookup table

separate from table T, a heavy join operation between those
tables would be required to unmask data. Given the typical

enormous number of rows in fact tables, this should be
avoided at all cost. To avoid table joins, the values of K3, j
must be stored along with each row j in table T. To
accomplish this, there are two possible solutions:

1. A new column is created and added to table T for
storing each K3, j value;

2. Table T is recreated with the inclusion of K3, j in the
CREATE TABLE statement from the start and then
restoring the table’s data.

The second option implies additional efforts and time to
rebuild table T, depending on its size. However, it should
speed up query response time compared to the first option,
since the new column K3, j is included with the original data
in each row; the second option stores it physically apart
from the original data. Impact on performance is seen in
section III (MOBAT_AddCol and MOBAT_CreateCol). A
third option for defining K3, j values and speed up
performance is to use any long integer typed column CZ,
which is already part of the original data structure of table T,
instead of creating an extra column for K3,j in T. In this case,
no changes in table T data structure are needed, eliminating
storage space overhead. The results for this third option are
also shown in section III, where each primary key of the fact
tables are used as K3,j (MOBAT_ColKey).

D. Querying the MOBAT Masked Database
Whenever user applications execute a query, they submit

it to the MOBAT-SA, which rewrites the received query in
order to process it with the real data values, using formula
(2) to replace the respective masked columns used in the
query, and checking the user access authorization in the
Black Box. To rewrite the user query, MOBAT-SA searches
for which tables and columns it needs to process, and looks
up the Black Box for retrieving K1 and K2,i data masking
keys, respectively, as well as the needed K3, j key fields in
those tables. As an example, suppose the TPC-H benchmark
LineItem table [23] has four numerical fact columns
(L_Quantity, L_ExtendedPrice, L_Tax and L_Discount) to
mask by MOBAT. Suppose that MOBAT has generated and
filled in a new column L_KeyK3 for the j rows of that table,
which will act as the public K3, j key values, and has stored
the value of 9342 for key K1 referring to the LineItem table,
K2, L_Quantity = 12, K2, L_ExtendedPrice = 51234, and K2, L_Discount =
4 (for example). Consider TPC-H query 6:
SELECT SUM(L_ExtendedPrice * L_Discount) AS
Revenue
FROM LineItem
WHERE L_ShipDate>=TO_DATE('1994-01-01')
 AND L_ShipDate<TO_DATE('1995-01-01')
 AND L_Discount BETWEEN 0.05 AND 0.07
 AND L_Quantity<24

The new query, rewritten by the MOBAT-SA and
submitted to the DBMS will be:
SELECT
 SUM((L_ExtendedPrice+MOD(MOD(L_KeyK3,9342),51234)
 -51234) * (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4))
 AS Revenue
FROM LineItem
WHERE L_ShipDate>=TO_DATE('1994-01-01')
 AND L_ShipDate<TO_DATE('1995-01-01')
 AND (L_Discount+MOD(MOD(L_KeyK3,9342),4)-4)
 BETWEEN 0.05 AND 0.07
 AND (L_Quantity+MOD(MOD(L_KeyK3,9342),12)-12)<24

As seen in the example, query parsing and adaptation is
a straightforward operation, replacing each masked column
with their respective reverse formula (2). This is valid for
any type of query, including equality and range queries, as
well as built in functions. These changes are handled
transparently by the broker and kept hidden from the users.
Only the query results are returned to the user application.

E. Using False Data Injection with MOBAT
MOBAT can inject false rows amongst the fact tables,

making it increasingly difficult to distinguish true and false
data. To do this, instead of generating independent random
numbers for K3,j keys in each row as shown in subsection
2.3, we redefine K3,j as a multiple of the sum of the true
values of all Ci, j columns to be masked, for each true row j:

K3,j = (Ci, j) * k, { i = 1…n } where k is a random
integer constant that does not overflow 128 bits for K3,j
and n is the number of masked columns C in row j (3)

For false rows, random values for filling Ci,j would be
generated, and the value of K3,j would be equal to any value
different from those generated by formula (3). Thus, true
rows are verifiable through testing if K3,j is a multiple of the
sum of the true unmasked values of all masked columns,
using the MOD remainder operator. Formula (4) shows how
to test if a certain row j is true or false:

Given R = K3,j MOD (Ci, j) , { i = 1…n }
IF R=0 THEN row j is True ELSE row j is False (4)
There is a tradeoff when using this method: the more

false data is injected, the stronger is the table’s security
level. However, the more data injected, the more data is
scanned and verified by queries, decreasing performance.
The overall security strength for each fact table is directly
dependent on how many false rows are injected into each
table and how they are distributed throughout existing data.

III. MOBAT SECURITY AND PERFORMANCE ISSUES

A. Security Issues
Handling transparency and securing communications.

All user queries/instructions are managed by MOBAT-SA,
which transparently parses and rewrites them to query the
DBMS and retrieve the intended results. The users never see
the rewritten instructions. For security, MOBAT-SA shuts
off database historical logs on the DBMS before requesting
execution of the rewritten instructions, so they are not stored
in the DBMS, since this would disclose the private keys. All
communications between user applications, MOBAT-SA
and DBMS are through encrypted SSL/TLS connections.
All these actions prevent attackers from accessing the
masking keys, rewritten queries/instructions and true data.

Generating apparent randomness for the masked values.
Generating randomness for masking and cryptographic
applications is a costly and security-critical operation [6]. In
order to guarantee their security strength, two same original
real data values must generically originate different masking
generated values, so a level of apparent randomness is
ensured. Given that our masking formula (1) uses two MOD

operations in conjunction with randomly generated realistic
values, the generated masked values for the same original
values are mostly different. To demonstrate this, suppose a
table T with two masked columns, Column1 and Column2.
Suppose the MOBAT-SA generated the values K1 = 9264
for table T and K2,1 = 12 and K2,2 = 78254 for each column.
Table I shows the original data for T on the left and its
resulting masked content on the right. It can be seen that the
same original values of Column1 result in different masked
values, achieving apparent randomness. Of course, this is a
very small dataset used only to illustrate these features.

TABLE I. EXAMPLE OF ORIGINAL AND MOBAT DATASET

T – Original dataset T‘ – MOBAT Masked
dataset

Column1 Column2 K3,j Column1‘ Column2‘ K3,j
11 91873 7537 22 162590 7537
2 94129 1808 6 170575 1808

18 71624 29636 22 148034 29636
15 84624 34997 22 155673 34997
12 46926 41395 17 120841 41395

Non-invertibility of the masking formula. For a function
to be invertible, each output must correspond to no more
than one input, i.e., more than one different input cannot
generate the same output; a function with this property is
called one-to-one, or injective. An injective function must
preserve distinctness: it never maps distinct elements of its
domain to the same element of its codomain. The MOD
operator is non-injective, given that for X MOD Y = Z, the
same output Z, considering Y a constant, can have an
undetermined number of possibilities in X as an input that
will generate the same value Z (e.g. 15 MOD 4=3, 19 MOD
4=3, 23 MOD 4=3, 27 MOD 4=3, etc). Since MOD
operations are non-injective, the MOBAT formula (1) is
also non-injective. Given that injectivity is required property
for having invertibility, MOBAT is non-invertible. The only
way to break its security is to crack the masking key values.

Key Management. As known, the level of security of
data masking or encryption solutions does not depend on its
secrecy, but on its keys [16]. In our proposal, since K3 is
public (stored in the fact table), only keys K1 and K2 need to
be cracked. K1 is a 16 byte integer, i.e., a set of 128 bits. K2
depends on maximum storage size defined for each column,
variable between 1 and 128 bits. This means our technique
implies a minimum of 2129 key combinations, for K1 and K2
together (at least 16 bytes+1 bit), and roughly needs an
average number of 2128 tests (half of the total possible brute
force tests – 50% chance) for discovering the keys using
brute force, for each masked column in the table, since K2 is
column dependant. Consequently, the minimum number of
combinations needed to discover all key values for a i
number of columns is i * 2129, resulting in an average of i *
2128 ≈ i * 3.4 x 1038 brute force tests to discover the keys.

The security strength of standard encryption algorithms
is higher than our solution. However, we require much less
computational resources while maintaining a considerable
level of security, given the high number of possible brute
key values. Periodically, the values of all or any one of the
K1, K2, and K3 keys can be switched in order to ensure data

is properly protected. Moreover, the data injection method
also allows increasing our solution’s overall security
strength. Although it is not possible to absolutely prove that
a particular algorithm is secure [9, 12, 16, 17], we believe
our technique is secure enough to be acceptable for use.

B. Performance and Transparency Issues
Performance in middleware data privacy solutions.

Topologies involving middleware data privacy solutions
such as [21] typically request all the masked/encrypted data
from the database and perform the unmasking/decrypting
actions themselves locally. This strangles the network due to
communication costs with bandwidth consumption between
middleware and database, jeopardizing data throughput and
consequently, response time. In a DW, previously acquiring
all the data from the database for processing a query at the
middleware is unreasonable, given the amount of data
accessed for decision support. In this sense, our MOBAT-
SA just rewrites queries and sends them to be processed
directly by the DBMS, sending only the results back to the
user. This eliminates network overhead from critical path
when compared to similar middleware security solutions.

Encryption in Microsoft SQL Server 2008 and MySQL
5.5. Microsoft SQL Server and MySQL 5.5 only encrypt
textual or varbinary type values (char, varchar, varbinary,
etc). Given that most sensitive columns in DW fact tables
store numerical values, when using these DBMS they must
be converted to textual or varbinary format. Once decrypted,
these values must also be transformed back into numerical
format in order to apply arithmetic operations such as sums,
averages, etc., adding computational overheads with impact
in performance. On the contrary, our solution is specifically
designed for masking numerical values, and in this sense, is
therefore much more appropriate for protecting DW facts.

Transparently querying masked data. Query instructions
in our solution become longer due to replacing each masked
column with the formulas for masking or unmasking their
stored contents, but this is automatically and transparently
managed by the MOBAT-SA. The only change the user
applications need is to send the query to the MOBAT-SA,
instead of querying the database directly.

IV. EXPERIMENTAL EVALUATION
We used the TPC-H benchmark [23] (1GB and 10GB

scale sizes) and a real-world sales DW storing one year of
commercial data (taking up 2GB of data). We tested all
scenarios in the leading DBMS Oracle 11g and Microsoft
SQL Server 2008, on a Pentium 2.8GHz CPU with a 1.5TB
SATA hard disk and 2GB RAM (512MB of devoted to
database memory cache). Oracle 11g ran on Windows XP
Professional, while SQL Server on Windows 2003 Server.

The TPC-H schema has one fact table (LineItem), and
seven dimension tables. The Sales DW database schema has
one fact table (Sales) and four dimension tables. In TPC-H
setups, four columns of LineItem were masked (L_Quantity,
L_ExtendedPrice, L_Tax and L_Discount), given they are
the numerical fact columns. In the Sales DW, five numerical
columns were masked (S_ShipToCost, S_Tax, S_Quantity,
S_Profit, and S_SalesAmount), for the same reasons.

Since our solution is column-based, for fairness we
compare it with the column-based AES128 and 3DES168
encryption algorithms, given that tablespace encryption has
functional primitives that speedup performance, making it
unfair to compare with column-based techniques [11, 20].
Moreover, best practice documentation for encryption from
both DBMSs [11, 20] recommends column-based encryption
when sensitive data consists on small number of well-defined
columns. We used AES128 and 3DES168 for comparison
because they are, respectively, the fastest and slowest
available algorithms in those DBMS [11, 20]. Table II shows
the defined experimental encryption/masking scenarios.
TABLE II. EXPERIMENTAL DATA ENCRYPTION/MASKING SCENARIOS
Reference/Label Description
Standard Standard data without masking/encryption

AES128 Col Data encrypted with TDE AES 128 bit key column
encryption

3DES168 Col Data encrypted with TDE 3DES168 column
encryption

MOBAT AddCol
Data masked by MOBAT formula (1), where a
column for masking keys K3, j has been added to the
existing fact table

MOBAT CreateCol
Data masked by MOBAT formula (1), where a
column for masking keys K3, j was added to the fact
table, completely recreated

MOBAT ColKey
Data masked by MOBAT formula (1), using a
numerical column from the original fact table data
structure as key K3, j

A. Analyzing Storage Size and Data Loading
Tables III and IV show the data storage size and loading

time (in seconds) results, respectively, for loading the TPC-
H 1GB LineItem table in each defined scenario. Figures 2
and 3 show their overhead percentages. The results in the
remaining databases are similar, with absolute values nearly
proportional to their database sizes, and due to lack of space
are not included. The MOBAT ColKey setup is not included,
since it does not require changing fact table data structure.

In storage space, MOBAT has overheads ranging from
4.1% (32MB) to 5.7% (44MB) in Oracle and 2.8% (35MB)
in SQL Server. AES128 and 3DES168 present storage space
overheads from 103.6% (800MB) to 153.9% (1188MB) in
Oracle and 76.3% (944MB) to 94.8% (1173MB) in SQL
Server. In data loading time, MOBAT’s overhead ranges
from 3.5% (11 seconds) to 7.7% (24 seconds) in Oracle and
from 4.3% (9 seconds) to 6.5% (14 seconds) in SQL Server.
AES128 and 3DES168 present much greater loading time
overheads, from 189.7% (588 seconds) to 191.6% (594
seconds) in Oracle and 123.1% (261 seconds) to 129.2%
(274 seconds) in SQL Server.

Considering the results, MOBAT is much more efficient,
introducing very small overheads. Since these results are for
the 1GB database and the overhead percentages are similar
for the remaining scenarios, for TPC-H 10GB, which is ten
times bigger, the absolute values of the overheads are also
approximately ten times bigger. Proportionally, this means
that TPC-H 10GB has nearly 8GB to 12GB of increased
storage space, and nearly 43 to 99 minutes of increased
loading time. Given that 10GB is actually a small size for a
DW database, it is easy to conjecture that the overheads

introduced by DBMS data encryption algorithms in DWs
are extremely significant and may in fact be impracticable.

B. Analyzing Database Query Performance
The TPC-H workload included the benchmark queries 1,

3,6,7,8,10,12,14,15,17,19 and 20 (all queries accessing the
masked table LineItem). For Sales DW, the workload was a
set of 29 queries, all processing the Sales fact table, as a set
of usual decision support queries, with daily (queries 1 to 9),
monthly (10 to 18) and annual (19 to 29) values, including
actions like row selection, joining, aggregates, and ordering.
Response time results for each query are an average
obtained from six executions in each scenario.

Figures 4 and 5 show workload execution time overhead
for each scenario. The Standard execution time (execution
time of the workload against a non-encrypted/masked
database) for each scenario is 626, 6155, and 2233 seconds
in Oracle 11g, and 580, 5301, and 2211 seconds in SQL
Server 2008, for the 1GB, 10GB TPC-H and Sales DW,
respectively. In Oracle 11g, MOBAT ranges from 5.32
(187.7/35.3) times better than standard column encryption
solutions for the 1GB TPC-H database, to 9.23 (203/22)
times better. In the 10GB TPC-H, gains range from 6.05
(131.8/21.8) to 8.58 (144.2/16.8) times better, and for the
Sales DW, from 5.39 (688.3/127.7) to 10.5 (814.7/77.6)

Notice that column encryption introduces a minimum
overhead of 131.8% (8112 seconds) in TPC-H 10GB setup
(total workload response time takes almost 4 hours, instead
of the standard time, which is less than 2 hours), and
688.3% (15370 seconds) in the Sales DW setup (workload
response time takes almost 5 hours, instead of the standard
37 minutes). On the other hand, MOBAT introduces a
maximum overhead of 21.8% (1342 seconds) in the TPC-H
10GB setup (total workload response time takes little over 2

hours), and 127.7% (2851 seconds) in the Sales DW setup
(total workload response time takes almost 1.5 hours).

In SQL Server 2008, shown in figure 5, MOBAT ranges
from 4.35 (174.3/40.1) times better than standard column
encryption solutions for the 1GB TPC-H database, to 8.60
(195.2/22.7) times better. In the 10GB TPC-H database, the
gains range from 7.15 (151.6/21.2) to 14.02 (183.7/13.1)
times better, and for the Sales DW, from 5.38 (665.4/123.7)
to 11.78 (758.6/64.4). Column encryption introduces a
minimum overhead of 151.6% (8036 seconds) in the TPC-H
10GB setup (total workload response time takes almost 4
hours, instead of the standard time, less than 2 hours), and
665.4% (14712 seconds) in the Sales DW setup (workload
response time takes almost 5 hours, instead of the standard
37 minutes). On the other hand, MOBAT introduces a
maximum overhead of 21.2% (1124 seconds) in the TPC-H
10GB setup (total workload response time still takes less
than 2 hours), and 123.7% (2735 seconds) in the Sales DW
setup (total workload response time takes almost 1.4 hours).

The results for individual query execution time in Oracle
11g for TPC-H 10GB scenarios are shown in figure 6. These
results show that all queries have similar overhead to those
of the complete workload. This is also true for all the other
scenarios, making it redundant to include all in this section.
It can be seen that mostly all queries processed by AES and
3DES have overheads of several orders of magnitude higher
than MOBAT. All the results in all scenarios in both DBMS
also show that the performance of CreateCol Masking is
better than AddCol Masking, which was expected as
mentioned in section 2.3, when explaining the technique.
The performance results of ColKey Masking are the best,
given the absence of changes in the original fact table data
structure and size.

Oracle 11g

SQL Server 2008

 Oracle 11g

SQL Server 2008

Figure 2. Storage Space Overheads for TPC-H 1GB Figure 3. Loading Time Overheads for TPC-H 1GB

TABLE III. TPC-H 1GB LINEITEM FACT TABLE STORAGE SIZES FOR EACH EXPERIMENTAL SCENARIO IN EACH DBMS

DBMS Standard AES128
Col

Absolute/Relative
Overhead

3DES168
Col

Absolute/Relative
Overhead

MOBAT
AddCol

Absolute/Relative
Overhead

MOBAT
CreateCol

Absolute/Relative
Overhead

Oracle 11g 772MB 1960MB +1188MB / 154% 1572MB +800MB / 104% 816MB +44MB / 6% 804MB +32MB / 4%
SQL Server 2008 1237MB 2410MB +1173MB / 95% 2181MB +944MB / 76% 1272MB +35MB / 3% 1272MB +35MB / 3%

TABLE IV. TPC-H 1GB LINEITEM FACT TABLE DATA LOADING TIME FOR EACH EXPERIMENTAL SCENARIO IN EACH DBMS

DBMS Standard AES128
Col

Absolute/Relative
Overhead

3DES168
Col

Absolute/Relative
Overhead

MOBAT
AddCol

Absolute/Relative
Overhead

MOBAT
CreateCol

Absolute/Relative
Overhead

Oracle 11g 310s 898s +588s / 190% 904s +594s / 192% 334s +24s / 8% 321s +11s / 4%
SQL Server 2008 212s 473s +261s / 123% 486s +274s / 129% 226s +14s / 7% 221s +9s / 4%

Figure 4. Query execution time overheads for each tested database in Oracle 11g

Figure 5. Query execution time overheads for each tested database in SQL Server 2008

Figure 6. 10GB TPC-H Individual Query Execution Time Overhead per Encryption/Masking Algorithm

TABLE V. TPC-H 1GB WORKLOAD EXECUTION TIME(SECONDS)/OVERHEAD (%) WITH FALSE DATA USING MO BAT IN ORACLE 11G

 +25% False Data
(Time/Overhead)

+50% False Data
(Time/Overhead)

+75% False Data
(Time/Overhead)

+100% False Data
(Time/Overhead)

1G TPC-H MOBAT AddCol 1110 sec / 31% 1355 sec / 60% 1601 sec / 89% 1855 sec / 119%
1G TPC-H MOBAT CreateCol 1045 sec / 29% 1264 sec / 56% 1482 sec / 83% 1709 sec / 111%

C. Using False Data Injection with MOBAT
In order to test false data injection scenarios, we inserted

25%, 50%, 75% and 100% of false rows (relatively to the
total number of true rows) into TPC-H 1GB. The false rows
were uniformly distributed throughout the fact table. Table
V shows the results. As it would be expected, the overhead
in each scenario is nearly proportional to the amount of false
data injected. The results for the remaining database setups,
TPC-H 10GB and Sales DW, are similar to those in Table V
and due to space restrictions are not included here.

V. RELATED WORK
Data masking solutions are mainly used for creating test

databases for software development environments, or for
camouflaging data values in publicly available published
data [22, 25]. An extensive survey on data masking
techniques is given in [22]. The Oracle EM Data Masking
Pack (DMP) [19] provides mask primitives for various types
of data, replacing real data with realistic-looking values.

A lightweight database encryption scheme for column-
oriented DBMS is proposed in [9], with low decryption
overhead. In [3] an Order Preserving Encryption Scheme for
numeric data is proposed, by flattening and transforming the
plain text distribution onto a target distribution, based on
value-based buckets. This solution allows any comparison
operation to be directly applied on encrypted data. A similar
solution for processing queries without decrypting data was
proposed by [10]. The work [4] proposes perturbed tables in
a DW for preserving privacy and explain data reconstruction
for executing queries. Although providing strong guarantees
against privacy breaches, these methods produce errors in
data reconstruction, which we pretend to avoid.

The work in [21] presents an Enterprise Application
Security solution, acting as a wrapper/interface between
user applications and the encrypted database server. This
solution aims to ensure data integrity and efficient query
execution over encrypted databases, by evaluating most
queries at the application server and retrieving only the
necessary records from the database server.

The Data Encryption Standard (DES) [8] is a 64 bit
block cipher, meaning that data is encrypted/decrypted in 64
bit chunks, using a 56 bit key. This encryption standard is an
insecure block cipher [12]. As an enhancement of DES, the
Triple DES (3DES) encryption standard was proposed [1].
The 3DES encryption method is similar to the original DES
algorithm, but it is applied three times to increase the
encryption level, using three different 56 bit keys. Thus, the
effective key length is 168 bits. The algorithm increases the
number of cryptographic operations, making it one of the
slowest block cipher methods [16]. The Advanced
Encryption Standard (AES) is the most used encryption
standard [2]. AES provides three key lengths: 128, 192 and
256 bits. It is fast and able to provide stronger encryption,
compared to other algorithms such as DES [16]. Brute force
attack is the only known effective attack known against it.

Data injection has been mostly used for building
synthetic datasets for benchmarking and production
purposes, i.e., filling in databases for testing the
development of databases and applications [5, 27]. To our
knowledge, there are no data injection solutions for
enforcing data privacy as we propose in our technique.

VI. CONCLUSIONS AND FUTURE WORK
We propose a data masking solution specifically

designed for enhancing data privacy in DWs. We also use
one of the masked fact tables masking key for enabling false
data injection, increasing the overall security strength
against attackers that gain direct access to the database.

The data masking formula requires small computational
efforts and can be straightforward and easily implemented
in any DBMS. Since it basically works by transparently
rewriting user queries, it minimizes efforts in changing user
applications and does not jeopardize network bandwidth.
The masked database can be directly used for production
purposes, enabling developing applications to directly query
it without passing through the MOBAT-SA, therefore
retrieving realistic but not real data, for testing software
development. This also avoids disclosure of the real original
data if any attacker bypasses database access control and is
able to retrieve data directly from the database.

Although we did not conceive our solution as a direct
alternative to standard encryption algorithms, we have
compared it with the AES and 3DES algorithms provided by
leading commercial DBMS. Experimental results show that
the introduced storage space and database performance
overhead by these standard solutions is very significant
from the DW point of view. This enforces stating that those
techniques are in fact unfeasible for DW scenarios. Since
most DW data are numerical values, our masking technique
is tailored for this kind of data. Our technique shows better
database performance than the encryption standards, while
providing considerable security strength, enforced by the
false data injection method. Thus, it is an efficient overall
solution and valid alternative for balancing the performance
and security issues from the DW perspective.

As future work, we will take advantage of the history log
stored in the MOBAT-SA Black Box to manage intrusion
detection.

REFERENCES
[1] 3DES, Triple DES, National Bureau of Standards, National Institute

of Standards and Technology (NIST), Federal Information
Processing Standards (FIPS) Pub. 800-67, ISO/IEC 18033-3, 2005.

[2] AES, “Advanced Encryption Standard”, National Inst. of Standards
and Technology (NIST), FIPS-197, 2001

[3] R. Agarwal, J. Kiernan, R. Srikant, and Y. Xu, “Order-Preserving
Encryption for Numeric Data”, ACM SIG Conf. on Management Of
Data (SIGMOD), 2004.

[4] R. Agrawal, R. Srikant, and D. Thomas, “Privacy Preserving
OLAP”, ACM SIG Conf. Management Of Data (SIGMOD), 2005.

[5] E. Arora, R. Ertin, M. Ramnath, M. Nesterenko, and W. Leal,
“Kansei: A High-fidelity Sensing Testbed”, Internet Computing,
Vol. 10, 2006.

[6] M. Barbosa and P. Farshim, “Randomness Reuse: Extensions and
Improvements”, 12th Institute of Mathematics and its Applications
(IMA) Int. Conference on Cryptography and Coding, 2009.

[7] E. Bertino and R. Sandhu, “Database Security – Concepts,
Approaches, and Challenges”, IEEE Transactions on Dependable
and Secure Computing, Vol. 2, No. 1, 2005.

[8] DES, Data Encryption Standard, National Bureau of Standards, Nat.
Inst. of Standards and Technology (NIST), Federal Inform.
Processing Standards (FIPS) Pub 46, 1977.

[9] T. Ge and S. Zdonik, “Fast, Secure Encryption for Indexing in a
Column-Oriented DBMS”, Int. Conf. Data Engineering (ICDE), 2007.

[10] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over Encrypted Data in the Database-Service-Provider Model”,
ACM SIG Int. Conf. on Management Of Data (SIGMOD), 2002.

[11] P. Huey, “Oracle Database Security Guide 11g”, Oracle Corp., 2008.
[12] J. Kim, Y. Lee, and S. Lee, “DES with any reduced masked rounds

is not secure against side-channel attacks”, Int. Journal Computers
and Mathematics with App., 60, 2010.

[13] R. Kimball and M. Ross, “The Data Warehouse Toolkit”, 2nd
Edition, Wiley & Sons, Inc., 2002.

[14] J. Kobielus, “The Forrester Wave: Enterprise Data Warehousing
Platforms”, Forrester Research Report, Q1, 2009.

[15] J. McKendrick, “IOUG Data Security 2009: Budget Pressure Lead to
Increased Risks”, The Independent Oracle Users Group (IOUG)
Security Report, 2009.

[16] Nadeem and M. Y. Javed, “A Performance Comparison of Data
Encryption Algorithms”, IEEE Int. Conference on Inform. and
Communication Technologies (ICICT), 2005.

[17] R. B. Natan, “Implementing Database Security and Auditing”,
Digital Press, 2005.

[18] Oracle Corporation, “Security and the Data Warehouse”, April 2005.
[19] Oracle Corporation, “Data Masking Best Practices”, July 2010.
[20] Oracle Corporation, “Oracle Advanced Security Transparent Data

Encryption Best Practices”, Oracle White Paper, July 2010.
[21] V. Radha and N. H. Kumar, “EISA – An Enterprise Application

Security Solution for Databases”, Int. Conf. Inf. Systems Security
(ICISS), Jajodia and Mazumdar (Eds), Springer LNCS 3803, 2005.

[22] G. K. Ravikumar, et al, “A Survey on Recent Trends, Process and
Development in Data Masking for Testing”, Int. Journal of
Computer Science Issues, Vol. 8, Issue 2, 2011.

[23] Transaction Processing Council, “The TPC Decision Support
Benchmark H”, http://www.tpc.org/tpch/default.asp

[24] M. Vieira and H. Madeira, “Towards a Security Benchmark for
Database Management Systems”, Int. Conf. on Dependable Systems
and Networks (DSN), 2005.

[25] S. C. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P.
Samarati, “Over-encryption: Management of Access Control
Evolution on Oursourced Data”, (VLDB), 2007.

[26] N. Yuhanna, “Your Enterprise Database Security Strategy 2010”,
Forrester Research, Sep. 2009.

[27] E. Lo, N. Cheng, and W. Hon, “Generating Databases for Query
Workloads”, Int. Conf. on Very Large DataBases (VLDB), 2010.

