
Leveraging 24/7 Availability and Performance for
Distributed Real-Time Data Warehouses

Abstract—Nowadays, most enterprises require near real-time
Data Warehouses (DWs) that are able to deal with continuous
updates while providing 24/7 availability. Distributed data
using round-robin algorithms on clusters of shared-nothing
machines is commonly used for improving performance. In
this paper, we propose a solution for distributed DW databases
that ensures its continuous availability and deals with frequent
data loading requirements, introducing small performance
overhead. We use a data striping and replication architecture
to distribute portions of each fact table among pairs of slave
nodes. Each slave node is an exact replica of its partner in the
pair. This allows balancing query execution and replacing any
defective node, ensuring the system’s continuous availability.
The size of each portion in a given node depends on its
individual features, namely performance benchmark measures
and dedicated database RAM. The estimated cost for executing
each query workload in each slave node is also used for
balancing and optimizing query performance. We include
experiments using the TPC-H decision support benchmark to
evaluate the scalability of our solution and show that it
outperforms standard round-robin distributed DW setups.

Keywords-Real-time data warehousing; availability; fault
tolerance; data replication and redundancy; distributed and
parallel databases; load balancing; performance optimization.

I. INTRODUCTION
Infrastructures such as the Internet have redefined most

business models, pushing enterprises into a 24/7 business
schedule, i.e., while most business models functioned in an
eight to twelve hours schedule in the past, business currently
occurs in a non-stop fashion. This has shifted the decision
support paradigm: business decisions are now made much
more frequently and with the most recent business data.
Consequently, today’s Data Warehouse (DW) requires both
ongoing availability (allowing to continuously provide
information to decision makers) and highly frequent data
loading (allowing the database to be able to include the most
recent business data as quickly as possible), in order to fulfill
its decision support purpose [21].

DWs typically have databases with millions of rows or
more and take up many gigabytes or terabytes of storage
space. Given these features, many decision support queries
can run up to hours. Moreover, as the amount of stored data
increases, database performance degrades. Distributed
database architectures are used to improve performance in
these environments, since they enable parallel processing and
higher levels of scalability. The most common architecture is
to distribute the database throughout shared-nothing clusters
of inexpensive commodity PCs [6].

Typical distributed databases divide tables into separate
chunks of data of approximately the same size using a round-
robin algorithm, storing a chunk in each node [2, 3, 6, 14,
23]. To process a query, a central node receives it and splits

it into partial queries to be processed by each node, sends
each partial query to each node, collects all partial answers to
build up the final answer and sends it back to the user that
requested it [3]. We argue that while round-robin fixed-size
data distribution seem good for homogeneous environments,
many DW setups function in heterogeneous environments, in
which nodes often have distinct individual performance.
Thus, approaches that use this feature for load balancing in
both data loading and querying may produce better results.

The critical issue in simultaneously executing loading
and querying actions in DWs is that they introduce extremely
large performance overheads, given the size and complexity
of the databases [21]. This is the main reason why traditional
DWs were updated only when offline to users. Recently,
hardware speed and capacity have evolved up to a level
where those overheads are now considered acceptable.
Nowadays, most real-time DWs employ frequent micro-
batch bulk loading of new data, while they are kept online
for querying purposes [2, 20]. However, the frequency rate
of these updates and how much data should be loaded in
each load are very diverse [11]. Moreover, the overhead in
loading and querying performance is also dependent from
the storage size and hardware features of each clustered
database. In fact, query performance in many distributed
databases is poor mainly due to load balance problems [10].

In what concerns availability, there are several ways a
DW can become fully or partially unavailable:

• Unexpected system failures (e.g. hardware failures,
network problems, unexpected system shutdown, etc),
resulting in unplanned downtime;

• Previously defined moments for executing tasks such as
hardware, software and database maintenance (e.g. data
loading, rebuilding indexes, backups, adding new
storage hardware, etc), resulting in planned downtime.

To avoid both planned and unplanned downtime and
ensure its 24/7 availability, a real-time DW must efficiently
enable simultaneous data loading and querying, as well as
hardware and database maintenance, including the execution
of fault tolerant and self-healing actions, keeping the
database online to its users in a non-stop fashion within a
heterogeneous hardware and software environment. Pulling
this together is not a trivial task. Our approach provides a
feasible solution for improving the performance and
availability of standard distributed real-time DWs and
requires small implementation efforts.

A. Our proposal
In this paper, we engineer techniques such as data

replicating and striping for enabling 24/7 availability
(including fault tolerance and self-healing) in distributed
real-time DWs. Our proposal focuses on ensuring the non-
stop availability of the DW, as well as the improvement of
both data loading and querying in the distributed database.

Our distributed database architecture is based on dividing
data among pairs of nodes, called slaves. Each slave is an
exact replica of its partner in the pair. This setup allows
rebuilding a node from its partner, in case of integrity issues
or hardware failures. Each slave can also alternatively
process any query supposed to be processed by its respective
pair, if this node is unavailable for any reason. Thus, each
slave can act as a fault tolerance mechanism for its partner,
ensuring the pair is functional unless both slaves are down.
Moreover, using the DW-Striping (DW-S) technique for
querying as shown in [3] and explained further in the paper,
we may also produce approximate answers even if one or
more pairs of slaves are down. Within each slave, there is
also an exact duplicate of each database it holds. This
enables executing maintenance tasks and reoptimizing each
database (e.g., rebuilding or updating materialized views and
indexes) in a node without altering its availability, putting
one database offline while its duplicate remains online.

Each cluster node has its own performance coefficient, in
relation to the cluster’s overall performance. We use this
coefficient to balance data loading, by defining the amount
of data each node stores in relation to the total size of the
database. We also request faster nodes to process a larger
number of queries than slower nodes. This leverages
response time among the slave nodes, improving overall
performance. Both data loading and query workload
balancing are managed by a pair of nodes that coordinate the
whole system, called masters. Each master is also a replica
of its pair, ensuring the system is always available and works
if one of master is down.

B. Main achievements and contributions
The main contributions of our proposal are as follows:
• We engineer classic techniques such as replication and

striping, together with DW loading methods developed
and published in former research, for building an
efficient 24/7 available real-time distributed DW;

• Our solution optimizes system’s overall performance,
based on balancing data loading and query execution
given each node’s hardware and software features, as
well as query workloads being executed;

• The DW is always online, for both planned and
unplanned tasks such as adding, repairing or removing
storage devices, as well as rebuilding or reoptimizing
each node’s database;

• The architecture is extremely flexible and can easily be
applied in classical DWs with distributed databases for
enabling 24/7 availability with fault tolerance, while
updating the database in a (nearly) continuous fashion;

• Our experiments show our solution’s feasibility and
that it outperforms standard round-robin distributed
database architecture such as DW-S.

C. Structure of the paper
The remainder of this paper is organized as follows. In

Section II we summarize our previous work, which is the
foundation for the proposed solution in this paper. In Section
III we explain our proposal, pointing out the issues involved
in its use. Section IV presents experimental evaluations of

our solution using the TPC-H decision support benchmark
and a real-world sales DW, comparing it to the round-robin
DW-S. Section V describes related work on availability and
real-time distributed DW solutions. Finally, in Section VI we
present our conclusions and point out future work.

II. BUILDING A 24/7 REAL-TIME CENTRALIZED DW
A. Changing a traditional centralized DW into a 24/7 real-

time centralized DW
In this subsection we summarize previous work [17, 18],

explaining how to change a traditional centralized DW with
static data structures and offline updates into a centralized
(near) real-time DW with a dynamic database, capable of
dealing with the issues involving querying and frequent data
loading at the same time. Our assumptions are very simple:

• Small tables (i.e., with a small amount of rows) are able
to load data faster than large tables;

• Tables that have no query performance optimization
data structures such as primary keys and other indexes
are capable of appending data much faster than tables
that have those data structures;

• Using INSERT or appending data by bulk loading is
much faster than UPDATE ELSE INSERT procedures
(since UPDATE previously executes a table lookup),
common to most commercial data loading tools.

Most DW schemas are star schemas [12], where business
facts are stored in a central table called Fact table (e.g. Sales
fact table) and the tables containing the business descriptors
are called Dimension tables (e.g. Customer and Product
tables). Dimension tables are linked to the fact table by their
primary keys (e.g. CustomerID and ProductID). Since fact
tables typically take up at least 90% of the total storage size
[12], we focus on speeding up loading data into these tables.
On the other hand, dimension tables are typically small sized
and have a small amount of rows [12]. Thus, for updating
dimension tables we use the standard UPDATE ELSE
INSERT approach, since this will result in small delays that
do not significantly affect the system’s performance [13].

To store new fact table rows we use only INSERT
statements or bulk loading into an extra temporary fact table,
created empty of contents and without any constraint or
optimization data structure (including primary keys, indexes,
etc). The temporary fact table has the same data structure as
the original fact table it concerns, plus an extra column that
stores incremental identifiers for being able to identify the
sequence of added rows.

Since our intention is to minimize the gap between what
happens in the transactional systems and its propagation in
the DW, a transaction can be changed at its origin after it has
already been stored in the DW. Our solution deals with this
by using only INSERT statements to update the DW. Given
that business facts in fact tables are usually numerical values,
to use only INSERT statements for updating fact tables we
must ensure factual columns have additive properties. If this
is assured, we can use SUM functions grouped by primary
keys for obtaining the correct value of the transaction.

As an example, suppose a very simple sales DW with the
schema shown in Figure 1. It has two dimensional tables

(Store and Customer) and one fact table (Sales). To
simplify the figure, the Date dimension is not shown. This
DW stores the sales value per store, per customer, per day.
The primary keys are represented in bold, while referential
integrity constraints with foreign keys are represented in
italic. The factual attribute S_Value is additive.

Figure 1. Sample sales data warehouse schema

A temporary fact table STmp_Sales is created for the
original fact table Sales. A unique sequential identifier in
STmp_Sales (STmp_Counter) records the sequence in
which each row is appended. This identifies the sequence for
each inserted row, useful for restoring prior data states in
disaster recovery actions. With our method, any appending,
updating or eliminating of business data on transactional
systems only results in new row insertions in the DW, in
order to minimize row, block, and table locks, as well as
other concurrent data access problems. Physical database
tablespace fragmentation is also avoided, since there is no
deletion of data, just sequential increments. INSERT is much
faster than UPDATE or DELETE actions, allowing us to
state we use the fastest method to refresh the DW [13, 18].

Regarding Figure 1, we now describe an example for
loading new data. Figure 2 presents the insertion of a row in
the temporary fact table (STmp_Sales) for recording a sales
transaction of value 100 occurred at 2008-05-02 in store
St_StoreKey=1, related to customer with C_CustKey=10.
This row is identified by STmp_Counter=1001. Meanwhile,
other transactions occurred, and the transactional system
recorded that instead of a value of 100 for the mentioned
transaction, it should be 1000. The STmp_Sales rows with
STmp_Counter=1011 and STmp_Counter=1012 reflect this
modification. Summing STmp_Value grouped by primary
key (STmp_StoreKey, STmpCustomerKey, STmpDate),
the resulting value (100-100+1000 = 1000) is the new real
value, due to the additivity of STmp_Value.

Figure 2. Partial contents of temporary fact table SalesTmp
Extraction-Transformation-Loading (ETL) tools are used

for extracting the transactional business data, cleaning and
transforming it into decision support format, and loading it
into the DW. Many issues on the use of ETL tools do not
focus only on performance problems (as would be expected),
but also in aspects such as complexity, practicability and
price [13]. By using only row insertion actions into empty or

small sized tables without constraints or attached physical
files related to it, we use the simplest and fastest logical and
physical support for achieving our data loading goals [13].

To query the DW, users have three possibilities: 1) To
query past data, queries remain unaltered, since the original
schema is the same in the modified schema; 2) To query just
the most recent data, queries just need to replace the original
fact tables for the new temporary fact table replicas, since
they are the ones that store that data; and 3) To query both
past and most recent data, queries need to consider joining
both the original and the new temporary fact tables.

Since data loading is done mainly into tables without
performance optimization structures, as their size increases,
query performance against them decreases. Then, the system
is reoptimized, by transferring the data in the fact table
replicas into the original ones, as explained in [17, 18],
recreating the fact tables’ replicas empty of contents once
more and rebuild performance optimization structures in
order to regain optimal performance. The issues of this
method are thoroughly discussed in [17, 18].

B. Obtaining continuous availability in a centralized DW
The architecture of the latest version of our work, a 24/7

real-time DW (RTDW) system, published in [19], is shown
in Figure 3. Using data replication and the techniques
proposed in [17, 18], the 24/7 availability solution is based
on the following:

• The server has a complete duplicate of each database;
• Both databases will be updated simultaneously by our

24/7 RTDW Tool, but only one at a time will be made
available/online for users (although this is indifferent,
since they query the middleware, which transparently
redirects their queries to the appropriate DB and returns
their responses to who requested them);

• Whenever the online DB needs to be reoptimized it is
put offline, while its duplicate is put online, and vice-
versa, in a continuous manner, assuring that there is
always one of the DB which is available to the users;

• Since there is an exact replica of each database, they
can act as fault tolerant solutions if one is damaged.

In [18], a middleware application transparently deals with
both data loads and query processing. Each load is treated in
a transaction-like fashion (instead of simple micro-batch
bulk loading of individual rows) to solve referential integrity
issues from our previous work [17]. A transaction is defined
as a set of all dimension table rows needed for each fact table
row. For instance, this means that before inserting a new as
shown in Figure 2, the middleware would confirm that
customer key 10 and store key 1 exist in Customer and
Store, respectively. If they do not exist, they are created
before updating the Sales fact table with the referred row.

The 24/7 RTDW Tool Manager allows the DBA to
manage the tool’s database (24/7 RTDW Tool Database) and
monitor data loading executions, as we previously described.
It also allows the DBA to build the original DW schema
duplicates and set up all the values when the tool is used for
the first time, as well as to reoptimize any database at any
time. The 24/7 RTDW Tool Database stores the information

which is vital for managing the system, such as information
on the DW tables and other data structures (indexes,
materialized views, etc), definitions of transactions described
in the former paragraph, how often is new data to be loaded,
which is the current available database for users, status
boolean flags indicating if any of the databases is being
reoptimized, queried or updated, etc.

The 24/7 RTDW Tool Loader component is responsible
for executing the DW refreshment procedures, loading new
data into its databases. The 24/7 RTDW Tool Query Executor
handles the user queries, selecting which replicated database
to use. It simply redirects the requested queries, according to
which is the available database for querying (defined in the
tool’s database), supplying the results to the query’s request
origin. All functional issues are thoroughly discussed in [19].

III. THE 24/7 REAL-TIME DISTRIBUTED DW
A. The 24/7 Real-Time Distributed DW Architecture

Figure 4 shows the conceptual hardware architecture for
our solution. The system works by logically grouping nodes
in pairs. Each node in a given pair is an exact replica of its
partner. There are slave pairs and master pairs of nodes. The
master pair contains master nodes, which are responsible for
managing the system and interface the DW with the decision

support users and ETL tools. The slave nodes are shared-
nothing machines, each with its own DataBase Management
System (DBMS) and independent database instances, storing
part of the DW data. They work individually as explained in
the previous section for processing data loading and
querying, while maintaining their ongoing availability.

The master nodes maintain a list of all the slave pairs and
respective slave nodes, and are responsible for defining the
amount of data to load into each slave node’s database,
sending them that data and verifying if each load process was
successfully completed. They are also responsible for
receiving user queries, splitting and sending them to be
processed by each slave node, subsequently collecting those
partial answers, building the complete final answers and
returning those answers to the users which requested them.

Master nodes are also responsible for verifying if any
slave node or slave pair is down, correcting defective slave
nodes and alerting the DBA. Since each slave node in a
given slave pair is an exact replica of its partner, this allows
a master node to update, correct or restore any of its tables,
or replace a jeopardized node that needs to be substituted by
completely and correctly rebuilding a replacement node to
take its place. A master node is also capable of rebuilding its
partner in the respective master pair.

Figure 3. The 24/7 real-time centralized data warehouse conceptual architecture

Figure 4. The 24/7 distributed real-time data warehouse hardware architecture

Fact Table

Row 1
Row 5
Row 9
…
Row n-3

Dimension 1

D1_Row 1
D1_Row 2
D1_Row 3
…
D1_Row w

Dimension 2

D2_Row 1
D2_Row 2
D2_Row 3
…
D2_Row x

Dimension 3

D3_Row 1
D3_Row 2
D3_Row 3
…
D3_Row y

Dimension d

Dd_Row 1
Dd_Row 2
Dd_Row 3
…
Dd_Row z

...

Fact Table

Row 2
Row 6
Row 10
…
Row n-2

Dimension 1

D1_Row 1
D1_Row 2
D1_Row 3
…
D1_Row w

Dimension 2

D2_Row 1
D2_Row 2
D2_Row 3
…
D2_Row x

Dimension 3

D3_Row 1
D3_Row 2
D3_Row 3
…
D3_Row y

Dimension d

Dd_Row 1
Dd_Row 2
Dd_Row 3
…
Dd_Row z

...

Fact Table

Row 3
Row 7
Row 11
…
Row n-1

Dimension 1

D1_Row 1
D1_Row 2
D1_Row 3
…
D1_Row w

Dimension 2

D2_Row 1
D2_Row 2
D2_Row 3
…
D2_Row x

Dimension 3

D3_Row 1
D3_Row 2
D3_Row 3
…
D3_Row y

Dimension d

Dd_Row 1
Dd_Row 2
Dd_Row 3
…
Dd_Row z

...

Fact Table

Row 4
Row 8
Row 12
…
Row n

Dimension 1

D1_Row 1
D1_Row 2
D1_Row 3
…
D1_Row w

Dimension 2

D2_Row 1
D2_Row 2
D2_Row 3
…
D2_Row x

Dimension 3

D3_Row 1
D3_Row 2
D3_Row 3
…
D3_Row y

Dimension d

Dd_Row 1
Dd_Row 2
Dd_Row 3
…
Dd_Row z

...

TRADITIONAL CENTRALIZED
DATA WAREHOUSE

DATA WAREHOUSE STRIPING APPROACH

...

Fact Table

Row 1
Row 2
Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
…
Row n

Dimension 1

D1_Row 1
D1_Row 2
D1_Row 3
…
D1_Row w

Dimension 2

D2_Row 1
D2_Row 2
D2_Row 3
…
D2_Row x

Dimension 3

D3_Row 1
D3_Row 2
D3_Row 3
…
D3_Row y

Dimension d

Dd_Row 1
Dd_Row 2
Dd_Row 3
…
Dd_Row z

Figure 5. Data Warehouse Striping (DW-S) data distribution
technique

B. Data distribution and load balancing
To distribute data among the slave nodes using the DW-

Striping (DW-S) technique, explained in [3] and illustrated
in Figure 5, a fact table is broken into equal-sized chunks of
data using a round-robin algorithm. Each node stores one of
those chunks, along with replicas of all dimension tables.
The reason why the round-robin algorithm is used instead of
dividing the data based on ranging values of a given attribute
is to assure the data is randomly distributed independently
from their values, so each node processes approximately the
same amount of data as the remaining nodes and thus, avoids
overloading specific nodes while others remain idle when
processing range queries with that attribute.

However, we disagree with this form of distribution. We
argue that faster nodes should process larger portions of data
than slower nodes, in order to minimize waiting time until all

partial query answers are returned to the master. For
example, if there are two slave nodes, where one is two times
faster than the other, then it should process the double of the
amount of data of the other, to minimize the overall response
time. Thus, to define the amount of data to load in each slave
node we evaluate its performance capability (as shown
further) and distribute data proportionally according to its
relative individual performance coefficient within the cluster.

Proving that our data distribution proposal is more
efficient than the standard round-robin algorithm is simple
and straightforward. Consider the following scenario: in a
cluster with two nodes, one machine is capable of processing
data twice as fast as the other. Assuming the total size of the
DW database is 1TB, the round-robin DW-S approach would
store 500GB in each node. If the faster node takes 100
seconds to process a query, then the slower node (which
works at half speed) takes 200 seconds. Since we have to
wait for both nodes to finish processing the query, we can
only build the final answer after 200 seconds (corresponding
to the slowest node’s processing time). In our approach, the
slowest node would store only half the amount of the data of
the fastest. Thus, the fastest node would store 667GB, while
the slowest would store 333GB. Assuming that response
time is approximately proportional to the amount of data that
needs to be accessed by the node, then the fastest node would
take 667/500*100 = 133 seconds, while the slowest node
would take 333/500*200 = 133 seconds. Thus, both would
be finished practically at the same time and none would have
to wait for the other, completing both the tasks in 67 seconds
earlier than the fixed-size round-robin approach.

An example of how our approach would divide a given
fact table comparatively to the DW-S approach is shown in
Figure 6, exemplifying a cluster of four slave nodes. While
DW-S would generate four equal-sized chunks with n/4 rows
each, our approach would generate four chunks with i, j, k, l
rows for each slave node, dependent on their performance
coefficient. In Figure 6, the fact table chunks in DW-S are
named FTx, where x represents the slave node number, while
in our approach each of those chunks is named FTx.y, where
x also represents the slave node number, y=1 represents the
original fact table and y=2 the temporary replica used for
loading new fact table rows as explained in subsection II.A.
As shown, each slave node stores a replica of its partner node
from the slave pair, as explained previously. Since each
slave node also has a replica of each of its database, Figure 7
illustrates an example of how data is stored in slave pair 1.

In real-world scenarios, clusters of shared-nothing nodes
are heterogeneous environments. Many of the machines have
distinct hardware (CPU, RAM, etc.) and software programs
(operating system, resident applications, etc), all of which
execute at different paces and with variable frequency. This
implies that each machine/node has its own individual
performance, which is mostly different from the rest and in
contrast with the overall performance of the cluster. Besides
these features, the amount of RAM reserved for the DBMS
database cache and other critical operations in each node is
also a very significant performance variable. Thus, each node
can process queries faster or slower from the rest.

Figure 6. Comparing the Data Warehouse Striping data distribution method with the 24/7 Real-Time Distributed DW approach

Figure 7. Example of the database setups in slave pair 1

The performance coefficient for each slave node results
of a mix of equal weights from a measure given by a
performance benchmark application such as [16] on the
(Board, CPU, RAM, Hard Disk) components for each node
and the amount of dedicated memory made available by the
node for DBMS memory management such as database
caching and user connection handling (e.g. the Oracle SGA
and PGA). Suppose the performance benchmark measures
and dedicated DBMS RAM for each slave node in a cluster
of four slave nodes are as shown in Table I.

Given the resulting individual performance coefficients,
for every set of 100 fact table rows, slave node 1 would store
29 rows, slave node 2 would store 22 rows, slave node 3
would store 17 rows, and slave node 4 would store 32 rows.
Distributing data according to this will balance the amount of
data to process by each slave node according to its individual
performance features in relation to all remaining nodes and
thus, balance response time amongst the nodes in a way that
improves the cluster’s overall response time.
Table I. Example of assessing individual performance coefficients

 Slave
Node 1

Slave
Node 2

Slave
Node 3

Slave
Node 4 Σ

Performance
Benchmark 6.5 7.0 4.5 7.5 25.5

Perf. Bench.
Coefficient

6.5 / 25.5
= 25.5%

7.0 / 25.5
= 27.5%

4.5 / 25.5
= 17.6%

7.5 / 25.5
= 29.4% 100%

DBMS Ded.
Memory 512MB 256MB 256MB 512MB 1536MB

DBMS Mem.
Coefficient 33% 17% 17% 33% 100%

Individual
Coefficient

58.5% / 2
= 29%

44.5% / 2
= 22%

34.6% / 2
= 17%

62.4% / 2
= 32% 100%

C. Query workload execution and balancing
As we previously described, each slave node will be

requested by a master node to execute each user query,
producing a partial answer (if the query is to execute against
a fact table) or a complete answer (if the query executes only
against dimension tables). For the first case, all partial
answers returned by the slave nodes will then be aggregated
by a master node to produce the final answer, which will be
returned to the user. For the second case, once an answer is
received by the master node, all remaining queries are
terminated at once, since all other responses will be exactly
the same (given that all slave nodes have complete exact
copies of all dimension tables).

If several nodes are occupied processing other queries
when a new query is requested to execute, the master node
will balance the workload by executing the partial queries
against slave nodes that are idle or that are executing tasks
with lower computational efforts, within each pair. To
evaluate the computational efforts of a list of executing tasks
in a slave node, we take the estimated query costs given by
DBMS query cost estimator multiplied by the performance
coefficient ratio between the nodes, at that node. As an
example, consider the following scenario:

• We want to execute a new query Q3 against the nodes
in slave pair 1, composed by slave node 1 and slave
node 2;

• Slave node 1 is currently executing queries Q1 and Q2,
which respectively have estimated costs of 2364.62 and

1222.1 (totalizing 3586.72), given by the DBMS query
cost estimator;

• Query Q3 has an estimated cost of 345.2;
• Slave node 2 is currently executing queries Q1 and Q3,

which respectively have costs of 2364.62 and 852.2
(totalizing 3216.82);

• If we refer to Table I shown in subsection III.B, slave
node 1 and slave node 2 have performance coefficients
of 29% and 22%, respectively.

The question for the master node is: should each partial
query of Q3 be respectively processed by each slave node in
slave pair 1, or should one of the slave nodes assume
processing both partial queries? To answer this question, the
master node needs to assess which hypothesis is potentially
faster. With the mentioned measures from Table I, the effort
ratio of slave node 1 relatively to slave node 2 is 22%/29% =
0.759, while the effort ratio of slave node 2 is 29%/22% =
1.318. Thus, the predictable computational effort measures
of each node in the pair for processing their current tasks are:

Slave node 1: 3586.72*0.759 = 2722.32
Slave node 2: 3216.82*1.318 = 4239.77
Now, assuming that each slave node would subsequently

process a partial Q3, we have an estimated cost of:
Slave node 1: 2722.32 + 345.2*0.759 = 2984.33
Slave node 2: 4239.77 + 345.2*1.318 = 4694.74
This means that we can assume Q3 to finish after a cost

of 4694.74, since we can only build the final answer after
both Q3 partial queries have been processed. Now, if both
partial queries Q3 were processed only by slave node 1:

Slave node 1: 2722.32 + (345.2*0.759)*2 = 3246.33
Slave node 2 maintains its previous cost: 4239.77
In this hypothesis, we could build the final Q3 answer

after a cost of 3246.33. Finally, if both partial queries Q3
were processed only by slave node 2:

Slave node 1 maintains its previous cost: 2722.32
Slave node 2: 4239.77 + (345.2*1.318)*2 = 5149.72
Regarding these calculus, the master node would choose

only slave node 1 to process both Q3 partial queries, since
this is the hypothesis in which both slave nodes would finish
earlier because this hypothesis has smallest efforts to finish
Q3 (3246.33<4694.74<5149.72). Besides presenting better
response time, this query balancing approach would release
slave nodes to an idle state earlier than the “one partial query
– one slave node” DW-S approach, which would have an
estimated cost of 4694.74.

D. Other functional issues
Every slave node in the system has a 24/7 RTDW Tool

Database such as it is described in [19] and in section II.B of
this paper. Additionally to what is described in [19], it also
stores communication and database access information on its
partner within the slave pair to which it belongs.

In each master node, the 24/7 RTDW Tool Database
additionally stores all the data that exists in each of the slave
nodes 24/7 RTDW Tool Database, plus: information on
which is the performance coefficient of each slave node, as
well as communication and database access information;

status on which user queries and what data loads are being
executed, as well as a query history log and a data load log; a
list of its master node pairs. When new slave pairs are added
to the cluster, the DBA just needs to update the master
nodes’24/7 RTDW Tool Database.

In order to verify if any slave node is offline, a master
node periodically tries to ping to each slave node. If a slave
node does not respond, the master node stores that status in
its 24/7 RTDW Tool Database and the DBA is alerted. In
what concerns data loading, as we mentioned previously,
each slave node within a given slave pair is an exact replica
of its partner. This means that both slave nodes in a pair
receive all the new data loaded by its partner. When new data
is received by a master node to update an offline slave node,
the master node takes notice of the batch of rows referring to
it and loads this data into the formerly unavailable node from
its partner when it is restores its online status. The exception
is if both slave nodes in the same slave pair are unavailable.
In this case, the master node retains the data to load into that
pair of slave nodes and subsequently executes the data load
when they restore their online status.

In what concerns querying, an individual timeout is
defined for each slave node to process each partial query, as
well as a timeout for waiting for the remaining responses as
the first nodes respond back to the master node, considering
the estimated processing costs as shown in the previous
subsection. In case any slave node exceeds those timeouts,
the master node assumes the node has killed the partial query
and builds an approximate answer from the partial results it
has already received from the remaining available nodes,
using statistical formulas according to the DW-S approach as
explained in [3]. Thus, one or more nodes that are
momentarily unavailable do not cause the system to stop.

For example, for a query to calculate a sum, if we have
the partial answers {S1, S2, … , Si} from i available nodes of
a cluster with n nodes, the approximate answer is calculated
by multiplying the average result from the available nodes by
the total number of nodes: ((S1+S2+…+Si) / i) * n. This
approximate answer approach is valid for all mathematical
calculus and is thoroughly discussed in [3], and due to lack
of space will not be included here. In these cases, the users
receive an estimated answer with a confidence interval for a
given confidence probability. For example, SUM(estimated)
= 233.45±12.5 with 95% confidence. The master node also
alerts the DBA to check the slave nodes to which the
timeouts refer. When ETL tools or users cannot access a
master node, they can request its pair in the master pair.

IV. EXPERIMENTAL EVALUATION
To evaluate our proposal, we implemented the 10GB size

database of TPC-H decision support benchmark [22] using
the Oracle 11g DBMS. All machines were identical Pentium
Core2Duo 3GHz shared-nothing PCs, with 2GB of SDRAM
and 160GB SATA hard disks. We evaluated the performance
of the nodes with SiSoftware Sandra 2012 [16] and compare
the results between our method and the standard DW-S
round-robin technique. We shall not be concerned with the
time spent in parsing and splitting the user query,
communication costs in exchanging data between slaves and

master node, and merging the partial answers. We focus on
the response time of each node for each workload. The TPC-
H query workload used in all tests was composed of TPC-H
queries 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20
and 21, as a representative sample of both fact table and
dimension table queries. We tested our approach and DW-S
using clusters with 2, 4, 8 and 10 nodes, in scenarios with 1
to 10 users simultaneously querying the DW.

A. Query Execution without Data Loading
We have tested our proposal and the DW-S technique in

setups that executed a predefined TPC-H query workload
against static data (i.e., processing queries without having to
simultaneously handle data loading procedures), to compare
them in what concerns purely query execution. The first
tested setups were performed in a homogeneous cluster (all
identical machines, with the same amount of predefined
dedicated RAM for each node’s database cache - 756MB).
The results for these setups are shown in figure 8.

Figure 8. Query workload execution time on homogeneous cluster

Given that the cluster is composed of identical machines
with identical software/hardware features, the results for
DW-S and our approach are similar, as would be expected.
However, it can be noticed that the results for our approach
are slightly better. Although they are identical, the nodes
have slightly different performance coefficients, meaning
they store slightly different amounts of data in our approach,
which leads to slightly better overall results, as we expected.

We repeated the same experiments using a cluster where
half the nodes have 512MB dedicated database RAM and the
other half 1024MB dedicated database RAM, composing a
heterogeneous cluster. The results of these experiments are
shown in figure 9. As can be seen, our approach presents
much better results than DW-S. Since the master nodes need
to wait for each node to finish processing each partial query
and given that each node processes the same amount of data
in the DW-S setups, the master needs to wait for the slower
nodes, which represents a delay that does not occur in our
approach, given that the faster nodes process more data than
the slower nodes and therefore, minimizes waiting time.

This allows our approach to approximately maintain its
overall performance, while DW-S introduces response time
overheads from 20% (in the 10 node cluster) to 24% (in the 2
node cluster) for the tested scenarios. For example, in the 10
user 10 node cluster setup, the workload response time is
approximately 5000 seconds using our approach, while the
DW-S solution takes almost 7000 seconds. In the 10 user 2
node cluster setup, DW-S takes more than 45000 seconds,
while our approach takes approximately 36000 seconds.

Figure 9. Query workload execution time on heterogeneous cluster

B. Query Execution while executing Data Loading
To measure the impact introduced in query response time

by simultaneously loading data into the DW while the
queries are processed, we also tested all the scenarios and
setups mentioned in the previous subsection, while loading
sets of 600 TPC-H transactions (approximately 65MB of
data) every 30 seconds using Oracle’s SQL*Loader. The
results for the mentioned homogeneous and heterogeneous
clusters are shown in Figures 10 and 11, respectively. The
introduced overheads in the DW-S are even proportionally
larger when compared to those introduced by our approach,
as can be seen in the figures. While our approach manages to
maintain response time overheads that range from 6% to
18% and are similar in both clusters, the DW-S solution will
introduce from 6% to 31% in the homogeneous clusters and
9% to 39% in the heterogeneous clusters, for the tested
setups and scenarios.

Figure 10. Query workload execution time on heterogeneous
cluster while performing data loading

Figure 11. Query workload execution time on heterogeneous
cluster while performing data loading

C. Discussion and Remarks
The DW-S proposal [3] means to achieve nearly optimal

speed and scale up. This is due to the fact that typical queries
lead to sub-queries executed in a completely independent
way in each node and each query returns a partial result that
is easy to merge to compute the final answer. That is, each
node locally and independently processes the same amount
of heterogeneous data as all the remaining. However, to
obtain these results, the DW-S setup assumes that all nodes
are similar machines processing approximately the same
amount of data and thus, taking approximately the same time
to process each partial query. As we previously mentioned,
many real-world DWs use shared-nothing clusters composed
by machines with distinct hardware and software features.
As the results show, in these heterogeneous environments
our proposal easily outperforms the standard fixed-size
round-robin data distribution approach and presents better
performance, taking advantage of each node’s independent
characteristics. If we consider that a change in the amount of
dedicated database RAM in the nodes is effectively a slight
difference between them, then we easily state that in a cluster
composed of heterogeneous machines, each with distinct
hardware components (CPU, RAM, etc) and executing
different software applications at different rates, our
approach can achieve much better results than standard
round-robin fixed-size distributed databases.

V. RELATED WORK
Our previous work [17, 18] is focused on optimizing data

loading procedures for dealing with real-time data
warehousing requirements, while [19] focuses on ensuring
ongoing availability. In these papers, we thoroughly discuss
the issues involved in those features and used in this paper.
The concept of DW-S and its issues is described in [3].

Aster Data is a leading commercial DW with 24/7
availability [1]. This solution has built-in fault tolerance and
self-healing capabilities to handle hardware and software
failures. They use data replication with transparent fail-over
and perform online restoration of backups whenever a fault
is detected, executing online resynchronization. They also
allow executing online data loads and exports, as well as
adding new servers to the system without downtime.

Relating with Real-Time Data Warehousing, in [11] the
authors present a architecture on how to define the types of
update and time priorities (immediate, at specific time
intervals or only on DW offline updates) and respective
synchronization for each group of transactional data items. In
[21] the authors propose using SQL INSERT-like loading
instructions with bulk load speed, taking advantage of in-
memory databases for data loading in the DW. An approach
using SSD for caching updates in presented in [6], able to
maintain query availability while adding fresh data to the
DW. The work in [10] refers both query execution and data
loads in analytical environments, discussing a comparison of
techniques for loading and querying data simultaneously.

Solutions on data distribution and load balancing for data
centers and transactional distributed databases are proposed
in [4, 5, 7, 9]. These architectures typically use key-based
hash or range methods to assign data to nodes in the cluster
and work around consistency issues. The work in [8, 15] also
focus on these aspects, but include replication strategies for
ensuring high availability and fault tolerance. Using
replication and virtualization for ensuring high availability
and small performance overheads is proposed in [14].

MDHF [20] uses join-bitmap indexes with workload-
based attribute-wise derived data distribution, hierarchy-
aware processing and in-memory retention of dimensions for
efficient processing of star schemas. A MapReduce-style
fault tolerance strategy for improving query performance in
case of node unavailability for long running queries is
proposed in [23] for shared-nothing distributed databases,
using data replication. A similar MapReduce-based solution
is discussed in [6], including a set of related optimization
techniques such as data storage and compression, as well as
multi-query management, for a specific advertisement DW.

VI. CONCLUSIONS AND FUTURE WORK
This paper proposes a solution for ensuring continuous

availability while enabling simultaneously loading data and
processing of decision support queries in distributed DWs.
We achieve continuous availability by replicating databases
within each node and within the assigned pairs of nodes, in
which one node can respond on behalf of its partner for both
data loading and querying, or can be used to rebuild its
partner. This allows performing all kinds of planned and
unplanned downtime tasks without taking the system offline.
Approximate query answering is also used if any pair of
nodes is down, ensuring the system will always produce a
response to its users.

To improve the overall performance of a cluster, we
distribute the amount of data in each node according to its
individual performance coefficient relatively to all the nodes
in the cluster, allowing faster nodes to process more data
than slower nodes. We can also improve performance by
processing both partial query responses of a pair in just one
of the slave nodes, in case it is faster than the other or if the
other is already occupied processing any other user query.
This allows load balancing query workload jobs to improve
the response time of the partial query responses in each pair.
The experimental results show that our data distribution
approach produces better performance results than the

standard fixed-size round-robin distributed data approach
used in most distributed DWs in the tested setups, for both
homogeneous and heterogeneous clusters.

As future work, we intend to test and improve the data
loading technique for using in-memory databases to speed up
those procedures. We will also adapt our approach and
evaluate it for virtualization and cloud DW setups.

REFERENCES
[1] Aster Data, Aster Data nCluster: “Always On” Availability, Aster

Data Systems, 2009.
[2] M. Athanassoulis, S. Chen, A. Ailamaki, P. B. Gibbons, and R.

Stoica, “MaSM: Efficient Online Updates in Data Warehouses”, SIG
Int. Conference on Management Of Data (SIGMOD), 2011.

[3] J. Bernardino, P. Furtado, and H. Madeira, “Approximate Query
Answering Using Data Warehouse Striping”, Journal of Intelligent
Information Systems (JIIS), Vol. 19, No. 2, pp. 145-167, 2002.

[4] D. G. Campbell, G. Kakivaya, and N. Ellis, “Extreme Scale with full
SQL Language Support in Microsoft SQL Azure”, SIG Int.
Conference on Management Of Data (SIGMOD), 2010.

[5] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M.
Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
Distributed Storage System for Strcutured Data”, Int. USENIX
Symp. on Oper. Systems Design and Implementation (OSNI), 2006.

[6] S. Chen, “Cheetah: A High Performance, Custom Data Warehouse
on Top of MapReduce”, Int. C. Very Large DataBases (VLDB),2010.

[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P.
Bohannon, H. A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni,
“PNUTS: Yahoo!’s Hosted Data Serving Platform”, Proceedings of
Very Large DataBases (PVLDB), 2008.

[8] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a Workload-
Driven Approach to Database Replication and Partitioning”, Int.
Conference on Very Large DataBases (VLDB), 2010.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and M. Vogels,
“Dynamo: Amazon’s Highly Available Key-Value Store”, ACM
Symposium on Operating Systems Principles (SOSP), 2007.

[10] G. Graefe, “Fast Loads and Fast Queries”, International Conf. on
Data Warehousing and Knowledge Discovery (DAWAK), 2009.

[11] I. C. Italiano, and J. E. Ferreira, “Synchronization Options for Data
Warehouse Designs”, IEEE Computer Magazine, 2006.

[12] R. Kimball, and M. Ross, The Data Warehouse Toolkit – The
Complete Guide to Dimensional Modeling, John Wiley & Sons,2002.

[13] R. Kimball, and J. Caserta, The Data Warehouse ETL Toolkit, Wiley
Computer Pub., 2004.

[14] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem, and
A. Warfield, “RemusDB: Transparent High Availability for Database
Systems”, Int. Conference on Very Large DataBases (VLDB), 2011.

[15] J. Rao, E. J. Shekita, and S. Tata, “Using Paxos to Build a Scalable,
Consistent, and Highly Available Datastore”, Int. Conference on
Very Large DataBases (VLDB), 2011.

[16] SiSoftware, Sandra 2012 Computer Benchmark Application,
http://www.sisoftware.net

[17] Our previous work. Not available due to double blind review.
[18] Our previous work. Not available due to double blind review.
[19] Our previous work. Not available due to double blind review.
[20] T. Stohr, H. Martens, and E. Rahm, “Multi-Dimensional Database

Allocation for Parallel Data Warehouses”, Int. Conference on Very
Large DataBases (VLDB), 2000.

[21] C. Thomsen, T. B. Pedersen, and W. Lehner, “RiTE: Providing On-
Demand Data for Right-Time Data Warehousing”, Int. Conference
on Data Engineering (ICDE), 2008.

[22] Transaction Processing Performance Council, TPC Benchmark H
(TPC-H), http://www.tpc.org/tpch/.

[23] C. Yang, C. Yen, C. Tan, and S. Madden, “Osprey: Implementing
MapReduce-Style Fault Tolerance in a Shared-Nothing Distributed
Database”, Int. Conference on Data Engineering (ICDE), 2010.

