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Abstract—Nowadays, most enterprises require near real-time 
Data Warehouses (DWs) that are able to deal with continuous 
updates while providing 24/7 availability. Distributed data 
using round-robin algorithms on clusters of shared-nothing 
machines is commonly used for improving performance. In 
this paper, we propose a solution for distributed DW databases 
that ensures its continuous availability and deals with frequent 
data loading requirements, introducing small performance 
overhead. We use a data striping and replication architecture 
to distribute portions of each fact table among pairs of slave 
nodes. Each slave node is an exact replica of its partner in the 
pair. This allows balancing query execution and replacing any 
defective node, ensuring the system’s continuous availability. 
The size of each portion in a given node depends on its 
individual features, namely performance benchmark measures 
and dedicated database RAM. The estimated cost for executing 
each query workload in each slave node is also used for 
balancing and optimizing query performance. We include 
experiments using the TPC-H decision support benchmark to 
evaluate the scalability of our solution and show that it 
outperforms standard round-robin distributed DW setups. 
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tolerance; data replication and redundancy; distributed and 
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I.  INTRODUCTION 
Infrastructures such as the Internet have redefined most 

business models, pushing enterprises into a 24/7 business 
schedule, i.e., while most business models functioned in an 
eight to twelve hours schedule in the past, business currently 
occurs in a non-stop fashion. This has shifted the decision 
support paradigm: business decisions are now made much 
more frequently and with the most recent business data. 
Consequently, today’s Data Warehouse (DW) requires both 
ongoing availability (allowing to continuously provide 
information to decision makers) and highly frequent data 
loading (allowing the database to be able to include the most 
recent business data as quickly as possible), in order to fulfill 
its decision support purpose [21]. 

DWs typically have databases with millions of rows or 
more and take up many gigabytes or terabytes of storage 
space. Given these features, many decision support queries 
can run up to hours. Moreover, as the amount of stored data 
increases, database performance degrades. Distributed 
database architectures are used to improve performance in 
these environments, since they enable parallel processing and 
higher levels of scalability. The most common architecture is 
to distribute the database throughout shared-nothing clusters 
of inexpensive commodity PCs [6].  

Typical distributed databases divide tables into separate 
chunks of data of approximately the same size using a round-
robin algorithm, storing a chunk in each node [2, 3, 6, 14, 
23]. To process a query, a central node receives it and splits 

it into partial queries to be processed by each node, sends 
each partial query to each node, collects all partial answers to 
build up the final answer and sends it back to the user that 
requested it [3]. We argue that while round-robin fixed-size 
data distribution seem good for homogeneous environments, 
many DW setups function in heterogeneous environments, in 
which nodes often have distinct individual performance. 
Thus, approaches that use this feature for load balancing in 
both data loading and querying may produce better results. 

The critical issue in simultaneously executing loading 
and querying actions in DWs is that they introduce extremely 
large performance overheads, given the size and complexity 
of the databases [21]. This is the main reason why traditional 
DWs were updated only when offline to users. Recently, 
hardware speed and capacity have evolved up to a level 
where those overheads are now considered acceptable. 
Nowadays, most real-time DWs employ frequent micro-
batch bulk loading of new data, while they are kept online 
for querying purposes [2, 20]. However, the frequency rate 
of these updates and how much data should be loaded in 
each load are very diverse [11]. Moreover, the overhead in 
loading and querying performance is also dependent from 
the storage size and hardware features of each clustered 
database. In fact, query performance in many distributed 
databases is poor mainly due to load balance problems [10]. 

In what concerns availability, there are several ways a 
DW can become fully or partially unavailable: 

• Unexpected system failures (e.g. hardware failures, 
network problems, unexpected system shutdown, etc), 
resulting in unplanned downtime; 

• Previously defined moments for executing tasks such as 
hardware, software and database maintenance (e.g. data 
loading, rebuilding indexes, backups, adding new 
storage hardware, etc), resulting in planned downtime. 

To avoid both planned and unplanned downtime and 
ensure its 24/7 availability, a real-time DW must efficiently 
enable simultaneous data loading and querying, as well as 
hardware and database maintenance, including the execution 
of fault tolerant and self-healing actions, keeping the 
database online to its users in a non-stop fashion within a 
heterogeneous hardware and software environment. Pulling 
this together is not a trivial task. Our approach provides a 
feasible solution for improving the performance and 
availability of standard distributed real-time DWs and 
requires small implementation efforts. 

A. Our proposal 
In this paper, we engineer techniques such as data 

replicating and striping for enabling 24/7 availability 
(including fault tolerance and self-healing) in distributed 
real-time DWs. Our proposal focuses on ensuring the non-
stop availability of the DW, as well as the improvement of 
both data loading and querying in the distributed database.  



Our distributed database architecture is based on dividing 
data among pairs of nodes, called slaves. Each slave is an 
exact replica of its partner in the pair. This setup allows 
rebuilding a node from its partner, in case of integrity issues 
or hardware failures. Each slave can also alternatively 
process any query supposed to be processed by its respective 
pair, if this node is unavailable for any reason. Thus, each 
slave can act as a fault tolerance mechanism for its partner, 
ensuring the pair is functional unless both slaves are down. 
Moreover, using the DW-Striping (DW-S) technique for 
querying as shown in [3] and explained further in the paper, 
we may also produce approximate answers even if one or 
more pairs of slaves are down. Within each slave, there is 
also an exact duplicate of each database it holds. This 
enables executing maintenance tasks and reoptimizing each 
database (e.g., rebuilding or updating materialized views and 
indexes) in a node without altering its availability, putting 
one database offline while its duplicate remains online.  

Each cluster node has its own performance coefficient, in 
relation to the cluster’s overall performance. We use this 
coefficient to balance data loading, by defining the amount 
of data each node stores in relation to the total size of the 
database. We also request faster nodes to process a larger 
number of queries than slower nodes. This leverages 
response time among the slave nodes, improving overall 
performance. Both data loading and query workload 
balancing are managed by a pair of nodes that coordinate the 
whole system, called masters. Each master is also a replica 
of its pair, ensuring the system is always available and works 
if one of master is down. 

B. Main achievements and contributions 
The main contributions of our proposal are as follows: 
• We engineer classic techniques such as replication and 

striping, together with DW loading methods developed 
and published in former research, for building an 
efficient 24/7 available real-time distributed DW; 

• Our solution optimizes system’s overall performance, 
based on balancing data loading and query execution 
given each node’s hardware and software features, as 
well as query workloads being executed; 

• The DW is always online, for both planned and 
unplanned tasks such as adding, repairing or removing 
storage devices, as well as rebuilding or reoptimizing 
each node’s database; 

• The architecture is extremely flexible and can easily be 
applied in classical DWs with distributed databases for 
enabling 24/7 availability with fault tolerance, while 
updating the database in a (nearly) continuous fashion; 

• Our experiments show our solution’s feasibility and 
that it outperforms standard round-robin distributed 
database architecture such as DW-S. 

C. Structure of the paper 
The remainder of this paper is organized as follows. In 

Section II we summarize our previous work, which is the 
foundation for the proposed solution in this paper. In Section 
III we explain our proposal, pointing out the issues involved 
in its use. Section IV presents experimental evaluations of 

our solution using the TPC-H decision support benchmark 
and a real-world sales DW, comparing it to the round-robin 
DW-S. Section V describes related work on availability and 
real-time distributed DW solutions. Finally, in Section VI we 
present our conclusions and point out future work. 

II. BUILDING A 24/7 REAL-TIME CENTRALIZED DW 
A. Changing a traditional centralized DW into a 24/7 real-

time centralized DW 
In this subsection we summarize previous work [17, 18], 

explaining how to change a traditional centralized DW with 
static data structures and offline updates into a centralized 
(near) real-time DW with a dynamic database, capable of 
dealing with the issues involving querying and frequent data 
loading at the same time. Our assumptions are very simple:  

• Small tables (i.e., with a small amount of rows) are able 
to load data faster than large tables; 

• Tables that have no query performance optimization 
data structures such as primary keys and other indexes 
are capable of appending data much faster than tables 
that have those data structures; 

• Using INSERT or appending data by bulk loading is 
much faster than UPDATE ELSE INSERT procedures 
(since UPDATE previously executes a table lookup), 
common to most commercial data loading tools. 

Most DW schemas are star schemas [12], where business 
facts are stored in a central table called Fact table (e.g. Sales 
fact table) and the tables containing the business descriptors 
are called Dimension tables (e.g. Customer and Product 
tables). Dimension tables are linked to the fact table by their 
primary keys (e.g. CustomerID and ProductID). Since fact 
tables typically take up at least 90% of the total storage size 
[12], we focus on speeding up loading data into these tables. 
On the other hand, dimension tables are typically small sized 
and have a small amount of rows [12]. Thus, for updating 
dimension tables we use the standard UPDATE ELSE 
INSERT approach, since this will result in small delays that 
do not significantly affect the system’s performance [13]. 

To store new fact table rows we use only INSERT 
statements or bulk loading into an extra temporary fact table, 
created empty of contents and without any constraint or 
optimization data structure (including primary keys, indexes, 
etc). The temporary fact table has the same data structure as 
the original fact table it concerns, plus an extra column that 
stores incremental identifiers for being able to identify the 
sequence of added rows. 

Since our intention is to minimize the gap between what 
happens in the transactional systems and its propagation in 
the DW, a transaction can be changed at its origin after it has 
already been stored in the DW. Our solution deals with this 
by using only INSERT statements to update the DW. Given 
that business facts in fact tables are usually numerical values, 
to use only INSERT statements for updating fact tables we 
must ensure factual columns have additive properties. If this 
is assured, we can use SUM functions grouped by primary 
keys for obtaining the correct value of the transaction. 

As an example, suppose a very simple sales DW with the 
schema shown in Figure 1. It has two dimensional tables 



(Store and Customer) and one fact table (Sales). To 
simplify the figure, the Date dimension is not shown. This 
DW stores the sales value per store, per customer, per day. 
The primary keys are represented in bold, while referential 
integrity constraints with foreign keys are represented in 
italic. The factual attribute S_Value is additive. 

 
Figure 1. Sample sales data warehouse schema 

A temporary fact table STmp_Sales is created for the 
original fact table Sales. A unique sequential identifier in 
STmp_Sales (STmp_Counter) records the sequence in 
which each row is appended. This identifies the sequence for 
each inserted row, useful for restoring prior data states in 
disaster recovery actions. With our method, any appending, 
updating or eliminating of business data on transactional 
systems only results in new row insertions in the DW, in 
order to minimize row, block, and table locks, as well as 
other concurrent data access problems. Physical database 
tablespace fragmentation is also avoided, since there is no 
deletion of data, just sequential increments. INSERT is much 
faster than UPDATE or DELETE actions, allowing us to 
state we use the fastest method to refresh the DW [13, 18]. 

Regarding Figure 1, we now describe an example for 
loading new data. Figure 2 presents the insertion of a row in 
the temporary fact table (STmp_Sales) for recording a sales 
transaction of value 100 occurred at 2008-05-02 in store 
St_StoreKey=1, related to customer with C_CustKey=10. 
This row is identified by STmp_Counter=1001. Meanwhile, 
other transactions occurred, and the transactional system 
recorded that instead of a value of 100 for the mentioned 
transaction, it should be 1000. The STmp_Sales rows with 
STmp_Counter=1011 and STmp_Counter=1012 reflect this 
modification. Summing STmp_Value grouped by primary 
key (STmp_StoreKey, STmpCustomerKey, STmpDate), 
the resulting value (100-100+1000 = 1000) is the new real 
value, due to the additivity of STmp_Value. 

 
Figure 2. Partial contents of temporary fact table SalesTmp 
Extraction-Transformation-Loading (ETL) tools are used 

for extracting the transactional business data, cleaning and 
transforming it into decision support format, and loading it 
into the DW. Many issues on the use of ETL tools do not 
focus only on performance problems (as would be expected), 
but also in aspects such as complexity, practicability and 
price [13]. By using only row insertion actions into empty or 

small sized tables without constraints or attached physical 
files related to it, we use the simplest and fastest logical and 
physical support for achieving our data loading goals [13]. 

To query the DW, users have three possibilities: 1) To 
query past data, queries remain unaltered, since the original 
schema is the same in the modified schema; 2) To query just 
the most recent data, queries just need to replace the original 
fact tables for the new temporary fact table replicas, since 
they are the ones that store that data; and 3) To query both 
past and most recent data, queries need to consider joining 
both the original and the new temporary fact tables. 

Since data loading is done mainly into tables without 
performance optimization structures, as their size increases, 
query performance against them decreases. Then, the system 
is reoptimized, by transferring the data in the fact table 
replicas into the original ones, as explained in [17, 18], 
recreating the fact tables’ replicas empty of contents once 
more and rebuild performance optimization structures in 
order to regain optimal performance. The issues of this 
method are thoroughly discussed in [17, 18]. 

B. Obtaining continuous availability in a centralized DW 
The architecture of the latest version of our work, a 24/7 

real-time DW (RTDW) system, published in [19], is shown 
in Figure 3. Using data replication and the techniques 
proposed in [17, 18], the 24/7 availability solution is based 
on the following: 

• The server has a complete duplicate of each database; 
• Both databases will be updated simultaneously by our 

24/7 RTDW Tool, but only one at a time will be made 
available/online for users (although this is indifferent, 
since they query the middleware, which transparently 
redirects their queries to the appropriate DB and returns 
their responses to who requested them); 

• Whenever the online DB needs to be reoptimized it is 
put offline, while its duplicate is put online, and vice-
versa, in a continuous manner, assuring that there is 
always one of the DB which is available to the users; 

• Since there is an exact replica of each database, they 
can act as fault tolerant solutions if one is damaged. 

In [18], a middleware application transparently deals with 
both data loads and query processing. Each load is treated in 
a transaction-like fashion (instead of simple micro-batch 
bulk loading of individual rows) to solve referential integrity 
issues from our previous work [17]. A transaction is defined 
as a set of all dimension table rows needed for each fact table 
row. For instance, this means that before inserting a new as 
shown in Figure 2, the middleware would confirm that 
customer key 10 and store key 1 exist in Customer and 
Store, respectively. If they do not exist, they are created 
before updating the Sales fact table with the referred row. 

The 24/7 RTDW Tool Manager allows the DBA to 
manage the tool’s database (24/7 RTDW Tool Database) and 
monitor data loading executions, as we previously described. 
It also allows the DBA to build the original DW schema 
duplicates and set up all the values when the tool is used for 
the first time, as well as to reoptimize any database at any 
time. The 24/7 RTDW Tool Database stores the information 



which is vital for managing the system, such as information 
on the DW tables and other data structures (indexes, 
materialized views, etc), definitions of transactions described 
in the former paragraph, how often is new data to be loaded, 
which is the current available database for users, status 
boolean flags indicating if any of the databases is being 
reoptimized, queried or updated, etc. 

The 24/7 RTDW Tool Loader component is responsible 
for executing the DW refreshment procedures, loading new 
data into its databases. The 24/7 RTDW Tool Query Executor 
handles the user queries, selecting which replicated database 
to use. It simply redirects the requested queries, according to 
which is the available database for querying (defined in the 
tool’s database), supplying the results to the query’s request 
origin. All functional issues are thoroughly discussed in [19]. 

III. THE 24/7 REAL-TIME DISTRIBUTED DW 
A. The 24/7 Real-Time Distributed DW Architecture 

Figure 4 shows the conceptual hardware architecture for 
our solution. The system works by logically grouping nodes 
in pairs. Each node in a given pair is an exact replica of its 
partner. There are slave pairs and master pairs of nodes. The 
master pair contains master nodes, which are responsible for 
managing the system and interface the DW with the decision 

support users and ETL tools. The slave nodes are shared-
nothing machines, each with its own DataBase Management 
System (DBMS) and independent database instances, storing 
part of the DW data. They work individually as explained in 
the previous section for processing data loading and 
querying, while maintaining their ongoing availability. 

The master nodes maintain a list of all the slave pairs and 
respective slave nodes, and are responsible for defining the 
amount of data to load into each slave node’s database, 
sending them that data and verifying if each load process was 
successfully completed. They are also responsible for 
receiving user queries, splitting and sending them to be 
processed by each slave node, subsequently collecting those 
partial answers, building the complete final answers and 
returning those answers to the users which requested them. 

Master nodes are also responsible for verifying if any 
slave node or slave pair is down, correcting defective slave 
nodes and alerting the DBA. Since each slave node in a 
given slave pair is an exact replica of its partner, this allows 
a master node to update, correct or restore any of its tables, 
or replace a jeopardized node that needs to be substituted by 
completely and correctly rebuilding a replacement node to 
take its place. A master node is also capable of rebuilding its 
partner in the respective master pair.  

 
Figure 3. The 24/7 real-time centralized data warehouse conceptual architecture 

 
Figure 4. The 24/7 distributed real-time data warehouse hardware architecture 
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Figure 5. Data Warehouse Striping (DW-S) data distribution 
technique 
 

B. Data distribution and load balancing 
To distribute data among the slave nodes using the DW-

Striping (DW-S) technique, explained in [3] and illustrated 
in Figure 5, a fact table is broken into equal-sized chunks of 
data using a round-robin algorithm. Each node stores one of 
those chunks, along with replicas of all dimension tables. 
The reason why the round-robin algorithm is used instead of 
dividing the data based on ranging values of a given attribute 
is to assure the data is randomly distributed independently 
from their values, so each node processes approximately the 
same amount of data as the remaining nodes and thus, avoids 
overloading specific nodes while others remain idle when 
processing range queries with that attribute. 

However, we disagree with this form of distribution. We 
argue that faster nodes should process larger portions of data 
than slower nodes, in order to minimize waiting time until all 

partial query answers are returned to the master. For 
example, if there are two slave nodes, where one is two times 
faster than the other, then it should process the double of the 
amount of data of the other, to minimize the overall response 
time. Thus, to define the amount of data to load in each slave 
node we evaluate its performance capability (as shown 
further) and distribute data proportionally according to its 
relative individual performance coefficient within the cluster. 

Proving that our data distribution proposal is more 
efficient than the standard round-robin algorithm is simple 
and straightforward. Consider the following scenario: in a 
cluster with two nodes, one machine is capable of processing 
data twice as fast as the other. Assuming the total size of the 
DW database is 1TB, the round-robin DW-S approach would 
store 500GB in each node. If the faster node takes 100 
seconds to process a query, then the slower node (which 
works at half speed) takes 200 seconds. Since we have to 
wait for both nodes to finish processing the query, we can 
only build the final answer after 200 seconds (corresponding 
to the slowest node’s processing time). In our approach, the 
slowest node would store only half the amount of the data of 
the fastest. Thus, the fastest node would store 667GB, while 
the slowest would store 333GB. Assuming that response 
time is approximately proportional to the amount of data that 
needs to be accessed by the node, then the fastest node would 
take 667/500*100 = 133 seconds, while the slowest node 
would take 333/500*200 = 133 seconds. Thus, both would 
be finished practically at the same time and none would have 
to wait for the other, completing both the tasks in 67 seconds 
earlier than the fixed-size round-robin approach. 

An example of how our approach would divide a given 
fact table comparatively to the DW-S approach is shown in 
Figure 6, exemplifying a cluster of four slave nodes. While 
DW-S would generate four equal-sized chunks with n/4 rows 
each, our approach would generate four chunks with i, j, k, l 
rows for each slave node, dependent on their performance 
coefficient. In Figure 6, the fact table chunks in DW-S are 
named FTx, where x represents the slave node number, while 
in our approach each of those chunks is named FTx.y, where 
x also represents the slave node number, y=1 represents the 
original fact table and y=2 the temporary replica used for 
loading new fact table rows as explained in subsection II.A. 
As shown, each slave node stores a replica of its partner node 
from the slave pair, as explained previously. Since each 
slave node also has a replica of each of its database, Figure 7 
illustrates an example of how data is stored in slave pair 1. 

In real-world scenarios, clusters of shared-nothing nodes 
are heterogeneous environments. Many of the machines have 
distinct hardware (CPU, RAM, etc.) and software programs 
(operating system, resident applications, etc), all of which 
execute at different paces and with variable frequency. This 
implies that each machine/node has its own individual 
performance, which is mostly different from the rest and in 
contrast with the overall performance of the cluster. Besides 
these features, the amount of RAM reserved for the DBMS 
database cache and other critical operations in each node is 
also a very significant performance variable. Thus, each node 
can process queries faster or slower from the rest. 

 



  
Figure 6. Comparing the Data Warehouse Striping data distribution method with the 24/7 Real-Time Distributed DW approach 

 

 
Figure 7. Example of the database setups in slave pair 1 



The performance coefficient for each slave node results 
of a mix of equal weights from a measure given by a 
performance benchmark application such as [16] on the 
(Board, CPU, RAM, Hard Disk) components for each node 
and the amount of dedicated memory made available by the 
node for DBMS memory management such as database 
caching and user connection handling (e.g. the Oracle SGA 
and PGA). Suppose the performance benchmark measures 
and dedicated DBMS RAM for each slave node in a cluster 
of four slave nodes are as shown in Table I. 

Given the resulting individual performance coefficients, 
for every set of 100 fact table rows, slave node 1 would store 
29 rows, slave node 2 would store 22 rows, slave node 3 
would store 17 rows, and slave node 4 would store 32 rows. 
Distributing data according to this will balance the amount of 
data to process by each slave node according to its individual 
performance features in relation to all remaining nodes and 
thus, balance response time amongst the nodes in a way that 
improves the cluster’s overall response time. 
Table I. Example of assessing individual performance coefficients 

 Slave 
Node 1 

Slave 
Node 2 

Slave 
Node 3 

Slave 
Node 4 Σ 

Performance 
Benchmark 6.5 7.0 4.5 7.5 25.5 

Perf. Bench. 
Coefficient 

6.5 / 25.5 
= 25.5% 

7.0 / 25.5 
= 27.5% 

4.5 / 25.5 
= 17.6% 

7.5 / 25.5 
= 29.4% 100% 

DBMS Ded. 
Memory 512MB 256MB 256MB 512MB 1536MB 

DBMS Mem. 
Coefficient 33% 17% 17% 33% 100% 

Individual 
Coefficient 

58.5% / 2 
= 29% 

44.5% / 2 
= 22% 

34.6% / 2 
= 17% 

62.4% / 2 
= 32%  100% 

C. Query workload execution and balancing 
As we previously described, each slave node will be 

requested by a master node to execute each user query, 
producing a partial answer (if the query is to execute against 
a fact table) or a complete answer (if the query executes only 
against dimension tables). For the first case, all partial 
answers returned by the slave nodes will then be aggregated 
by a master node to produce the final answer, which will be 
returned to the user. For the second case, once an answer is 
received by the master node, all remaining queries are 
terminated at once, since all other responses will be exactly 
the same (given that all slave nodes have complete exact 
copies of all dimension tables). 

If several nodes are occupied processing other queries 
when a new query is requested to execute, the master node 
will balance the workload by executing the partial queries 
against slave nodes that are idle or that are executing tasks 
with lower computational efforts, within each pair. To 
evaluate the computational efforts of a list of executing tasks 
in a slave node, we take the estimated query costs given by 
DBMS query cost estimator multiplied by the performance 
coefficient ratio between the nodes, at that node. As an 
example, consider the following scenario: 

• We want to execute a new query Q3 against the nodes 
in slave pair 1, composed by slave node 1 and slave 
node 2;  

• Slave node 1 is currently executing queries Q1 and Q2, 
which respectively have estimated costs of 2364.62 and 

1222.1 (totalizing 3586.72), given by the DBMS query 
cost estimator; 

• Query Q3 has an estimated cost of 345.2; 
• Slave node 2 is currently executing queries Q1 and Q3, 

which respectively have costs of 2364.62 and 852.2 
(totalizing  3216.82); 

• If we refer to Table I shown in subsection III.B, slave 
node 1 and slave node 2 have performance coefficients 
of 29% and 22%, respectively. 

The question for the master node is: should each partial 
query of Q3 be respectively processed by each slave node in 
slave pair 1, or should one of the slave nodes assume 
processing both partial queries? To answer this question, the 
master node needs to assess which hypothesis is potentially 
faster. With the mentioned measures from Table I, the effort 
ratio of slave node 1 relatively to slave node 2 is 22%/29% = 
0.759, while the effort ratio of slave node 2 is 29%/22% = 
1.318. Thus, the predictable computational effort measures 
of each node in the pair for processing their current tasks are: 

Slave node 1: 3586.72*0.759 = 2722.32 
Slave node 2: 3216.82*1.318 = 4239.77 
Now, assuming that each slave node would subsequently 

process a partial Q3, we have an estimated cost of: 
Slave node 1: 2722.32 + 345.2*0.759 = 2984.33 
Slave node 2: 4239.77 + 345.2*1.318 = 4694.74 
This means that we can assume Q3 to finish after a cost 

of 4694.74, since we can only build the final answer after 
both Q3 partial queries have been processed. Now, if both 
partial queries Q3 were processed only by slave node 1: 

Slave node 1: 2722.32 + (345.2*0.759)*2 = 3246.33 
Slave node 2 maintains its previous cost: 4239.77 
In this hypothesis, we could build the final Q3 answer 

after a cost of 3246.33. Finally, if both partial queries Q3 
were processed only by slave node 2: 

Slave node 1 maintains its previous cost: 2722.32 
Slave node 2: 4239.77 + (345.2*1.318)*2 = 5149.72 
Regarding these calculus, the master node would choose 

only slave node 1 to process both Q3 partial queries, since 
this is the hypothesis in which both slave nodes would finish 
earlier because this hypothesis has smallest efforts to finish 
Q3 (3246.33<4694.74<5149.72). Besides presenting better 
response time, this query balancing approach would release 
slave nodes to an idle state earlier than the “one partial query 
– one slave node” DW-S approach, which would have an 
estimated cost of 4694.74. 

D. Other functional issues 
Every slave node in the system has a 24/7 RTDW Tool 

Database such as it is described in [19] and in section II.B of 
this paper. Additionally to what is described in [19], it also 
stores communication and database access information on its 
partner within the slave pair to which it belongs. 

In each master node, the 24/7 RTDW Tool Database 
additionally stores all the data that exists in each of the slave 
nodes 24/7 RTDW Tool Database, plus: information on 
which is the performance coefficient of each slave node, as 
well as communication and database access information; 



status on which user queries and what data loads are being 
executed, as well as a query history log and a data load log; a 
list of its master node pairs. When new slave pairs are added 
to the cluster, the DBA just needs to update the master 
nodes’24/7 RTDW Tool Database. 

In order to verify if any slave node is offline, a master 
node periodically tries to ping to each slave node. If a slave 
node does not respond, the master node stores that status in 
its 24/7 RTDW Tool Database and the DBA is alerted. In 
what concerns data loading, as we mentioned previously, 
each slave node within a given slave pair is an exact replica 
of its partner. This means that both slave nodes in a pair 
receive all the new data loaded by its partner. When new data 
is received by a master node to update an offline slave node, 
the master node takes notice of the batch of rows referring to 
it and loads this data into the formerly unavailable node from 
its partner when it is restores its online status. The exception 
is if both slave nodes in the same slave pair are unavailable. 
In this case, the master node retains the data to load into that 
pair of slave nodes and subsequently executes the data load 
when they restore their online status. 

In what concerns querying, an individual timeout is 
defined for each slave node to process each partial query, as 
well as a timeout for waiting for the remaining responses as 
the first nodes respond back to the master node, considering 
the estimated processing costs as shown in the previous 
subsection. In case any slave node exceeds those timeouts, 
the master node assumes the node has killed the partial query 
and builds an approximate answer from the partial results it 
has already received from the remaining available nodes, 
using statistical formulas according to the DW-S approach as 
explained in [3]. Thus, one or more nodes that are 
momentarily unavailable do not cause the system to stop. 

For example, for a query to calculate a sum, if we have 
the partial answers {S1, S2, … , Si} from i available nodes of 
a cluster with n nodes, the approximate answer is calculated 
by multiplying the average result from the available nodes by 
the total number of nodes: ((S1+S2+…+Si) / i) * n. This 
approximate answer approach is valid for all mathematical 
calculus and is thoroughly discussed in [3], and due to lack 
of space will not be included here. In these cases, the users 
receive an estimated answer with a confidence interval for a 
given confidence probability. For example, SUM(estimated) 
= 233.45±12.5 with 95% confidence. The master node also 
alerts the DBA to check the slave nodes to which the 
timeouts refer. When ETL tools or users cannot access a 
master node, they can request its pair in the master pair. 

IV. EXPERIMENTAL EVALUATION 
To evaluate our proposal, we implemented the 10GB size 

database of TPC-H decision support benchmark [22] using 
the Oracle 11g DBMS. All machines were identical Pentium 
Core2Duo 3GHz shared-nothing PCs, with 2GB of SDRAM 
and 160GB SATA hard disks. We evaluated the performance 
of the nodes with SiSoftware Sandra 2012 [16] and compare 
the results between our method and the standard DW-S 
round-robin technique. We shall not be concerned with the 
time spent in parsing and splitting the user query, 
communication costs in exchanging data between slaves and 

master node, and merging the partial answers. We focus on 
the response time of each node for each workload. The TPC-
H query workload used in all tests was composed of TPC-H 
queries 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20 
and 21, as a representative sample of both fact table and 
dimension table queries. We tested our approach and DW-S 
using clusters with 2, 4, 8 and 10 nodes, in scenarios with 1 
to 10 users simultaneously querying the DW. 

A. Query Execution without Data Loading 
We have tested our proposal and the DW-S technique in 

setups that executed a predefined TPC-H query workload 
against static data (i.e., processing queries without having to 
simultaneously handle data loading procedures), to compare 
them in what concerns purely query execution. The first 
tested setups were performed in a homogeneous cluster (all 
identical machines, with the same amount of predefined 
dedicated RAM for each node’s database cache - 756MB). 
The results for these setups are shown in figure 8.  

 

 
Figure 8. Query workload execution time on homogeneous cluster 

Given that the cluster is composed of identical machines 
with identical software/hardware features, the results for 
DW-S and our approach are similar, as would be expected. 
However, it can be noticed that the results for our approach 
are slightly better. Although they are identical, the nodes 
have slightly different performance coefficients, meaning 
they store slightly different amounts of data in our approach, 
which leads to slightly better overall results, as we expected. 

We repeated the same experiments using a cluster where 
half the nodes have 512MB dedicated database RAM and the 
other half 1024MB dedicated database RAM, composing a 
heterogeneous cluster. The results of these experiments are 
shown in figure 9. As can be seen, our approach presents 
much better results than DW-S. Since the master nodes need 
to wait for each node to finish processing each partial query 
and given that each node processes the same amount of data 
in the DW-S setups, the master needs to wait for the slower 
nodes, which represents a delay that does not occur in our 
approach, given that the faster nodes process more data than 
the slower nodes and therefore, minimizes waiting time.  



This allows our approach to approximately maintain its 
overall performance, while DW-S introduces response time 
overheads from 20% (in the 10 node cluster) to 24% (in the 2 
node cluster) for the tested scenarios. For example, in the 10 
user 10 node cluster setup, the workload response time is 
approximately 5000 seconds using our approach, while the 
DW-S solution takes almost 7000 seconds. In the 10 user 2 
node cluster setup, DW-S takes more than 45000 seconds, 
while our approach takes approximately 36000 seconds. 

 
Figure 9. Query workload execution time on heterogeneous cluster 

B. Query Execution while executing Data Loading 
To measure the impact introduced in query response time 

by simultaneously loading data into the DW while the 
queries are processed, we also tested all the scenarios and 
setups mentioned in the previous subsection, while loading 
sets of 600 TPC-H transactions (approximately 65MB of 
data) every 30 seconds using Oracle’s SQL*Loader. The 
results for the mentioned homogeneous and heterogeneous 
clusters are shown in Figures 10 and 11, respectively. The 
introduced overheads in the DW-S are even proportionally 
larger when compared to those introduced by our approach, 
as can be seen in the figures. While our approach manages to 
maintain response time overheads that range from 6% to 
18% and are similar in both clusters, the DW-S solution will 
introduce from 6% to 31% in the homogeneous clusters and 
9% to 39% in the heterogeneous clusters, for the tested 
setups and scenarios. 

 
Figure 10. Query workload execution time on heterogeneous 
cluster while performing data loading 

 
Figure 11. Query workload execution time on heterogeneous 
cluster while performing data loading 

C. Discussion and Remarks 
The DW-S proposal [3] means to achieve nearly optimal 

speed and scale up. This is due to the fact that typical queries 
lead to sub-queries executed in a completely independent 
way in each node and each query returns a partial result that 
is easy to merge to compute the final answer. That is, each 
node locally and independently processes the same amount 
of heterogeneous data as all the remaining. However, to 
obtain these results, the DW-S setup assumes that all nodes 
are similar machines processing approximately the same 
amount of data and thus, taking approximately the same time 
to process each partial query. As we previously mentioned, 
many real-world DWs use shared-nothing clusters composed 
by machines with distinct hardware and software features. 
As the results show, in these heterogeneous environments 
our proposal easily outperforms the standard fixed-size 
round-robin data distribution approach and presents better 
performance, taking advantage of each node’s independent 
characteristics. If we consider that a change in the amount of 
dedicated database RAM in the nodes is effectively a slight 
difference between them, then we easily state that in a cluster 
composed of heterogeneous machines, each with distinct 
hardware components (CPU, RAM, etc) and executing 
different software applications at different rates, our 
approach can achieve much better results than standard 
round-robin fixed-size distributed databases. 

V. RELATED WORK 
Our previous work [17, 18] is focused on optimizing data 

loading procedures for dealing with real-time data 
warehousing requirements, while [19] focuses on ensuring 
ongoing availability. In these papers, we thoroughly discuss 
the issues involved in those features and used in this paper. 
The concept of DW-S and its issues is described in [3]. 

Aster Data is a leading commercial DW with 24/7 
availability [1]. This solution has built-in fault tolerance and 
self-healing capabilities to handle hardware and software 
failures. They use data replication with transparent fail-over 
and perform online restoration of backups whenever a fault 
is detected, executing online resynchronization. They also 
allow executing online data loads and exports, as well as 
adding new servers to the system without downtime. 



Relating with Real-Time Data Warehousing, in [11] the 
authors present a architecture on how to define the types of 
update and time priorities (immediate, at specific time 
intervals or only on DW offline updates) and respective 
synchronization for each group of transactional data items. In 
[21] the authors propose using SQL INSERT-like loading 
instructions with bulk load speed, taking advantage of in-
memory databases for data loading in the DW. An approach 
using SSD for caching updates in presented in [6], able to 
maintain query availability while adding fresh data to the 
DW. The work in [10] refers both query execution and data 
loads in analytical environments, discussing a comparison of 
techniques for loading and querying data simultaneously. 

Solutions on data distribution and load balancing for data 
centers and transactional distributed databases are proposed 
in [4, 5, 7, 9]. These architectures typically use key-based 
hash or range methods to assign data to nodes in the cluster 
and work around consistency issues. The work in [8, 15] also 
focus on these aspects, but include replication strategies for 
ensuring high availability and fault tolerance. Using 
replication and virtualization for ensuring high availability 
and small performance overheads is proposed in [14]. 

MDHF [20] uses join-bitmap indexes with workload-
based attribute-wise derived data distribution, hierarchy-
aware processing and in-memory retention of dimensions for 
efficient processing of star schemas. A MapReduce-style 
fault tolerance strategy for improving query performance in 
case of node unavailability for long running queries is 
proposed in [23] for shared-nothing distributed databases, 
using data replication. A similar MapReduce-based solution 
is discussed in [6], including a set of related optimization 
techniques such as data storage and compression, as well as 
multi-query management, for a specific advertisement DW. 

VI. CONCLUSIONS AND FUTURE WORK 
This paper proposes a solution for ensuring continuous 

availability while enabling simultaneously loading data and 
processing of decision support queries in distributed DWs. 
We achieve continuous availability by replicating databases 
within each node and within the assigned pairs of nodes, in 
which one node can respond on behalf of its partner for both 
data loading and querying, or can be used to rebuild its 
partner. This allows performing all kinds of planned and 
unplanned downtime tasks without taking the system offline. 
Approximate query answering is also used if any pair of 
nodes is down, ensuring the system will always produce a 
response to its users.  

To improve the overall performance of a cluster, we 
distribute the amount of data in each node according to its 
individual performance coefficient relatively to all the nodes 
in the cluster, allowing faster nodes to process more data 
than slower nodes. We can also improve performance by 
processing both partial query responses of a pair in just one 
of the slave nodes, in case it is faster than the other or if the 
other is already occupied processing any other user query. 
This allows load balancing query workload jobs to improve 
the response time of the partial query responses in each pair. 
The experimental results show that our data distribution 
approach produces better performance results than the 

standard fixed-size round-robin distributed data approach 
used in most distributed DWs in the tested setups, for both 
homogeneous and heterogeneous clusters. 

As future work, we intend to test and improve the data 
loading technique for using in-memory databases to speed up 
those procedures. We will also adapt our approach and 
evaluate it for virtualization and cloud DW setups. 
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