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Abstract

In this paper we present Chkpt2Chkpt, a desktop grid
system that aims to reduce turnaround times of applica-
tions by replicating checkpoints. We target desktop comput-
ing projects with applications that are comprised of long-
running independent tasks, executed in hundreds or thou-
sands of computers spread over the Internet. While these
applications typically do local checkpointing to deal with
failures, we propose to replicate those checkpoints in re-
mote places to make them available to other worker nodes.

The main idea is to organize the worker nodes of a desk-
top grid into a peer-to-peer Distributed Hash Table. Worker
nodes can take advantage of this P2P network to keep track,
share, manage and reclaim the space of the checkpoint files.
We used simulation to validate our system and we show that
remotely storing replicas of checkpoints can considerably
reduce the turnaround times of the tasks, when compared to
the traditional approaches where nodes manage their own
checkpoints locally. These results make us conclude that the
application of P2P techniques seems to be quite helpful in
wide-scale desktop grid environments.

1. Introduction

In the last years, public-based computing projects such
as SETI@home [21] and climateprediction.net [9] have
emerged to capitalize the tremendous amount of idle com-
puting power. Indeed, it is a well documented fact that CPU
usage averages 5%, especially in desktop computers which
are mainly used for running office-based applications [15].
The recent trend towards multicore CPU [13] seems to indi-
cate that more processing power will remain unused in the
near future. But resource idleness is not restricted to CPU:
desktop grids are also interesting by the large amounts of
available memory, disk storage and network bandwidth, as
reported by Anderson and Fedak in [2]. Several middle-

ware platforms like BOINC [1] and XtremWeb [17], have
emerged and at least BOINC has been widely used in sev-
eral projects of Internet-based grid computing [14].

However, the environment of desktop grids has some
limitations, namely: a) the high volatility of computing
nodes in the Internet; b) the need to deal with malicious at-
tempts of sabotage of the application results; c) and the dif-
ficulty of managing the whole infrastructure. Internet-based
desktop grids are also prone to network connectivity prob-
lems, when some of the nodes have to deal with network ad-
dress translation (NAT) schemes and firewall systems. For
this reason, desktop grids are mainly oriented to the master-
worker paradigm or the so-called bag-of-task applications
[8]. In this approach, a central supervisor orchestrates the
whole computation and is responsible for the distribution of
tasks amongst workers and for the final validation of results
that have been computed by the nodes of the desktop grid.

Given the high volatility of resources, platforms like
BOINC resort to application-level checkpointing. However,
this approach presents a clear limitation, because all the
checkpoint files of a node are stored locally. If this node
fails, the local checkpoint files will not be available, and
thereby they turn out to be useless. Martin et al. [18] re-
ported that the climateprediction.net project would greatly
improve efficiency with the existence of a mechanism to
support the sharing of checkpoint files amongst worker
nodes allowing the recovery of tasks in different machines.
The alternative of storing checkpoints in the central super-
visor is not feasible, since the central supervisor would be-
come a very easy bottleneck.

In this context, we propose to make use of a P2P infras-
tructure for sharing checkpoint files that should be tightly
integrated with the desktop grid environment. Under this
approach, the worker nodes act as peers of a P2P Chord [24]
Distributed Hash Table (DHT) that they use to track the
checkpoint files. If the replicated checkpoint files are avail-
able in the P2P overlay, recovering from a failed task can
be much more effective when compared with the private
checkpoint model used in BOINC.
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Although there are many recent examples of peer-to-peer
file-sharing and backup applications, e.g. [12, 3, 23, 6], just
to mention a few non-commercial systems, sharing check-
points requires a different type of solution. To start, check-
points become garbage in a deterministic (and often fast)
way. For instance, as soon as some task is finished, all of its
checkpoints should be discarded. Another difference con-
cerns the usefulness of the checkpoints. While the utility of
storing music files in one’s disk is obvious, the same is not
true with checkpoints. A system that replicates checkpoints
needs to explicitly reward users that concede their space.
On the other hand, in our solution, we can take advantage
of the strict control that we have on the creation and place-
ment of checkpoints. This sort of reasons make us think
that creating a checkpoint replication system goes beyond a
simple adaptation of existing file-sharing solutions.

Given these ideas, in this paper, we propose and vali-
date through simulation a desktop computing architecture
called Chkpt2Chkpt, which couples the traditional central
supervisor based approach with a Peer-to-Peer (P2P) Dis-
tributed Hash Table that enables checkpoint sharing. The
purpose of Chkpt2Chkpt is to reduce the turnaround time
of bag-of-tasks applications. By reusing the checkpoints of
interrupted tasks, nodes need not to recompute those tasks
from the beginning. This considerably reduces the aver-
age turnaround time of tasks in any realistic scenario where
nodes often leave with their tasks unfinished. Moreover, by
reusing previous computations, our replication system also
increases the throughput of the entire desktop grid system.

The rest of the paper is organized as follows: Section 2
presents an overview of the system. Section 3 presents the
P2P infrastructure, and the main issues related to the use of
the DHT. Section 4 describes our mechanism for garbage
collection of useless files. Section 5 presents some prelimi-
nary results obtained by simulation, while section 6 outlines
the related work. Finally, section 7 concludes the paper and
presents venues for future work.

2. Overview

Our system is built upon the traditional model of public-
computing projects, with a central supervisor coordinating
the global execution of an application. Specifically, the cen-
tral supervisor replies to a volunteer worker node (hence-
forth worker) request for work by assigning it a processing
task. The worker then computes the assigned task, send-
ing back to the central supervisor the results when it has
completed the task. An application is comprised by a large
number of independent tasks, and only terminates when all
of its tasks are completed. Every task is uniquely identi-
fied by a number. Furthermore, we only consider sequen-
tial tasks, which can individually be broken into multiple
temporal segments (St1 , . . . , Sti

, . . . , Stn
) and whose in-

termediate computational states can be saved in a check-
point when a transition between temporal segments occurs.
Whenever a task is interrupted, its execution can be resumed
from the last stable checkpoint, either by the same node
(if it recovers) or by some other worker. Our main goal
is to promote availability of checkpoints to increase the re-
coverability of the interrupted tasks, thereby improving the
turnaround time of the applications.

Checkpoints are identified by a sequential number start-
ing at 1. Workers self-organize to form a DHT1, which they
use to maintain the distributed checkpointing scheme and
to keep track of the execution of tasks, in such a way that
requires a minimal intervention of the central supervisor.

To describe the basic idea of the proposed system, we
first expose the simple case of a single worker executing a
task from the beginning to its end (see Figure 1). In this
case, interaction occurs as follows: 1) The worker requests
the central supervisor for a computing task, receiving a task
and its respective input data. 2) The worker registers the
task in the DHT, by selecting a regular peer-worker of the
DHT to store a tuple called “worker-task info”, which keeps
information about the task. We deem this peer-worker as
“guardian of i” (guardiani). As we explain in Section 3,
guardiani is a regular random node of the DHT. In general,
different tasks have different guardians. 3) Each time the
worker has to perform a checkpointing operation, it writes
the checkpoint in its own disk and replicates it in some stor-
age point which it selects accordingly to a given metric, like
for instance, the network distance; 4) it uses the DHT to
store a pointer to that storage point. This pointer is acces-
sible by any other node of the DHT, using as key the pair
formed by the task identifier and the checkpoint number.
5) Finally, when the worker node has completed the whole
task it sends back the results to the central supervisor.

If a worker fails two things may happen: 1) if the worker
recovers after a short period of time it resumes its previous
task execution from the last checkpoint file maintained in
its local disk. 2) If the worker fails for a period longer than
a specified timeout then the central supervisor may redis-
tribute that task to some other worker node. In this case,
the new worker performs step 2 as before, but it may get
in response from guardiani, the number of the checkpoint
where the task was left. In this case, the worker tries to
fetch the checkpoint to resume the task. However, due to
the departure of the previous guardiani, the worker may
not get any reply with the number of the checkpoint. In this
scenario, the worker starts looking for the best checkpoint
using a procedure that we describe in Section 3.5. After
having found such checkpoint, the worker proceeds as ex-
plained before.

1It is not strictly necessary that all the nodes participate in the DHT, but
only that they can access and write data on the DHT. To simplify descrip-
tion, we assume that all nodes belong to the DHT.
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Figure 1. A summary of the existing interac-
tions and of the components of the system

In our failure model, we assume that the central super-
visor is protected by some replication mechanism and is
always available despite the occurrence of some transient
failures. On the contrary, we assume that worker nodes may
fail frequently under a failure model which is either crash-
stop or crash-recovery. Nodes that fail and then recover but
loose their previous task can be seen as new nodes. Due
to the high volatility of volunteer resources, nodes are very
prone to fail, and thus can deprive, at least temporarily, the
DHT from some state information and checkpoints. Thus,
we consider as a typical case the possibility of a node not
finding some information that it is looking for in the DHT.
We have also considered byzantine failures of nodes in the
design of our system. We inherit from existing solutions
that use replication of computation to overcome some of
these failures. However, managing the DHT under these
conditions is an altogether different subject that we do not
discuss here. See for instance [22].

An important issue that exists in Chkpt2Chkpt, as well
as in many file sharing systems, is the garbage collection of
shared files that are no longer useful. This is particularly
relevant with checkpoint files, whose usefulness expires as
soon as the task is completed. Thus, it is necessary to re-
move old checkpoints and the related management infor-
mation for those checkpoints. We propose two approaches
to erase the useless files: 1) pull and 2) push. Under the pull
approach, nodes basically get information of task i from
guardiani before they delete the stored information. Un-
der the push approach, the node that finishes a task sends
messages to remove all the administrative information re-
lated to the task. This is further explained in Section 4.

3. Description of Chkpt2Chkpt

3.1. Basic Components

We assume that task i is identified by i and that n se-
quential checkpoints are produced along the task execution.
We identify the node that is working on task i as pi, the j-th
checkpoint of task i with the key i : j and, the hash of this
key as hash(i : j), where hash() is the hash function of
the DHT. The DHT mechanism ensures that there is a sin-
gle node responsible for holding key i : j, typically a node
whose identifier is close to hash(i : j) (to simplify we refer
to this as the node hash(i : j), although the real identifier
of the node will usually be close but different). Any node in
the DHT can reach the node hash(i : j) in a deterministic
way.

One of the principles that guided the design of this sys-
tem was to reduce the burden of the central supervisor as
much as possible and to keep all communications worker-
initiated. Hence, the checkpointing service must be sup-
ported, as a best effort, by the nodes of the DHT. In partic-
ular, Chkpt2Chkpt strongly relies on guardiani, on the
storage points, and on the indirection pointers to ensure
proper operation of task i. The node guardiani serves to
indicate that worker pi is processing checkpoint j of task
i. Nodes can determine the location of guardiani by com-
puting the hash of key i : 0, hash(i : 0). The guardian
of i stores a tuple called “worker-task info of i” (WTIi).
The format of this tuple is (pi, j, tp), where pi is the proces-
sor node of task i and j is the checkpoint being computed.
Besides these elements, the WTIi stores a timeout infor-
mation, tp, that serves to overcome workers that abandon a
task. When the timeout tp expires, guardiani sends a mes-
sage to the central supervisor announcing a possible failure
of pi. This allows us to maintain timeouts with a much finer
granularity than it is usually possible with minimal effort
from the central supervisor. The advantage is that the sys-
tem can recover from failures of worker nodes in a much
faster way.

Ideally, we would like to maintain the following invariant
in Chkpt2Chkpt, which we deem as INV : WTIi exists
in the node guardiani if and only if task i is being pro-
cessed. From this, it follows that if there is no WTIi in the
node guardiani, nodes can assume that the task is already
finished (or yet to start). For performance reasons, we al-
low this invariant to be violated once in a while, as node
guardiani can be down and task i can still be active.

At this point, we can use a concrete example to better
illustrate the interaction with the DHT: consider that a node
wants to fetch the last checkpoint available of task 43 (as-
sume that it is in fact available). It issues a get(43 : 0)
operation. Assume that 43 : 0 hashes to 578. The DHT
will forward the request to the owner of key 578, which



may be node 581. Node 581 will reply with the number of
the requested checkpoint, e.g., 3. Now, to get checkpoint
3, the requesting node issues a get(43 : 3) operation. Af-
ter another lookup operation in the DHT, this will give it a
pointer to the storage point of the checkpoint.

3.2. Processing a Task

While processing a task i, a worker node pi needs to per-
form two operations at guardiani: increase the number of
the checkpoint when it is done with the previous one and
send some “heartbeat” message, to let guardiani know that
it is alive, before tp expires. As long as this timeout does
not expire (or the timeout of the central supervisor, as we
explain in Section 3.3), only processor pi can change values
in the WTIi tuple (this is one of the small twists that we do
to the normal operation of the DHT). However, it is possi-
ble that two workers try to process the same task i simul-
taneously, if guardiani or the central supervisor wrongly
consider the first worker as failed and the central supervisor
reassigns the task to the other. If this occurs, it is up to node
guardiani to decide which node owns the task. It is either
the first node that tries to take control of the task, if tp is
expired, or it is the initial worker, if tp is not expired (we
describe a third possibility in Section 3.3). One interest-
ing way of providing the periodical heartbeat is to slightly
modify the normal put() operation of the DHT, such that
rewriting the WTIi tuple serves as a heartbeat. In this case,
this operation will also serve without any modification as
a watchdog for guardiani, because it periodically rewrites
the value j of the current checkpoint in the guardiani. If
guardiani fails, the DHT will automatically redirect mes-
sages to some other nearby node, thus providing for a trans-
parent replacement of guardiani.

3.3. Initiating and Resuming a Task

The central supervisor assigns three types of tasks: tasks
that are being delivered for the first time and tasks whose
previous execution attempts have exceeded the task timeout,
either tp (given by guardiani) or tt (given by the central
supervisor). To improve the turnaround time, we need to
set tp << tt. We aim to minimize the number of messages
and the number of bytes exchanged between node pi and
the central supervisor. If the central supervisor is delivering
task i for the first time, it can immediately send all the data
to the worker and the worker can start to process the data as
shown in Figure 1.

However, it may happen that a worker leaves without de-
livering its task. In this case, upon expiration of timeout tp,
guardiani sends a message informing the central supervi-
sor of the likely interruption of task i, which puts task i in

the redistribution list2. In the redistribution of a task, the
central supervisor only sends the identifier of the task, say
i, and flags the repetition to worker pi, which must check
at guardiani whether some other node is still processing
this task, to avoid concurrent processing of the same data.
If worker pi finds that the previous owner of task i is still
holding the task (because it came back to life, for instance),
it gives up the task and tries to get a new one from the cen-
tral supervisor.

Finally, we have the case where the central supervisor
redistributes a task for which tt has expired. Here, the new
worker, say pi will have the task regardless of the situa-
tion of the previous worker. To this end, pi must instruct
guardiani to check the new owner of the task in the cen-
tral supervisor. In a redistribution of a task (regardless of
the timer, tp or tt, which has expired), the new worker node
always tries to fetch the last available checkpoint, as we de-
scribe in Section 3.5.

3.4. Separation of Processing and Storage

To ensure the availability of checkpoints, the worker
node of a task should store replicas of its checkpoints in
other nodes. In this way, we keep the sequential check-
points of a running task available in case the worker that
holds the task fails and its task is redistributed. Given this
constraint, we consider two additional assumptions to build
our replication system:

Assumption 1: nodes offering processing time may not have
space available for storage of checkpoints. The system
should explicitly manage a separation between processing
and storage nodes. To discover storage points, worker nodes
should use some out-of-band mechanism;

Assumption 2: it is not feasible to maintain a constant num-
ber of replicas of each checkpoint in the DHT. When nodes
enter and leave the DHT, they cannot transfer big check-
points from one node to another as the DHT changes, be-
cause nodes may be distant from each other and this would
clog the network. We base this assumption on the work of
Blake and Rodrigues [5].

To cope with Assumption 1, Chkpt2Chkpt extends
the contribution model of traditional public-computing
projects. Besides donating CPU cycles, nodes can con-
tribute to the P2P infrastructure with storage space and
bandwidth. The system separates CPU donation from stor-
age space and bandwidth volunteering. In fact, a node can
provide CPU cycles (executing tasks), or volunteer stor-
age and bandwidth (integrating the DHT or being a storage

2To avoid concurrent processing of the same task, guardiani sends
another message to the central supervisor if a timed out worker ever recov-
ers (due, for instance, to a machine with transient network access that gets
reconnected to the network).



point) or, donate resources to both causes. To foster moti-
vation for donors to volunteer space storage and bandwidth
for the P2P infrastructure, a rewarding credit mechanism
and associated ranking system, similar to the one employed
to recompense CPU donation in public-computing projects,
can be devised [1]. Under this scheme, a resource donor
receives credits for the space storage effectively devoted to
shared checkpoints. Furthermore, an added bonus can be
provided whenever a locally-stored checkpoint is used to
resume a task in another machine.

To cope with Assumption 2, we do as we explained be-
fore. The DHT does not hold the checkpoints, but only
pointers to the checkpoints. The purpose of this indirec-
tion is to conserve network traffic, because checkpoints can
be very large, like in the case of the climateprediction.net
project where each checkpoint file has about 20 MB. To ac-
cess checkpoints, nodes use the standard get() functionality
of the DHT. For instance, to access checkpoint j of task i, a
node needs to issue a get(i : j). Since there is yet another
level of separation, this get() operation returns an indirec-
tion pointer to the storage, instead of the storage itself.

3.5. Managing the Checkpoints

To retrieve checkpoint j of task i from a storage point,
interested nodes get the value of the key i : j, which is
a pointer holding all the needed information to reach the
checkpoint. However, the checkpoint may be unreachable
(for example, the machine holding it is down). In this case,
the node starts a procedure with a logarithmic number of
steps to find the last checkpoint available. The worker node
will successively divide the space of keys i : 1, i : 2, i : . . .,
i : n (assuming that n is the number of checkpoints) in
approximately equal parts. First, it looks for checkpoint
dn/2e. If this checkpoint exists it will consider the interval
[dn/2e, n], otherwise it will consider the interval [1, dn/2e).
In either case, it will split this second interval in two and re-
peat the procedure until it finds the highest available check-
point. For instance, if n = 10, the node will look for check-
point 5. If checkpoint 5 exists, it will now look for check-
point d(10 − 5)/2 + 5e = 8 and so on, until it may find out
that 7 is the highest available checkpoint. When setting lim-
its for these intervals, the worker must also try some check-
points beyond the limits it previously found to make sure
that a negative answer is not due to a disappeared check-
point. For instance, checkpoint 5 might have been missing,
which would make the node restrict its search to the inter-
val [1, 5). However, it could be the case that checkpoints
6 and 7 were still there and the node would wrongly get
checkpoint 4 as the last one.

An aspect that we evaluate experimentally and which is
crucial to the performance of our scheme is the availabil-
ity of the checkpoints. As referred before, we use indirec-

tion pointers to separate storage from the DHT. A conse-
quence of this is that checkpoints may be lost due to the
disappearance of the indirection pointers stored in the DHT.
To overcome this problem, the processing node periodically
refreshes the pointers to old checkpoints. It may also occur
that indirection pointers are left hanging, either because the
storage point has departed or because it deleted the check-
point. In this case, the node looking for the checkpoint must
try to fetch checkpoints with lower numbers.

4. Garbage Collection

To reclaim the space used by a task, the worker that fin-
ishes that task sends a message to every node that stored in-
formation of the task: WTIi, pointers to checkpoints and to
the storage points. In fact, as we show ahead, deletion of the
WTIi tuple requires more than a simple deletion message.
This is the push approach. We also use a pull approach if
for some reason a node is left with state of task i hanging.
Nodes that store replicas of large checkpoints also use the
pull approach if they need to recover space before the task
ends. Although the storage point can immediately delete
any replicas, it can also use a more graceful approach of
fetching the WTIi to know if the task is over or the check-
point is old.

It may happen that when the worker node tries to
delete the WTIi, this tuple is temporarily unreachable, just
to come back later and violate the invariant INV (Sec-
tion 3.1). To avoid this inconsistency, when the worker node
finishes task i, it stores n as the last checkpoint written,
which means that the task ended. For garbage collecting
purposes, reading n as the current checkpoint is the same
as not finding the task — it just means that the task is not
running. The guardiani must store this tuple for some time
before deleting it, to ensure that a finished task cannot come
back to life, due to some transient misbehavior of the DHT,
capable of bringing an old WTIi back. Finally, guardiani

can only delete WTIi with a checkpoint value lower than
n after asking the central supervisor whether task i has al-
ready finished.

5. Results

In this section, we evaluate the advantages of replicat-
ing checkpoints to recover from failures. We compare by
simulation the turnaround times of Chkpt2Chkpt, where
each checkpoint is replicated exactly once, versus a typical
private solution, where each worker stores its own check-
points. We use the traditional definition of turnaround time,
corresponding to the time that goes from the moment when
the central supervisor distributes the task up to when it re-
ceives the results. We assume a homogeneous set of work-



tcheckpoint n texec tp tt
10 5 50 30 150

Table 1. Experiment settings

ers, with individual nodes prone to crash-stop and crash-
recovery failures, both of them following a random geo-
metric distribution. At discrete time intervals, we randomly
decide whether the worker changes state with a probabil-
ity that is fixed throughout the computation of the task.
In the crash-stop model, a node can change from working
to crashed and can never recover. The task only restarts
when it is rescheduled to another worker. In the crash-
recovery model, the worker node can change from working
to crashed state and vice-versa with the same probability. In
the private solution, a new worker must restart a reassigned
task from the beginning, while in Chkpt2Chkpt it can re-
cover one of the previous checkpoints.

Under ideal execution conditions, that is, if run uninter-
rupted, a task requires texec time units to complete, with
checkpointing occurring every tcheckpoint time units, for a
total of n checkpoints (texec = n·tcheckpoint). Additionally,
we consider that the execution pace of the tasks is dictated
by two timeouts: the timeout of the entire task tt and the
timeout tp (described in Section 3.1). We set tt = 3 · texec

(only for private checkpoints) and tp = 3 · tcheckpoint (only
for distributed checkpoints). If these timeouts expire, the
entire task is immediately reassigned and restarted. In all
cases, we set tcheckpoint to be 10 time units and fixed the
number of checkpoints per task (n) to 5.3 Hence, we have
texec = 50, tt = 150 and tp = 30 (see Table 1). When a
task is reassigned to another worker, the private approach
restarts the computation from scratch, that is, in check-
point 1. In the distributed checkpoint solution, the new
worker tries to fetch a previous checkpoint. Unless other-
wise stated, the probability of recovering each of the pre-
viously saved checkpoints is set to 50% (we take the most
recent one, that is, the one with the highest index).

The simulation results, corresponding to the average of
at least 50 random trial points, are plotted in Figures 2 to 4.
Figures 2 and 3 compare the execution times of private ver-
sus distributed solutions, when the failure rate increases,
for the crash-recovery and crash-stop models, respectively.
These execution times are relative to the minimum possi-
ble execution time, i.e., texec. The average count of fail-
ures that occur between consecutive checkpoint operations
(tcheckpoint) is represented in the x-axis. The curves show
that our scheme performs better for higher failure rates.

3As expected, when we keep the failure ratio constant and increase
the number of checkpoints for the same task, the turnaround time clearly
improves until some point and then becomes nearly constant. We do not
show this graphic to conserve space.
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This makes sense, because if failures are rare, i.e., if the
environment is only lowly volatile or not volatile at all,
there is no real need to share checkpoints. Under the crash-
stop model, where a worker never returns to its task after
failure, the distributed approach yields even better results
when compared to the private approach. This is a conse-
quence of the fact that the failure state lasts longer than
the time needed to execute the task, a situation which de-
grades performance in the private approach. On the con-
trary, the shorter inter-checkpoint timeouts of the distributed
approach, tp, enable a faster reaction. This comparison is
fair, because no dependency exists on the central supervi-
sor to manage these per-checkpoint or per-process timeouts
(except when they cause a redistribution). Finally, in Fig-
ure 4, we evaluate the impact of the probability of check-
point availability (for a fixed crash-recovery probability). It
is quite clear that the availability of checkpoints is crucial to
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the performance of our system: if availability is too small,
like 40% or less, our system is of low utility (we may need
to use more replicas of the checkpoints).

Hence, we believe that preliminary results show the va-
lidity of our approach and enable us to derive some con-
clusions about the advantages of using P2P techniques in
desktop grids.

6. Related Work

In a previous work, we analyzed the effects of sharing
checkpoints in local area environments, resorting to a cen-
tralized checkpoint server [16]. Likewise, Condor [25] re-
lies on a central server for sharing checkpoint files and al-
lows the migration of tasks for fault-tolerance and faster
turnaround time. Both these approaches are limited to LAN
environments. Condor-G [11] enables submission of jobs
in remote clusters. However, unlike Chkpt2Chkpt, space
of resources is not plane, because there is a clear separa-
tion between different clusters. For instance, this means that
checkpointing cannot span across different clusters.

Antonelli et al. [4] propose a distributed approach for
verification of results in volunteer computing. Although
bearing some similarities to our work, this scheme is re-
stricted to checkpoint verification and does not mention any
use of P2P techniques.

Tritrakan and Muangsin [26] simulate the benefits of di-
rect communication between a submitter machine that pro-
poses a work and worker nodes in a desktop grid environ-
ment. The transfer of the needed files (input data and/or
results) occurs directly between the submitter machine and
the selected worker machine. When compared to our work,
this approach uses a slightly different paradigm for grid
computing that although interesting has not received so far

much attention from the community of users.
Wei et al. [27] explore the use of BitTorrent [10] for cir-

cumventing the scalability issues that arise with large data
files. They conclude that BitTorrent is effective for deploy-
ing large files required by a significant number of workers.
Our approach is different, since we aim to promote file shar-
ing directly between worker nodes.

Several works resort to structured DHT overlay net-
works, for achieving different purposes. For instance,
WaveGrid is a peer-to-peer desktop grid system aimed to
achieve fast turnaround execution times [28]. It resorts to
the peer based model, where all peers can submit applica-
tions to be executed over the desktop grid system. To en-
able communication within peers, WaveGrid makes use of a
CAN DHT overlay network [19]. The WaveGrid approach
introduces serious problems related with security and ac-
countability.

Another DHT-based infrastructure is proposed by Butt
et al. [7]. They present a technique which uses a Pas-
try DHT [20] for resource discovery in distributed Condor
pools [25] spread over several administrative domains, to
overcome the restrictions of the statically defined flocking
mechanism supported by Condor.

Similarly to the work we present here, there are many
other systems that use DHTs to manage data, from file sys-
tems to replicas of entire systems. For instance, Venti-
DHash is a cooperative backup system, which couples the
Venti backup system with an Internet peer infrastructure
for archiving snapshots of file systems [23]. Venti-DHash
uses DHash, which is a Chord-based distributed hash table
(DHT). Pastiche [12] is a peer-to-peer backup system that
resorts to a Pastry [20] DHT for the identification and or-
ganization of redundant data for saving space storage. Un-
like our application-level checkpointing and unlike Venti-
DHash, which acts at the block level, Pastiche makes repli-
cas at the machine level.

Other interesting approaches to create file systems are
Shark [3] and Kosha [6]. The main asset of Shark lies
in its cooperative-caching mechanism, in which mutually-
distrustful clients use a DHT to exploit each others’ file
caches to reduce load on an origin file server. Kosha aims
to harvest unused storage of desktop machines within a
LAN environment. It uses a structured overlay network to
provide location and mobility transparency, load balancing,
and file replication.

7. Conclusion and Future Work

In this paper, we used a DHT to extended the tradi-
tional desktop grid architecture with decentralized replicas
of checkpoint files. With this technique any node in the grid
can resume a failed task provided that the checkpoint file is
available in the P2P infrastructure. Almost all interactions



needed to replicate checkpoints are decentralized among the
DHT, thus containing the load on the central supervisor.
To maintain the basic assumptions of existing architectures,
we keep all the interactions involving the central supervi-
sor strictly worker-initiated. Our preliminary simulations
show that our proposed scheme can considerably reduce the
turnaround time of tasks when there is a possibility of node
failures. These results allow us to conclude that the use of
P2P techniques in desktop grids seems to be a promising
approach, which should be further researched.

We are currently implementing a PlanetSim simulation
of our system, using the Chord [24] DHT. Additionally, one
of the points that we intend to explore with greater detail in
the future, is the use of techniques to increase the robustness
of Chkpt2Chkpt to failures caused by malicious users, ei-
ther isolated or colluded.
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