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Abstract—Inter-domain traffic engineering is being increas-
ingly integrated in network management systems. Yet, scalability
issues of traffic engineering may limit its applicability to large
networks due to excessive computational costs and overhead
of routing changes. One documented means of reducing these
overheads is to focus the routing optimizations on the paths to
popular destinations, and thus be able to shift a large volume of
traffic with a small number of path switches, rather than shifting
the traffic for all the prefixes. However, there is a lack of simple
and pragmatic methods for selecting popular destinations. This
paper seeks to address this problem by introducing a practical
criterion to define a threshold to categorize the popularity of the
traffic. This is based on the analysis of the errors of commonly
used predictors for traffic tracking. Our results show that by
applying this criterion, we can reduce the number of target
prefixes to a small fraction of the total number, while ensuring
stability in the traffic engineering, which results from an effective
predictability of the traffic headed to these prefixes.

I. INTRODUCTION

Inter-domain Traffic Engineering (TE) has become an im-
portant part of today’s network management systems to pro-
vide best inter-domain routing, while ensuring a high level of
global network performance [1], [2]. This is particularly im-
portant to generate cost savings and to face several challenges
posed by the competitive Internet market, such as the provision
of value-added services.

The inputs to the inter-domain traffic engineering process
are the traffic demands over the network, the available egress
point choices for the destinations (provided by BGP (Border
Gateway Protocol) [3]) and the egress point capacities. The
output is the inter-domain routing so as the traffic objectives
can be satisfied. Lastly, the optimal routing is translated to a
careful tuning of the BGP routes attributes [4].

One of the common optimization problems that has to
be dealt with by the network managers is, thus, the Egress
Router Selection (ERS) [5]: how should the traffic demands
be assigned to multiple egress points, to ensure that the tran-
sit network’s traffic objectives are fulfilled (e.g., minimizing
the maximum link utilization (min-MLU) or Load-balancing
(LB))? Studies, such as [6], [7], provide some instances of
algorithms which can solve the problem of ERS efficiently.

The biggest concern with ERS is that with regard to the
number of traffic flows, objectives and egress point choices,
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the task of optimizing the routing can become computationally
hard and entails a large number of route changes. One effective
means of reducing these overheads is to focus the traffic
engineering optimization on popular destinations (a.k.a. top
receivers), and thus being able to shift a large volume of traffic
with a small number of path switches, rather than shifting the
traffic for all the prefixes [1].

However, there are two major issues that have to be tack-
led; these are the selection of popular destinations, and the
prediction of the amounts of traffic that will be sent to each
destination during the next time interval. The selection of
popular destinations is of critical importance to alleviate the
complexity of the traffic engineering process, which has an
inherent problem of lacking scalability. Tracking the traffic
accurately is a significant issue because the network traffic
is bursty [8], which means that weak predictions may lead
to spurious traffic changes or congestion over egress links or
downstream Internet Service Providers (ISP).

This paper correlates both issues and sets out a practical
criterion to define a threshold for traffic volumes, the value
of which is used to categorize the popularity of the traf-
fic destinations. This is based on the analysis of errors of
common predictors for traffic tracking, namely (the simple)
Last-Value (LV), the Moving Average (MA), and the Low-
pass Exponential Moving Average (LpEMA). Our results show
that by applying this criterion, we can reduce the number of
target prefixes to a small fraction of the total number, while
ensuring stability in the traffic engineering, which results from
an effective predictability of the traffic headed toward these
prefixes.

The rest of this paper is organized as follows. Section II
outlines the whole inter-domain traffic engineering process,
describes the concept of Zipf’s Law and its significance
for traffic engineering, and states our problem. Sections III
describes the data trace and analyzes the performance of
different traffic predictors to postulate a criterion for selecting
popular destinations. Finally, Section IV concludes this paper.

II. BACKGROUND AND STATEMENT OF THE PROBLEM

This section sets out by describing the traffic engineering
process. We then underline the importance of the consistency
of traffic demands with the Zipf’s law for the traffic engineer-
ing. Lastly, we describe the problem of selecting the popular
destinations, and present our proposal.



A. Basics of Inter-domain Traffic Engineering

The goal of inter-domain traffic engineering is to optimize
inter-domain routing, subject to a given traffic objective and
the constraints of the network. For the sake of illustration, we
consider as traffic objective, the minimization of the maximum
link utilization (MLU) of the egress links. A transit network
to be optimized is represented by a set of ingress points I and
a set of egress points E.

The inputs to the TE algorithm are the incoming traffic de-
mands (TD) over the transit network, the available egress point
choices for each reachable prefix destination p ∈ P (provided
by BGP) and the egress point capacities C, where each entry
c(e) is the capacity at egress point e ∈ E. The predicted TD
are represented by the matrix D = {dip | i ∈ I, p ∈ P},
where each entry dip is the demand for the ingress point
i - destination p pair. The set of egress point capacities is
represented as C, where each entry c(e) is the capacity at the
egress point e. An inter-domain routing is represented by ε,
where each entry εiep ∈ {0, 1} is an indicator function that
tells whether the dip is assigned to the egress point e. The
output of the inter-domain traffic engineering process is the set
of optimal routes to achieve the optimal traffic mixture. In turn,
these results are translated to a careful tuning of BGP routes
attributes. For the interested reader, the set of techniques (e.g.,
LOCAL-PREFs tuning) that can be used for egress traffic
control are described in [4].

The TE problem is known as the egress router selection
(ERS): how to assign each entry of traffic demands dip to an
egress point e, so as to optimize a certain traffic objective.
The traffic objective that is encoded in the ERS problem is to
minimize the whole MLU (min-MLU) at egress links. To be
more specific, we introduce the definitions 2.1 and 2.2.

Definition 2.1: The link utilization of e for a routing ε is
defined as the traffic to capacity ratio as shown in (1).

Ue =
∑
i

∑
p

εiepdip
c(e)

, ε is a routing. (1)

Definition 2.2: An optimal inter-domain routing for a
given D, is the routing that minimizes the maximum link
utilization (min-MLU), as shown in (2), where OU is the
optimal utilization.

OU = min max Ue,∀e ∈ E. (2)

The traffic objective min-MLU is subject to constraints (3)
and (4). The capacity constraint (3) ensures that the total
resource requirements of the traffic flows assigned to each
egress point do not exceed the available/contracted capacity.
The assignment constraint (4) guarantees that each traffic flow
is assigned to exactly one egress point e.

∑
i

∑
p

εiepdip ≤ c(e),∀e ∈ E (3)

with,
∑
e

εiep = 1,∀i ∈ I (4)

B. Zipf’s Law and its Significance for Traffic Engineering
Zipf’s law is an empirical law introduced to describe the

popularity of words in terms of rank and their frequency in
use [9]. It states that if fi is the frequency of the word i
and ri its rank order, then fi ' 1

ri
. This implies that the n-

th word is used twice as often as the 2n-th word. Visually
Zipf’s law can be easily observed by plotting the data set on
a log-log scale, with the axes being x = log(rank order) and
y = log(frequency). If the plot is (almost) linear, we say that
the data set is consistent with Zipf’s law. When using Zipf’s
law in general contexts, such as the popularity of web pages
or traffic destinations as in this paper, it can be re-formulated
as: if fi as a function of ri is consistent with a power-law
distribution it is referred to as Zipf’s-like.

A typical backbone network has routes for more than
150000 prefixes [1]; as a result optimizing the routing to
accommodate all the traffic demands that were detected by
network monitors, can become computationally hard and entail
a large number of route changes. The extrapolation of this con-
cept to the field of traffic engineering is therefore significant.

When traffic demands of Internet traces (in terms of traffic
volumes) are consistent with the Zipf’s-like distribution, it
implies that a small fraction of prefixes (i.e., about 5 - 10%,
though in our trace about 2% of the total number of prefixes
(see Section III)) of the total number of receivers contribute
to most of the total volume of traffic. In practice, several
studies have identified this phenomenon in Internet traffic
[10], [11] which means that it is not necessary to consider
all the destinations in the routing optimization process. It will
be enough to change LOCAL-PREFs for a small handful of
popular destinations, that would move a large fraction of traffic
from one egress point to another, while minimizing the number
of path changes. Moreover, these destinations tend to have
more stable traffic volumes [11].

The process of verifying the consistency of traffic demands
with Zipf’s law proceeds as follows. First, the traffic demands
are acquired from measurements taken from a network, i.e.,
the total amount of traffic sent to each destination is recorded
during an interval of time [10], [12]. Subsequently, the flow
rankings are computed on the basis of the contribution that
each flow makes to the total traffic volume.

A flow ranking R is an ordered set of flows as shown
in definition 2.3. The consistency of traffic demands with a
Zipf’s-like distribution is evaluated according to definition 2.4
or visually by plotting the data on a log-log scale.

Definition 2.3: Given a set of k flows represented by a
vector F = (f1, ...., fk), R is a ranking of flows iff ∀fi, fj ∈
F ri � rj ⇔ Vnorm(fj) ≤ Vnorm(fi), where rk is the rank
of flow fk, Vnorm(fk) represents the traffic in terms of bytes
for the flow fk normalized by total volume of traffic.

Definition 2.4: Given a set of k flows F = (f1, ...., fk),
and a ranking R, these are consistent with a Zipf’s-like
distribution, iff ∀fi the corresponding traffic volume V (i)
satisfies the relation V (i) = c.r−αi , α > 0, c = constant.



C. Problem Statement, and Challenge

As a network/ISP grows, a commonly-used traffic engi-
neering practice is to select the popular destinations of the
traffic and optimize the traffic performance mainly for them,
as previously described. However, there remains an important
issue to address which is, how to define a proper value for a
threshold (said T ) that splits the whole set of destinations into
popular and non-popular destinations. This means that after a
ranking R has been computed, both the flows and destinations,
whose contribution to the total traffic volume is below some
specified threshold T , i.e., Vnorm(.) < T , should be pruned
from the optimization process of the network. The remaining
flows are considered as top receivers.

Unfortunately, the optimal value for T is hard to find as it
depends on several factors, such as the trade-off between the
overhead on the traffic engineering algorithm, the overhead of
routing changes and the degree of routing control. The purpose
of this paper is not to deal with the issue of showing formally
what is the best choice for threshold T , but rather to provide
a practical method for setting the threshold T .

In this paper, we postulate that the threshold T can be
empirically found through the analysis of the errors of the
predictors that are used for traffic tracking. A prediction error
is defined as in definition 2.5.

Definition 2.5: Given a flow a prediction error is the differ-
ence between the value of the estimated traffic volume ei for
the next time slot i, and the real value Vi, i.e., errori=|ei−Vi|.

III. PREDICTION CRITERION FOR SELECTING POPULAR
DESTINATIONS

Our thesis is that the analysis of the whole behavior of the
prediction error in tracking traffic leads to a practical criterion
for selecting popular destinations. In this section we, thus,
study the performance of different predictors (LV, MA and
LpEMA). In evaluating the performance of the predictors, their
mean error was computed and analyzed.

A. Data Trace

We use one set of data traces that was collected at the
GÉANT pan-European academic network in 2005 [13]. This
was conducted by means of Cisco’s Netflow [14]. The Netflow
measurements were carried out over a period of two weeks,
as shown in Fig. 1. Each sample in the figure represents the
amount of bytes seen during each interval of 15 minutes,
multiplied by 1000, since the Netflow sampling was performed
at a rate of 1/1000. After this, we divided the traffic into
demands. A demand represents a given amount of traffic (in
bytes) from GÉANT’s users to a destination.

B. Tracking Traffic

In this study, we track traffic with three distinct predictors
which vary in degrees of complexity: a very simple predictor,
the Last Value (LV), the classical Moving Average (MA) , and
an adaptive but more complex predictor, the LpEMA (Low
pass Exponential Moving Average), defined below.
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Figure 1. GÉANT Traffic: (left) Traffic evolution from Sunday (05-07-10)
to Saturday (05-07-16).

LV is the basic predictor. The actual traffic estimate ei is
equal to the traffic volume Vi measured in the last time slot
i, i.e., ei = Vi.

MA is another very simple predictor. The actual traffic esti-
mate ei is equal to the arithmetic mean of the traffic volumes
measured in the last n time slots, i.e., ei =

∑n−1
k=0 Vi−k

n . This
predictor requires a set of n traffic volume measures, and thus
a window of size n. The biggest problem of this predictor is
how to find the right size for the sliding window. Very large
windows result in smoothing too much the real traffic changes.
In contrast, small windows result in that fast traffic changes
are not suppressed.

LpEMA is an extension of the classic EMA predictor, and
is a more complex predictor than LV and MA. To compute
the actual metric estimate ei, the LpEMA combines the
previous estimate ei−1 with the actual traffic volume measure
Vi using an adaptive Exponential Moving Average, as shown
in (5), where αi is an adaptive exponential weight, which is
calculated by using the classical formula for low pass filter, mi

is the gradient between two metric samples (i.e., Vi−Vi−1

ti−ti−1
), and

mnorm is the normative gradient calculated over a given time
window (e.g., 10 times the interval ti − ti−1). In contrast to
the original EMA, it makes use of an adaptive exponential
weight α, since with large weights the estimation follows
the measurement exactly, but does not suppress fast traffic
changes, whereas with small weights, the traffic changes are
suppressed but the estimation follows the real changes too
slowly [15]. {

ei = (1− αi)ei−1 + αiVi
αi = αmax

1

1+
|mi|

mnorm

(5)

More complex predictors could also be employed in our
study, such as Auto-Regressive Integrated Moving-Average
(ARIMA) (that combines linearly past traffic volumes and/or
errors) [16] and Neuronal Networks (NN) (here the basic idea
is to train a NN with past traffic volumes to predict future
values) [17]. We only employed LV, MA and LpEMA in the
belief that there is no advantage in using complex predictors
given the fact that the performance achieved is almost the same
as with the simpler predictors [18], [19].

C. Analysis of Prediction Errors

We start by verifying the consistency of the GÉANT’s data
trace with Zipf’s law using the procedure described in Section
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Figure 2. GÉANT Traffic: (left) Cumulative Distribution Function of traffic
volumes; (right) Zipf’s law fitting giving α = 1.5818 and c = 9.6634E10.

II-B. After the completion of the process, the right-hand graph
of Fig. 2 shows that the trace is roughly consistent with the
Zipf distribution with α = 1.5818 and c = 9.6634E10. This
observation implies that a small fraction of the prefixes of the
GÉANT data trace contribute with most of the total volume of
traffic; this allows us to proceed with the analysis and select
GÉANT’s popular destinations. It should be noted that to fit
the Zipf distribution, we first fit the traffic volumes with a
Power-law distribution by using the method described in [20].
Then, we map the Power-law distribution that has been found
in a Zipf distribution [9].

We next evaluate the performance of the LV, MA and
LpEMA. Figures 3 and 4 provide the mean prediction error
of each flow in the trace for different sizes of the sampling
window. In the case of the LpEMA predictor, the results shown
are for the best value of αmax found for each flow, since its
effectiveness depends on this parameter (as Fig. 4 suggests).
The results of Figs. 3 and 4 also confirm the previous finding,
even when a different trace is used, that the performance of
the different predictors does not differ very much in terms of
complexity. Nevertheless, these results yield an extra finding,
which is, that the errors of all the predictors depends on the
granularity of the traffic flows. In fact, in both figures 3 and
4, the prediction errors grow sharply, (roughly) above of the
flow for the prefix number 300. Hence, this suggests that the
predictors are unable to track very small flows accurately.

Previous finding introduces a practical bound that should
be taken into account in manual or adaptive setting of the
threshold T . This finding states that, regardless of other
factors, it only makes sense to track “popular destinations”
if its predictability is effective, i.e., those for which the mean
prediction error is bounded. To be more specific, using this
error-based prediction criterion with an approximate target
maximum error of 100% (i.e., E(fi) =

∑n
o errork
n ≤ 1, where

E(fi) is the mean prediction error for flow fi, and errork is
the prediction error in slot of time k), 296 destinations were
identified (out of a total of 16150 prefixes), and the sum of
their individual traffic represents 99% of the total volume.

Regarding the tuning of LpEMA, it should be noted that
the prediction errors for a range of values for αmax, flows of
different granularity and aggregation, and sizes of the sampling
window were examined. Figure 4 shows that the prediction
error depends on all these factors. First, it shows that as long
as αmax increases the prediction error decays significantly, and
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(a) Prediction Errors for Moving Average Predictor.
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(b) Prediction Error for Last Value Predictor.

Figure 3. Analysis of the Prediction Errors for Moving average and Last
value predictors.
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(a) Minimum Prediction Errors.
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Figure 4. Analysis of the Prediction Errors for the LpEMA predictor.

thus the predictor adapts to the variability of the traffic. When
it is above some value for αmax the prediction error rises.
Second, when the sum of all the traffic, the largest traffic flow,
and the smallest traffic flow are compared, it can be observed
that the aggregation favors the predictability of the traffic. This
is evident for all the predictors. Moreover, the best αmax that
has been found to track each of the traffic flows is highly
variable, which means that a significant effort is required for
tuning the LpEMA because there is no common value for all
the flows. However, we found that it is more common to use
values within the range [1.5, 3.0] or [2.0, 3.5] for bigger traffic
flows, in the case of smaller and larger sizes of time intervals
respectively.
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Figure 5. Comparison of the prediction errors for different flow sizes and
aggregation levels.

One final remark is that the choice of predictors depends
on a trade-off between accuracy vs complexity. In [18], the
authors, together with their references, argue that the use of
complex predictors, such as LpEMA, may not bring perfor-
mance benefits because their “mean error is always larger than
the one of the last value”. Figures 5 and 6 provide a counter-
example. Our results show that when making proper choices of
αmax, LpEMA performs always better than LV, and no worse
than MA, with regard to mean error. Moreover, the average
gradient for LpEMA is always lower than that of LV. In short,
the complex predictors may not lead to any benefits in terms
of mean error, but despite this, may be able to ensure routing
stability, while following also the traffic dynamics accurately.

IV. CONCLUSION

This work has highlighted the importance of the consistency
of traffic demands with the Zipf’s law for the whole inter-
domain traffic engineering process integrated in network man-
agement systems. This implies that it is enough to take account
of only a small fraction of the total number of destinations to
control the routing of the majority of the traffic. However,
there has been a lack of any simple and pragmatic method for
selecting popular destinations.

In view of this, we drew up a practical criterion for the
selection of popular destinations. The proposed criterion is
based on the definition of a target bound for traffic volumes
an relies on information about the behavior of the errors of
the traffic predictors. Our results showed that by applying this
criterion, we were able to reduce the number of target prefixes
to 2% of the total number, while ensuring routing stability due
to the predictability of the traffic headed these prefixes.
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