
UNIVERSIDADE NOVA DE LISBOA

Faculdade de Ciências e Tecnologia

Departamento de Informática

EXPLORATIONS IN REVISED STABLE MODELS -

A NEW SEMANTICS FOR LOGIC PROGRAMS

Por

Alexandre Miguel dos Santos Martins Pinto

Dissertação apresentada na Faculdade de Ciências e Tecnologia da

Universidade Nova de Lisboa para a obtenção do Grau de

Mestre em Inteligência Artificial Aplicada

sob orientação do

Prof. Doutor Lúıs Moniz Pereira

Lisboa

Fevereiro 2005

c© Copyright Alexandre Miguel dos Santos Martins Pinto 2005

Todos os direitos reservados

ii

Acknowledgments

I must start by thanking my wife, Graça, for being the most loving, supportive and encouraging woman a

man can be with. None of this could have been done without her support. Also I must thank my parents

for all they have done for me, and my sisters for their continuous care.

I specially thank Prof. Dr. Lúıs Moniz Pereira, my supervisor, for lots of reasons which include, but

are not limited to: sharing with me his innovative thoughts and excitement, proposing me the challenge

to pursue this new and exciting world of open possibilities, his availability for discussions even when he

had his schedule already filled up, for introducing me to several researchers within the right timing, for

teaching me the good practices of serious scientific research and allowing me to do it with him, and also

for his friendship and pleasant company.

I must also thank Prof. Dr. José Júlio Alferes for his most valuable feedback and opinion in so many

times, Federico Banti for so many discussions and for the precious time he spent trying to find flaws in

my work and giving me his opinion on how to solve them.

Internationally, I thank Nicola Leone. Without his precious help and feedback the Revised Stable

Models definition would not have reached its final stage so soon.

I acknowledge the Departamento de Informática da Faculdade de Ciências e Tecnologia da Univer-

sidade Nova de Lisboa, and its Centro de Inteligência Artificial (CENTRIA) and also the Centro de

Informática da Universidade Nova de Lisboa for giving me work conditions.

Śılvia Marina, Anabela Duarte and Sandra Ráınha are also present in my thank-you list for helping

me with bureaucratic papers and arranging my travels during this last year.

Finally, a word of appreciation must go to Marco Correia, António Pestana and Carlos Delgado for

hearing me out talking about my work countless times.

iii

iv

Abstract

After a brief historical overview, the display of the background assumptions and brief study of some

properties of Normal Logic Programs, the core of this thesis concerns the definition and study of the

properties of a new 2-valued semantics for Normal Logic Programs: the Revised Stable Models semantics.

The main original contributions of this work are:

• A study of some properties of Classical Models and Minimal Models

• A study of the conditions for the absence of Stable Models in a Normal Logic Program (NLP)

• A study of Odd Loops Over Negation (OLONs) and the properties of Minimal Models of NLPs

with OLONs

• A study of Infinitely Long Support Chains (ILSC) and the properties of Minimal Models of NLPs

with ILSCs

• The Reductio ad Absurdum reasoning principle in 2-valued semantics

• The new notion of Generalized Support which extends the Classical notion of Support by adding a

Reductio ad Absurdum support

• The definition of Revised Stable Models (RSM) — a new 2-valued semantics for NLPs

• The proofs of the Existence, Relevancy and Cumulativity properties of the RSM semantics

• The identification of the NLPs under which the Stable Models semantics also guarantees Existence,

Relevancy and Cumulativity

v

vi

Sumário

Depois de uma breve descrição histórica, de estruturar as hipóteses de base e de fazer um breve estudo

de algumas das propriedades dos Programas Normais em Lógica, o centro desta tese foca-se na definição

e estudo das propriedades de uma nova semântica a 2 valores para Programas Normais em Lógica: os

Modelos Estáveis Revistos.

As prinicpais contribuições originais deste trabalho são:

• Um estudo de algumas propriedades dos Modelos Clássicos e dos Modelos Mı́nimos

• Um estudo das condições para a ausência de Modelos Estáveis num Programa Normal em Lógica

(PNL)

• Um estudo de Ciclos Ímpares Sobre Negação (CISN) e sobre as propriedades dos Modelos Mı́nimos

de PNLs com CISNs

• Um estudo de Cadeias de Suporte Infinitamente Longas (CSIL) e das propriedades dos Modelos

Mı́nimos de PNLs com CSILs

• O prinćıpio de racioćınio por Redução ao Absurdo numa semântica a 2 valores

• A nova noção de Suporte Generalizado que extende a noção de Suporte Clássico pela adição de

suporte por Redução ao Absurdo

• A definição dos Modelos Estáveis Revistos (MER) — uma nova semântica a 2 valores para PNLs

• As provas das propriedades de Existência, Relevância e Cumulatividade da semântica MER

• A identificação dos tipos de PNL para os quais a semântica de Modelos Estáveis garante Existência,

Relevância e Cumulatividade

vii

viii

Preface

This Thesis is composed of two major parts: part one consists of an introduction to the subject, laying

down the background for the following developments, and casting a bird’s eye view over the current

State-of-the-Art 2-valued semantics for Normal Logic Programs: the Stable Models Semantics.

In part two we present the definition of our new proposed 2-valued semantics for NLP: the Revised

Stable Models; then we show some concrete applications of this new semantics; draw some conclusions

and sketch the future work in this line of research.

In chapter 1 a brief introduction to the problem is given along with the main lines of motivation and

historical overview.

In chapter 2 we set the basic definitions upon which the rest of the work is settled. Some interesting

properties of Normal Logic Programs, their Classical Models and Minimal Models are identified here.

Chapter 3 deals with a brief critical overview of Stable Models semantics. Their pros and cons are

identified and a few hints of a solution are given.

In chapter 4 we present the definition and properties of Revised Stable Models semantics, and also

give sketches of proofs of the properties. The formal proofs are in appendix A.

Chapter 5 presents two practical application of RSM semantics: the EVOLP language which deals

with evolving logic programs, and the REWERSE European Project under which prototypes of reactive

and evolutionary web-based knowledge bases will be built.

Conclusions and Future lines of work, drawn in chapter 6, close this Thesis. The main directions

for future work include extending the RSM semantics to Generalized and to Extended Logic Programs,

comparing the RSM semantics against other formalisms, and developing more efficient implementations.

In appendixes A, B, C and D the reader can find the proof of the Theorems, Corollaries, Lemmas,

Propositions, etc., presented in previous chapters; examples of NLPs and their respective RSMs; the

source code of the implementations of the top-down proof-procedure and the RSM calculator; and finally,

the tests and results performed with these implementations.

ix

x

Contents

Acknowledgments iii

Abstract v

Sumário vii

Preface ix

I The current State-of-the-Art 1

1 Introduction 3

1.1 Historical Overview . 3

2 Background, Definitions, and Notation 5

2.1 Alphabet, Language and Literals . 5

2.2 Normal Logic Programs . 7

2.3 Classical Models . 13

2.3.1 Minimal Classical Models . 15

2.4 The Gelfond-Lifschitz Operator - Γ Operator . 17

2.4.1 Rules, bodies and Interpretations . 17

2.4.2 The RAA set . 18

2.4.3 Particularities of Odd-Loops Over Negation . 19

2.4.4 Infinitely long support chains . 24

2.5 Sustainable Sets . 25

2.6 Current State-of-the-Art . 26

2.6.1 Two-Valued Semantics . 27

2.6.2 Three-Valued Semantics . 28

xi

3 A criticism of Stable Models 31

3.1 Definition . 31

3.2 Pros and Cons of Stable Models . 31

3.3 Motivation . 34

3.3.1 Desired Properties . 34

3.3.2 The main problems . 34

II Revised Stable Models: a new semantics for Normal Logic Programs 37

4 Revised Stable Models 39

4.1 Goals and Aims . 39

4.1.1 Options and Choices . 39

4.2 Fundamental Underlying Principles . 40

4.2.1 Notion of Support . 40

4.3 Definition of Revised Stable Models . 42

4.3.1 Definition . 42

4.3.2 Integrity Constraints . 49

4.4 Properties . 51

4.4.1 Stable Models Extension . 51

4.4.2 Existence . 51

4.4.3 Relevancy . 52

4.4.4 Cumulativity . 53

4.4.5 Special-Case Properties of Stable Models . 54

4.5 Complexity Analysis . 55

4.6 Implementation . 55

4.6.1 Implementing a RSM Meta-Interpreter . 55

4.6.2 Implementation of a Revised Stable Models calculator 57

5 Applications 59

5.1 EVOLP . 59

5.2 REWERSE . 61

6 Conclusions and Future Work 63

6.1 Conclusions . 63

6.2 Future Work . 64

6.2.1 Extensions . 64

6.2.2 Further work . 66

xii

Bibliography 69

A Proofs of Theorems 75

A.1 Minimal and Classical Models Theorems, Lemmas and Corollaries 75

A.2 Lemmas about the ΓP operator and Interpretations . 78

A.3 Revised Stable Models Theorems and Lemmas . 79

B Examples 87

B.1 Examples vs RSM conditions . 87

C Source Code of the Implementations 91

C.1 The Meta-Interpreter for RSM . 91

C.2 The RSM Calculator . 102

D Tests and results of the RSM Implementations 115

xiii

xiv

Part I

The current State-of-the-Art

1

2

Chapter 1

Introduction

1.1 Historical Overview

Since the beginning of Logic Programming in the early 1970’s until today’s Answer-Set Programming

many theoretical and practical issues have been dealt with. Clark’s work on program completion, in the

late 1970’s, had a great impact and it still is today a major reference.

Later, in the 1980’s, Reiter’s work [35] on default logic opened new perspectives, which then led to

auto-epistemic logic. After the stratification notion had been settled, default logic semantics for logic

programs were proposed and soon after the Stable Models (SM) semantics marked the computational

logic history. The extension of SM semantics for Extended Logic Programs (programs with explicit

negation) led to the development of Answer-Set Programming[24].

Meanwhile, 3-valued semantics was also an active field of research which produced the Well-Founded

Semantics (WFS) [20] which is the today’s standard 3-valued semantics. Several comparative studies

between SM semantics and WFS semantics have been developed and their close relationship has been

found[17].

Stable Models (SM) semantics [21], the generally accepted standard 2-valued semantics for Normal

Logic Programs (NLPs), accepts as Models of a NLP precisely the ones that are intuitively expected. In

this sense, SM semantics reflects quite naturally the semantics the programmer intends for the NLP.

However, the Stable Models semantics also has some drawbacks — namely, its lack of enjoying the

Existence, Relevancy, and Cumulativity properties. Although most part of the SM community has

accepted the lack of these convenient properties as natural, their absence still remain a discomfort for

some. Namely, the lack of Relevancy has prevented the development and use of top-down query-oriented

proof-procedures.

This was the initial concern that drove the creative process for coming up with a new semantics that

extended the Stable Models semantics.

The desired properties of the new semantics should include: being an extension to Stable Models

3

4 CHAPTER 1. INTRODUCTION

(in order to keep getting the nice intuitive models the Stable Models semantics gives); guaranteing

the Existence of at least one Model for any Normal Logic Program; and also enjoying the Relevance and

Cumulativity properties so the use top-down querying proof-procedures and tabling methods for speeding

up computations are possible.

All of these driving forces led to the revision of the Stable Models semantics and, ultimately, they

give birth, in the mind of my supervisor, Prof. Dr. Lúıs Moniz Pereira, to the initial intuitive idea and

approach towards defining Revised Stable Models (RSMs) [32].

The formal definition of the new Revised Stable Models semantics is the result of a most fruitful

research work I have the pleasure to develop along with Prof. Dr. Lúıs Moniz Pereira.

Throughout the investigation path that lead to the formal proofs of the desired properties of RSMs,

several interesting results concerning Classical Models and Minimal Classical Models were found. These

results, which, to the best of our knowledge, were previously unknown, are themselves interesting and

potentially useful.

Chapter 2

Background, Definitions, and

Notation

2.1 Alphabet, Language and Literals

By an alphabet A of a language L we mean a (finite or countably infinite) disjoint set of constants,

predicate symbols, and function symbols. In addition, any alphabet is assumed to contain a countably

infinite set of distinguished variable symbols. A term over A is defined recursively as either a variable,

a constant or an expression of the form f(t1, . . . , tn) where f is a function symbol of A, and the tis are

terms. An atom over A is an expression of the form p(t1, . . . , tn) where p is a predicate symbol of A, and

the tis are terms. A literal is either an atom A or its negation not A (sometimes written as ∼ A. We dub

default literals those of the form not A — ∼ A. A term (resp. atom, literal) is called ground if it does

not contain variables. The set of all ground terms (resp. atoms) of A is called the Herbrand universe

(resp. base) of A. For short we use H to denote the Herbrand base of A. A normal logic program is a

finite set of rules of the form:

H ← L1, . . . , Ln, (n ≥ 0)

where H is an atom and each of the Lis is a literal. In conformity with the standard convention

we write rules of the form H ← also simply as H. A normal logic program P is called definite if

none of its rules contains default literals. We assume that the alphabet A used to write a program P

consists precisely of all the constants, and predicate and function symbols that explicitly appear in P .

By Herbrand universe (resp. base) of P we mean the Herbrand universe (resp. base) of A. By grounded

version of a normal logic program P we mean the (possibly infinite) set of ground rules obtained from P

by substituting in all possible ways each of the variables in P by elements of its Herbrand universe.

These are the base concepts of Alphabet, Language, Herbrand Base, and Normal Logic Program as

defined in [5].

5

6 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

In this work we restrict ourselves to Herbrand interpretations and models. Thus, without loss of

generality (cf. [33]), we coalesce a normal logic program P with its grounded version.

Definition 2.1.1. Atom

We will write A to denote the set of Atoms.

Definition 2.1.2. Literal

A Literal is defined as an Atom or the default negation of an Atom. We will write L to denote the set

of Literals. Hence,

L = A ∪ {∼ a : ∀a∈A}

Additionally, the following auxiliary definitions are also considered throughout this document.

We call Positive Literal to an atom of the form a, whereas, oppositely, we name Default Literal or

Negative Literal to the default negation — represented by the symbol ∼ — of an atom a, thus having the

form ∼ a.

Formal definitions of the PosLit and NegLit functions follow.

Definition 2.1.3. Positive Literal — PosLit(L)

PosLit is a function defined over the set of literals L unto the binary set {>,⊥} of, respectively, ‘true’

and ‘false’ logical values.

PosLit : L → {>,⊥}

PosLit(l) = > ⇐ l is an atom

PosLit(∼ l) = ⊥

for all l ∈ L

And also,

Definition 2.1.4. Negative Literal — NegLit(L)

NegLit is a function defined over the set of literals L unto the binary set {>,⊥} of, respectively, ‘true’

and ‘false’ logical values.

NegLit : L → {>,⊥}

NegLit(l) = ⊥ ⇐ l is an atom

NegLit(∼ l) = >

for all l ∈ L

2.2. NORMAL LOGIC PROGRAMS 7

Moreover, similarly to what is defined in [7], we also define the Default Conjugate of a Positive Literal

a to be its correspondent Negative Literal ∼a; and conversely, the Default Conjugate of a Negative Literal

∼a to be its correspondent Positive Literal a.

Definition 2.1.5. Default Conjugate — conjD(L)

conjD : L → L

conjD(l) = ∼ l

conjD(∼ l) = l

for all l ∈ L

2.2 Normal Logic Programs

Definition 2.2.1. Rule

We consider a Rule r to be of the form

r = h← b1, b2, . . . , bn,∼ c1,∼ c2, . . . ,∼ cm (2.1)

where n, m ≥ 0, and the h, b1, b2, . . . , bn are atoms, and the ∼ c1,∼ c2, . . . ,∼ cm are Negative Literals.

We call h the head of the Rule, and the set {b1, b2, . . . , bn,∼ c1,∼ c2, . . . ,∼ cm} the body of the

Rule.

We will use R to denote the set of Rules.

Definition 2.2.2. Normal Logic Program

A Normal Logic Program, (NLP for short), is a (possibly infinite) set of Rules as defined in equation 2.1.

We consider in this text all rules of a NLP to be Ground Rules, i.e., without variables. As a NLP can

be an infinitely long set of rules there is no loss of generality.

Definition 2.2.3. The head function

The head function is defined over the set of NLP Rules R, unto the set of NLP Atoms A

head : R → A

Being r a NLP rule — r ∈ R — as defined in equation (2.1), the head function is thus defined as

head(r) = h (2.2)

head(r) is thus the Positive Literal on the left-hand side of the ‘←’ rule symbol.

8 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

Definition 2.2.4. The Heads function

The Heads function is defined over the set of Normal Logic Programs P, unto the set of NLP Atoms A

Heads : P → A

Being P a NLP, the Heads function is thus defined as

Heads(P) = {h : h = head(r) ∧ r ∈ P} (2.3)

Heads(P) is thus the set of heads of rules of P .

Definition 2.2.5. The body function

The body function is defined over the set of NLP Rules R, unto the set of subsets of NLP Literals Pow(L)

body : R → Pow(L)

Being r a NLP rule — r ∈ R — as defined in equation (2.1), the body of a rule r is then

body(r) = {b1, b2, . . . , bn,∼ c1,∼ c2, . . . ,∼ cm} (2.4)

where n, m ≥ 0.

body(r) is thus the set of literals on the right-hand side of the ‘←’ rule symbol.

Definition 2.2.6. Len(P) - Length of NLP P

The Length of the Normal Logic Program P is the number of rules of P

Len(P) = #P

Naturally, Len(P) can be infinite.

Definition 2.2.7. DC(P, a) - Direct Children of positive literal a in NLP P

The set of Direct Children of literal a in a Normal Logic Program P , DC(P, a) is defined as

DC(P, a) = {l : l ∈ body(ri) ∧ ri ∈ P ∧ head(ri) = a}

In this Thesis we will often refer to differences between sets of atoms. For convenience, we will write

these differences as S1 − S2 with the same meaning of the traditional notation of S1 \ S2.

Definition 2.2.8. Rel(P, a) - Relevant set of rules of NLP P with respect to positive literal a

The Relevant set of rules of a Normal Logic Program P , with respect to a literal a, Rel(P, a) is defined

as

Rel(P, a) = {ri ∈ P : head(ri) = a} ∪
⋃

x:ri∈P∧head(ri)=a∧(x∈body(ri)∨∼x∈body(ri))

Rel(P, x) (2.5)

2.2. NORMAL LOGIC PROGRAMS 9

Throughout this document we will write Pa as a shorthand notation for Rel(P, a), and Pa to denote

the set of rules of P which are not in Pa, i.e., Pa = P − Pa.

Thus, such a Pa and Pa constitute a partition of P

(P = Pa ∪ Pa) ∧ (Pa ∩ Pa = ∅)

Definition 2.2.9. RelLit(P, a) - Set of relevant literals of NLP P with respect to positive literal a

The set of relevant literals of a Normal Logic Program P , with respect to a literal a, RelLit(P, a) is

defined as

RelLit(P, a) = {b : (b ∈ body(ri)∨ ∼ b ∈ body(ri)) ∧ ri ∈ Rel(P, a)} (2.6)

Definition 2.2.10. Derivation− Path(P, a, b) — Derivation Path in NLP P from positive literal a to

literal b

Consider a sequence S of literals of P of the form

S =< l1, l2, l3, . . . , ln >

and let S(n) denote the nth element of the sequence S.

We say the Derivation − Path(P, a, b) is a Derivation Path in NLP P from literal a to literal b iff

Derivation− Path(P, a, b) is one such a sequence S, such that the first element of S — S(1) = l1 — is

the literal a, and the last element of S — S(n) = ln — is the literal b or its default conjugate ∼ b.

Moreover, every i + 1th element of S — S(i + 1) — is one of the Direct Children of S(i) if S(i) is a

Positive Literal; otherwise S(i + 1) is one of the Direct Children of conjD(S(i)).

Formally, a Derivation− Path(P, a, b) is a sequence S such that

S =< l1, l2, . . . , ln > ∧S(1) = l1 = a ∧
(
(S(n) = ln = b) ∨ (S(n) = ln =∼ b)

)
∧

∀ 1 ≤ i < n

{
S(i + 1) ∈ DC(P, S(i))⇐ PosLit(S(i))

S(i + 1) ∈ DC(P, conjD(S(i)))⇐ NegLit(S(i))

Naturally, the sequence S has, at least 2 elements: a and b. In this Thesis, since we are focusing in

Normal Logic Programs (which do not have Default Literals in the heads of rules) we will only consider

sequences such that their first elements S(1) are Positive Literals.

We say n is the length of the Derivation− Path(P, a, b).

Definition 2.2.11. Loop(L, P, a) — Loop L in NLP P with respect to positive literal a

A Loop L in NLP P with respect to literal a is a finite subset of rules P such that there is in L exactly

one rule with head a and exactly one rule with a or ∼ a in the body. All rules in Loop(L, P, a) have

10 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

as head an atom present in the body of exactly one rule of Loop(L,P, a) — either directly as a Positive

Literal or through its default negation as a Negative Literal.

Formally,
Loop(L, P, a)⇔ L ⊆P∧

∃1r∈Lhead(r) = a∧
∃1r′∈L

(
(a ∈ body(r′)) ∨ (∼ a ∈ body(r))

)
∧

∀r′′∈L∃r′′′∈L
(
(head(r′′) ∈ body(r′′′)) ∨ (conjD(head(r′′)) ∈ body(r′′′))

)
A Loop(L, P, a) is thus a set of rules of the form

a← L1, B1

l1 ← L2, B2

...

ln ← A, Bn

where for every i ≤ n, Li = li ∨ Li =∼ li and each Bi = b1, b2, . . . , br,∼ c1,∼ c2, . . . ,∼ cs, with

r, s ≥ 0, and A = a ∨ A =∼ a.

Proposition 2.2.1. In a Loop(L, P, a) there is always exactly one Derivation-Path(L,a,a).

Proof. Immediate from the definition of Loop(L, P, a). ut

Definition 2.2.12. PLoop(PL,P,a) — Positive-Loop in NLP P with respect to positive literal a

A Positive Loop in P with respect to literal a is a Loop(PL, P, a) such that there are no Negative Literals

in its Derivation− Path(PL, a, a).

Formally,
PLoop(PL, P, a)⇔ PL ⊆ P∧

∃1r∈PLhead(r) = a∧
∃1r′∈PLa ∈ body(r′)∧
∀r′′∈PL∃r′′′∈PLhead(r′′) ∈ body(r′′′)

A PLoop(PL, P, a) is thus a set of rules of the form
a← l1, B1

l1 ← l2, B2

...

ln ← a, Bn

where for every i ≤ n, Bi = b1, b2, . . . , br,∼ c1,∼ c2, . . . ,∼ cs, with r, s ≥ 0.

From the definition it follows immediately that, S being the sequence of PLoop(PL, P, a) with n ele-

ments, has only Positive Literals, i.e.,

∀1≤i≤nPosLit(S(i))

Definition 2.2.13. LON(NL,P,a) — Loop Over Negation in P with respect to positive literal a

A Loop Over Negation in P with respect to literal a is a NL such that Loop(NL, P, a) holds and there is

2.2. NORMAL LOGIC PROGRAMS 11

at least one Negative Literal in its Derivation− Path(NL, a, a), and the last literal of the Derivation−
Path(NL, a, a) is a Negative Literal.

Formally,
LON(NL, P, a)⇔ NL ⊆ P∧

∃1r∈NLhead(r) = a∧
∃1r′∈NL ∼ a ∈ body(r′)∧
∀r′′∈NL∃r′′′∈NL(head(r′′) ∈ body(r′′′)) ∨ (conjD(head(r′′)) ∈ body(r′′′))

A LON(NL, P, a) is thus a set of rules of the form
a← L1, B1

l1 ← L2, B2

...

ln ←∼ a, Bn

where for every i ≤ n, Li = li ∨ Li =∼ li and each Bi = b1, b2, . . . , br,∼ c1,∼ c2, . . . ,∼ cs, with

r, s ≥ 0.

S being the sequence of LON(NL,P, a) with n elements, since NegLit(S(n)) is true, it follows imme-

diately from the definition that,

(∃1<i≤nNegLit(S(i)))

Definition 2.2.14. NNL(LON) — Number of Negative Literals of a LON

The Number of Negative Literals of a LON, NNL(LON), is a function defined over the set of Loops Over

Negation LON — LONs which are considered to be as defined in 2.2.13 — unto the set of integers N.

Let L be a LON(L, P, a), D be the Derivation−Path(L, a, a), and S be the sequence of Derivation−
Path(L, a, a). Since L is a LON, we know that S =< a, l1, l2, . . . ,∼ a >.

Formally,

NNL : LON → N

NNL(S) =
n∑

i=1

{
1⇐ NegLit(S(i))

0⇐ PosLit(S(i))

It follows trivially from the definition of LON that NNL(LON) ≥ 1, for every LON .

Definition 2.2.15. ELON(EL,P,a) — Even Loop Over Negation in NLP P with respect to positive literal

a

A EL ⊆ P is an ELON(EL, P, a) iff LON(EL, P, a) holds and NNL(EL) is even.

Formally, ELON(EL, P, a)⇔ LON(EL, P, a) ∧NNL(EL) is even.

Definition 2.2.16. OLON(OL,P,a) — Odd Loop Over Negation in NLP P with respect to positive literal

a

A OL ⊆ P is an OLON(OL, P, a) iff LON(OL, P, a) holds and NNL(OL) is odd.

Formally, OLON(OL, P, a)⇔ LON(OL, P, a) ∧NNL(OL) is odd.

12 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

Definition 2.2.17. Atoms Involved in an OLON

Let L ⊆ P , such that OLON(L, P, a) holds, and S be the sequence of the Derivation− Path(L, a, a) of L

with length m.

We say that {a, l1, l2, . . . , ln} are the Atoms Involved in the OLON L iff

∀1≤i≤n∃1≤j≤mS(j) =∼ li ∧ ∃r∈Lli = head(r)

By definition of OLON, a already satisfies ∃r∈La = head(r) ∧ ∃r’∈L ∼ a ∈ body(r’).

We write AIO(L, P) to denote the set of Atoms Involved in the OLON L of P . Hence,

AIO(L, P) = {a, l1, l2, . . . , ln}

In this sense, any OLON in a NLP can be rewritten in such a way that the resulting OLON’ has exactly

n rules, being n the odd number of default literals in the original OLON. The resulting OLON has as

heads of all rules only the Atoms Involved in the original OLON.

An example helps to explain the intuitive idea.

Example 2.2.1. Rewriting an OLON

Let P be a NLP, a a positive literal of P , and L ⊆ P such that OLON(L, P, a), and L =
a← b, x,∼ y

b←∼ c, z

c←∼ d,∼ k

d←∼ a, t
This OLON L can be rewritten as L’ =

a←∼ c, z, x,∼ y

c←∼ d,∼ k

d←∼ a, t
And the rule b ←∼ c, z, still a rule of P , is left out of L’ — the Canonical OLON, as we will call it

and formally define it in 2.2.19.

Let us now see the formal definition of the rewriting transformation

Definition 2.2.18. OLON rewriting procedure

Let L ⊆ P such that OLON(L,P, a); the number of rules in L, #L = nl; the number of default literals

in L, NNL(L) = nnl and nnl < nl. Let also B = {b : r ∈ L ∧ head(r) = b ∧ b /∈ AIO(L,P)}.
Then L can be rewritten in the following way:

• For every literal b ∈ B, let rb be the rule of L such that head(rb) = b, and let rl be the rule of L

such that b ∈ body(rl). Substitute b in body(rl) by body(rb)

• Remove from L all the rules r such that b ∈ B, keeping those rules in P

2.3. CLASSICAL MODELS 13

L′ is the resulting OLON of the rewriting procedure.

Clearly, the resulting OLON L′ has exactly the same semantics as the original one L. This happens

because the rewriting procedure just described is a unfolding or Partial Evaluation of b as described in

[12] and [36].

By definition, L′ is a set of rules of the form
λ1 ←∼ λ2,∆1

λ2 ←∼ λ3,∆2

...

λn ←∼ λ1,∆n

where λ1 = a. Trivially, AIO(L′, P) = AIO(L,P) = {λ1, λ2, . . . , λn}.

Definition 2.2.19. Canonical OLONs

In [15] Stefania Costantini defines OLONs — or odd-cycles as called therein — as subsets of Normal Logic

Programs which have the form of L′ just described in the previous OLON rewriting procedure definition.

As just seen, any OLON can be rewritten, preserving its semantics, in the way described. So, without

loss of generality, the OLONs we will refer to from now on will be considered to have the form

OLON =
λ1 ←∼ λ2,∆1

λ2 ←∼ λ3,∆2

...

λn ←∼ λ1,∆n

where n is an odd number, and λ1 . . . λn are distinct atoms. Each ∆i, i ≤ n, is a (possibly empty)

conjunction δi1 . . . δih
of literals (either positive or negative), where for each δij

, ij ≤ ih, δij
6= λi and

δij 6=∼ λi.

We call the λ1 . . . λn the composing atoms of the OLON, or the Atoms Involved in the OLON as

previously stated. AIO(OLON,P) = {λ1, λ2 . . . λn}.
We will dub Canonical OLON such OLONs with this form. Since all OLONs we will refer to from

now on will take the form here described, they will all be Canonical OLONs.

2.3 Classical Models

We hereby recall the definition of Classical (Herbrand) Models which will be useful to our further devel-

opments in this document.

Being P a Normal Logic Program — we are considering only the First Order Propositional Logic in

the context of this Thesis, — a Classical Model M of P is a set of positive literals of P such that every

rule ‘r’ in P is classically satisfied by M , i.e., the head of the rule is true in M and/or the body of the

rule is false in M (either by having one positive literal in the body which is not in M , or by having a

negative literal in the body whose correspondent positive literal is in M).

14 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

We will use the notation S(P, r, a) to denote that the atom a satisfies the rule ‘r’ of P. Formally,

Definition 2.3.1. Literal a satisfies rule r in P — S(P, r, a)

S(P, r, a)⇔ head(r) = a ∨ ‘ ∼ a′ ∈ body(r)

We will often say a literal a satisfies rule r by the head to signify head(r) = a; and we will also say

a literal a satisfies rule r by the body to mean ∼ a ∈ body(r).

Additionally, SSR(P, a) will denote the Set of Satisfied Rules, of P, by the atom a, which is formally

defined by

Definition 2.3.2. Set of Satisfied Rules of P by literal a — SSR(P, a)

SSR(P, a) = {r ∈ P : S(P, r, a)}

As said before, a rule can also be satisfied if there is an atom ‘b’ in body(r) that does not belong to

M . We shall write SAL(P, r,M) to denote that the rule ‘r’ of P is Satisfied by the Absence of a Literal

in M . Formally,

Definition 2.3.3. Rule r of P is Satisfied by the Absence of a Literal in M — SAL(P, r,M)

SAL(P, r,M)⇔ ∃b∈body(r)b /∈M

Also, it will be useful to have the formal notion of the set of rules of P which are satisfied only by

some literal a in M . Those are the rules which are satisfied by a and are not satisfied by the absence of

any literal in M , nor by any other literal in M .

Hence, we shall write SUSR(P, a,M) to denote the Set of Uniquely Satisfied Rules of P, by the literal

a in the Model M ; which formally corresponds to

Definition 2.3.4. Set of Uniquely Satisfied Rules of P by literal a in M — SUSR(P, a,M)

SUSR(P, a,M) = {r ∈ SSR(P, a) : ¬SAL(P, r,M) ∧ (@b∈Mb 6= a ∧ S(P, r, b))}

Also, SM(P, r,M) will denote that the rule ‘r’ of P is satisfied by the Model M . Formally,

Definition 2.3.5. Rule r of P is satisfied by the Model M — SM(P, r,M)

SM(P, r,M)⇔ ∃a∈MS(P, r, a) ∨ SAL(P, r,M)

For the sake of simplicity and shortness in the writing of this Thesis, we will write CMP (M) to denote

that M is a Classical model of P. So, formally,

2.3. CLASSICAL MODELS 15

Definition 2.3.6. M is a Classical Model of P — CMP (M)

CMP (M)⇔ ∀r∈P SM(P, r,M)

Also, we will write CM(P) to denote the set of Classical Models of P. Formally,

Definition 2.3.7. Set of Classical Models of P — CM(P)

CM(P) = {M : CMP (M)}

2.3.1 Minimal Classical Models

We also present again the definition of Minimal Classical Models.

A Minimal Classical Model, or just Minimal Model for short, M of a Normal Logic Program P, is a

Classical Model such that there is no other Classical Model M ′ of P which is a proper subset of M .

In this text we will write MMP (M) to denote that M is a Minimal Classical Model of P, so formally,

Definition 2.3.8. M is a Minimal Model of P — MMP (M)

MMP (M)⇔ CMP (M) ∧ @M ′⊂MCMP (M ′) (2.7)

Also, for convenience, we will use MM(P) to denote the set of Minimal Classical Models of P.

Formally,

Definition 2.3.9. Set of Minimal Models of P — MM(P)

MM(P) = {M : MMP (M)} (2.8)

Another intuitive definition for a Minimal Model M of P is: every atom in M satisfies at least one

rule ‘r’ of P which is not satisfied by any other means, i.e., it is not Satisfied by the Absence of a Literal,

nor it is satisfied by any other atom in M .

We now show this equivalent alternative definition of Minimal Classical Model.

Theorem 2.3.1. Unique Satisfaction Property of Minimal Classical Models

If M is a Minimal Classical Model of P then it is a Classical Model of P and for every atom in M

there is at least one rule in P that is satisfied by that atom alone.

MMP (M)⇒
(

CMP (M) ∧
(
∀a∈M∃r∈P

(
S(P, r, a) ∧ ¬SAL(P, r,M) ∧ @b∈Mb 6= a ∧ S(P, r, b)

)))

MMP (M)⇒ CMP (M) ∧ ∀a∈M∃r∈P r ∈ SUSR(P, a,M) (2.9)

16 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

Proof. By definition, MMP (M)⇔ CMP (M) ∧ @M ′⊂MCMP (M ′). So,

MMP (M)⇔
CMP (M) ∧ ∀M ′⊂M¬CMP (M ′)⇒
CMP (M) ∧ ∀a∈M∃r∈P¬SM(P, r,M \ {a})⇔
CMP (M) ∧ ∀a∈M∃r∈P¬SAL(P, r,M \ {a}) ∧ @b∈M\{a}S(P, r, b)⇔
CMP (M) ∧ ∀a∈M∃r∈P @b∈Mb 6= a ∧ S(P, r, b) ∧ ¬SAL(P, r,M)⇔

Finally, since

CMP (M)⇔ ∀r∈P SM(P, r,M)⇔ ∀r∈P∃a∈MS(P, r, a) ∨ SAL(P, r,M)
we have

MMP (M)⇔ CMP (M) ∧ ∀a∈M∃r∈P @b∈Mb 6= a ∧ S(P, r, b) ∧ ¬SAL(P, r,M)⇔(
∀r∈P∃a∈MS(P, r, a) ∨ SAL(P, r,M)

)
∧

(
∀a∈M∃r∈P @b∈Mb 6= a ∧ S(P, r, b) ∧ ¬SAL(P, r,M)

)
which leads us inexorably to the conclusion that ∀a∈M∃r∈P S(P, r, a) ∧ ¬SAL(P, r,M) ∧ @b∈Mb 6=

a ∧ S(P, r, b).

From the definition of SUSR(P, a,M) we know that

r ∈ P ∧ S(P, r, a) ∧ ¬SAL(P, r,M) ∧ @b∈Mb 6= a ∧ S(P, r, b)⇔ r ∈ SUSR(P, a,M)

Thus, we can conclude that

MMP (M)⇒
(

CMP (M) ∧
(
∀a∈M∃r∈P

(
S(P, r, a) ∧ ¬SAL(P, r,M) ∧ @b∈Mb 6= a ∧ S(P, r, b)

)))
or simply,

MMP (M)⇒ CMP (M) ∧ ∀a∈M∃r∈P r ∈ SUSR(P, a,M)

ut

Corollary 2.3.1. For every element a of a Minimal Model M , SUSR(P, a,M) 6= ∅

MMP (M)⇒ ∀a∈MSUSR(P, a,M) 6= ∅

Proof. Trivial from Theorem 2.3.1. ut

This property of Minimal Classical Models states that for every atom in M there is at least one rule

in P that it satisfies alone. This means that the number of atoms in M is, at most, the number of rules

in P. Otherwise there would be an atom in M , without which, every rule in P would still be satisfied;

thus rendering M non-minimal.

2.4. THE GELFOND-LIFSCHITZ OPERATOR - Γ OPERATOR 17

Proposition 2.3.1. If M is a Minimal Model of P, then the number of atoms in M is less or equal to

the number of rules of P.

MMP (M)⇒ #M ≤ #P

Proof. From theorem 2.3.1 we know that each atom, alone, in M satisfies, at least, one rule of P. Then

the number of rules of P is, at least, the number of atoms of M. ut

Although this is a rather trivially easy to prove and understand property, to the best of our knowledge,

it has never appeared before in the literature.

2.4 The Gelfond-Lifschitz Operator - Γ Operator

In their famous paper [21] about Stable Models, Michael Gelfond and Vladimir Lifschitz defined a proce-

dure to determine if an interpretation — set M of atoms — is a Stable Model of a Normal Logic Program

P. This procedure is defined in three steps:

1. Calculate a transformed Normal Logic Program P ′ by deleting from P all rules having ∼ B in the

body, where B ∈ M . Then delete from all other rules all the remaining default literals. This step

became known as the Program division P/M

2. Since now the Program P ′ = P/M is negation-free it has a unique Minimal Herbrand Model, i.e., a

Minimal Classical Model which we calculate through the iteration of the Van Emden and Kowalski’s

TP operator [18]. The Minimal Classical Model is the Least Fixed Point of the TP operator applied

to P/M , i.e., lfp(TP ↑ω (P/M))

3. Check if M equals the calculated Minimal Classical Model of the transformed Program. M is a

Stable Model iff M = lfp(TP ↑ω (P/M)).

The first two steps in this process are designed to, in an intuitive way, calculate the consequences of

the Program P, assuming true the atoms in M and all the others false, i.e., lfp(TP ↑ω (P/M)). In this

document we will use an alternative (much shorter) notation for lfp(TP ↑ω (P/M)) — ΓP (M).

For any interpretation I, we consider Γ0
P (I) = I, and Γn+1

P (I) = ΓP (Γn
P (I)).

2.4.1 Rules, bodies and Interpretations

Definition 2.4.1. Interpretation ΓP -satisfies body of rule

For any given NLP P , interpretation I, and rule r ∈ P , we say that the body of the rule r is ΓP -satisfied

in the interpretation I — written I `ΓP
body(r) — , if and only if every positive atom of the body is a ΓP

consequence of the interpretation, and for every negative literal of the body of the rule its correspondent

18 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

positive literal is not in the interpretation, except possibly if the same positive literal is the head of the

rule.

Formally,

I `ΓP
body(r)⇔ ∀b∈body(r)b ∈ ΓP (I) ∧ @∼c∈body(r)c 6= head(r) ∧ c ∈ I

Sometimes we will write interpretation I ΓP -satisfies body(r) to mean I `ΓP
body(r).

We will also use a slightly weaker version of this satisfaction concept as follows.

Definition 2.4.2. Interpretation satisfies body of rule

For any given NLP P , interpretation I, and rule r ∈ P , we say that the body of the rule ‘r’ is true in

the interpretation I — written I ` body(r) — , if and only if every positive atom of the body is in the

interpretation, and for every negative literal of the body of the rule its correspondent positive literal is not

in the interpretation, except possibly if the same positive literal is the head of the rule.

Formally,

I ` body(r)⇔ ∀b∈body(r)b ∈ I ∧ @∼c∈body(r)c 6= head(r) ∧ c ∈ I

Sometimes we will write interpretation I satisfies body(r) to mean I ` body(r).

The unique difference between these two notions of satisfaction is the additional requirement the

ΓP -satisfaction demands that every positive literal of the body of a rule must be, not only in the inter-

pretation, but also a ΓP consequence of it. In the simple satisfaction version we just demand that every

positive literal must be in the interpretation.

In [14] the author proves that if M is a Model (Classical Model) of a NLP P then ΓP (M) ⊆ M .

Trivially, this is also true for Minimal Models, since they are Classical Models.

Interestingly, if M is a Minimal Model of P it follows that Γ2
P (M) ⊇ ΓP (M). This result which

corresponds to Corollary A.1.1 will reveal itself useful for our developments.

2.4.2 The RAA set

As just seen, if M is a Model of NLP P then M ⊇ ΓP (M). For some models M = ΓP (M); with the

other models M ⊃ ΓP (M) holds. In these cases the set difference, i.e. M \ ΓP (M), contains just atoms

which are not supported by the ΓP operator, under M .

We will require, when we present the definition of the new semantics, that all the atoms in M \ΓP (M),

for any acceptable M , are absolutely necessary. These notions of “acceptable” and “absolutely necessary”

will become clear when the definition of the new semantics is presented. For now let us say that those

atoms in M \ΓP (M) must come from a Reductio ad Absurdum reasoning — and that is why they become

“absolutely necessary”. We will thus name the M \ ΓP (M) set as the RAAP (M) set.

We will often write A−B as an alternative notation for the set difference A \B.

2.4. THE GELFOND-LIFSCHITZ OPERATOR - Γ OPERATOR 19

Definition 2.4.3. The RAAP (M) set

Let P be a NLP, M a Minimal Model of P . We define the RAAP (M) set in the following way

RAAP (M) = M − ΓP (M)

RAAP (M) is thus the subset of atoms of M which are not classically supported under M .

An interesting aspect of every atom a of a Minimal Model M of a NLP P , which is in RAAP (M), is

that every rule r ∈ P that is uniquely satisfied by a is satisfied by the body, i.e., ∼ a ∈ body(r), or else a

directly depends on another RAA atom b. Formally, this corresponds to the following

Proposition 2.4.1. ∀a∈RAAP (M)r ∈ SUSR(P, a,M)⇒
(
∼ a ∈ body(r) ∨ ∃b∈RAAP (M)b ∈ body(r)

)

Proof. Let P be a NLP, M a Minimal Model of P , and a an atom of RAAP (M). Since a ∈ RAAP (M),

by definition of RAAP (M), we know that a ∈M ∧a /∈ ΓP (M). Since a ∈M and M is a Minimal Model,

by corollary 2.3.1 we know that SUSR(P, a,M) 6= ∅.
Also, since a /∈ ΓP (M) we know that ∀r∈P head(r) = a ⇒ M 0ΓP

body(r). Which means that

∀r∈P head(r) = a ⇒ SAL(P, r,M) ∨
(
∃c∈MS(P, r, c) ∧ c 6= a

)
∨ (M ` body(r) ∧ M 0ΓP

body(r)) ⇔
∀r∈P head(r) = a⇒ SAL(P, r,M) ∨

(
∃c∈MS(P, r, c) ∧ c 6= a

)
∨ ∃b∈RAAP (M)b ∈ body(r).

If it is the case where ∃c∈MS(P, r, c) and c 6= a or SAL(P, r,M), then we it follows immediately that

r /∈ SUSR(P, a,M). The other remaining cases are the ones where ∼ a ∈ body(r), and ∃b∈RAAP (M)b ∈
body(r).

Hence, by definitions 2.2.7, 2.3.1, 2.3.2, 2.3.4, and 2.3.5 we conclude that

∀a∈RAAP (M)r ∈ SUSR(P, a,M)⇒
(
∼ a ∈ body(r) ∨ ∃b∈RAAP (M)b ∈ body(r)

)
ut

2.4.3 Particularities of Odd-Loops Over Negation

In [15] the author defines the notion of Handles of an OLON. Since that notion will be useful for our

developments we rewrite it here for a streamlined reading.

Handles of OLONs

Consider P a NLP and OLON ⊆ P such that OLON is a Canonical OLON. Let us keep in mind the

form of the Canonical OLON, as we name it here, which corresponds to the OLON definition of Stefania

Costantini in [15], and which we will use from now on:

OLON = {R1, R2, . . . , Rn}, where
R1 = λ1 ←∼ λ2,∆1

R2 = λ2 ←∼ λ3,∆2

...

Rn = λn ←∼ λ1,∆n

20 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

AND Handles

Definition 2.4.4. AND Handles of an OLON

The ∆i’s of the OLON rules, in [15], are referred to as the AND handles of the OLON. We will keep this

naming here for convenience.

OR Handles

Definition 2.4.5. OR Handles of an OLON

If there is some rule Rk ∈ P ∧ Rk /∈ OLON , where head(Rk) = head(Ri), for some Ri ∈ OLON , and

Rk is not part of any OLON in P, and for every literal li ∈ body(Rk) and every λj ∈ AIO(OLON,P),

li 6= λj ∧ li 6=∼ λj; then body(Rk) is called an OR handle for the OLON, according to [15].

Again, we keep here the same naming convention for the OR handle.

Active Handles vs Active OLONs Consider a NLP P and an OLON ⊆ P , as described in definition

2.2.19, with ∆1,∆2, . . . ,∆n AND Handles.

If any of the δij ∈ ∆i literals of some rule Ri of OLON is false under some interpretation I, δij is

said to be an active AND handle of the OLON , under I.

On the other hand if Rk ∈ P is such that body(Rk) is an OR Handle of the OLON and, under

a particular interpretation I, if I `ΓP
body(Rk) then we say body(Rk) is an active OR handle for the

OLON . Again, both the active AND handle and OR Handle naming are original from [15].

We will use the expression Active OLON under I when referring to an OLON without any active

handles, either active AND handles or active OR handles, under interpretation I.

Likewise, an Inactive OLON under I will mean an OLON with at least one active handle under

interpretation I.

Minimal Models of OLONs

Consider P a NLP and OLON ⊆ P an Active OLON under M such that MMP (M) holds.

From corollary 2.3.1 we know that every atom a ∈MOLON ⊆M , being MOLON a Minimal Model of

the OLON, satisfies alone at least one rule of the OLON and, therefore, at least one rule of P .

Since the OLON is an Active OLON under M — which means that every AND handle is not active

and that there are no active OR handles — the only possible way the rules of the OLON can be satisfied

is by having in M some of the λi literals, such that λi ∈ AIO(OLON,P) for every i ≤ n, where n is the

length of the OLON. Let us see how the λis can contribute to minimally satisfy the OLON rules.

Since the OLON = {R1, R2, . . . , Rn} has the form
R1 = λ1 ←∼ λ2,∆1

R2 = λ2 ←∼ λ3,∆2

...

Rn = λn ←∼ λ1,∆n

2.4. THE GELFOND-LIFSCHITZ OPERATOR - Γ OPERATOR 21

we can see that each λi satisfies alone the two rules
λi−1 ←∼ λi,∆i−1, and

λi ←∼ λi+1,∆i

λi satisfies the first rule of this pair because ∼ λi is in its body, and it satisfies the second rule because

λi is its head.

Each literal λi satisfies 2 rules of the OLON. Since the number of rules n in OLON is odd we know

that n−1
2 atoms satisfy n − 1 rules of OLON . So, n−1

2 + 1 = n+1
2 atoms satisfy all n rules of OLON ,

and that is the minimal number of λi atoms which are necessary to satisfy all the OLON’s rules.

Taking a closer look at the OLON rules we see that λ2 satisfies both the first and second rules; also

λ4 satisfies the third and fourth rules, and so on. So the set {λ2, λ4, λ6, . . . , λn−1} satisfies all rules in

OLON except the last one. Adding λ1 to this set, since λ1 satisfies the last rule, we get one possible

Minimal Model for OLON :

MOLON = {λ1, λ2, λ4, λ6, . . . , λn−1}

It is worth noting that every atom in MOLON satisfies 2 rules of OLON alone, except λ1, the last

atom added. λ1 satisfies alone only the last rule of OLON . The first rule of OLON — λ1 ←∼ λ2,∆1 —

despite being satisfied by λ1, was already satisfied by λ2.

In this case, we call λ1 the top literal of the OLON under M . The formal definition of the notion of

top literal follows.

Definition 2.4.6. Top Literal of an OLON

Let P be a NLP, M a Minimal Model of P , OLON ⊆ P an Active OLON under M , and MOLON =

{λ1, λ2, . . . , λn} ⊆M a Minimal Model of OLON , where n ≥ 1 and λ1 /∈ ΓP (M).

We define the top literal of the OLON under M to be λ1.

Clearly, λ1 ∈M since λ1 ∈MOLON and MOLON ⊆M . Since λ1 /∈ ΓP (M) we can trivially conclude

that λ1 ∈ RAAP (M).

Returning to our previous example, the other Minimal Models of the OLON can be found in this

manner simply by starting with λ3, or λ4, or any other λi as we did here with λ2 as an example.

Let us take for now, as an example for a deeper study, the MOLON = {λ1, λ2, λ4, λ6, . . . , λn−1}.
Since∼ λi+1 ∈ body(Ri) for every i < n, and∼ λ1 ∈ body(Rn); under MOLON all the R1, R3, R5, . . . , Rn

will have their bodies false. Likewise, since the OLON is Active under M , and M ⊇ MOLON , all the

R2, R4, R6, . . . , Rn−1 will have their bodies true under MOLON and so, also under M .

This means that all λ2, λ4, λ6, . . . , λn−1 will be in ΓP (M) but not λ1. Since λ1 is the top literal of the

OLON we can conclude, generally, that

Proposition 2.4.2. OLON ⊆ P ∧MMP (M)⇒
(
λi ∈M ∧ λi /∈ ΓP (M)⇔ λi ∈ RAAP (M)

)
, where λi

is the top literal of OLON

22 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

Proof. Immediate from the previously stated. ut

Proposition 2.4.3. OLON ⊆ P ∧MMP (M)⇒ ∀λi∈AIO(OLON,P)∧λi∈Mλi ∈ ΓP (M), where every λi is

not the top literal of the OLON

Proof. Immediate from the previously stated. ut

OLONs and ΓP circularities

In [10] the authors define a new semantics for Normal Logic Programs named Stable Class semantics.

This semantics always guarantees the existence of a Stable Class (a set S of Interpretations such that

∀I∈S∃J∈SJ = ΓP (I)). The authors prove that these Classes are cycles in a graph where the nodes are

interpretations and there is an edge from a node Ni to a node Nj iff Nj = ΓP (Ni).

There are some similarities between Stable Class semantics and the Revised Stable Models semantics

but the do not coincide.

Let us analyze more thoroughly some of the implications of the previous proposition 2.4.2. Assume

OLON ⊆ P , MMP (M) and that some λi is the top literal of OLON . We already know that λi ∈ M

and that λi /∈ ΓP (M). If the OLON is active under M then the bodies of all the rules of the OLON —

except maybe some ∼ λj — are true in M .

MOLON being a Minimal Model of OLON such that M ⊇ MOLON , we have also already seen that

all MOLON − {λi} ⊆ ΓP (M).

It is interesting to notice that, under these conditions, the body of the last rule Rn of the OLON is

now true under ΓP (M).

Proposition 2.4.4. ΓP (M) ` body(Rn), where Rn ∈ OLON ⊆ P ∧ MMP (M)∧ ∼ λi ∈ body(Rn),

where λi is the top literal of OLON

Proof. Under M the body of the last rule Rn of OLON was false uniquely due to λi ∈M since the rest

of the body of the rule was already true in M because OLON is active under M .

So, under M −{λi}, the body of the last rule is now true. Since ∼ λi,∆n is the body of the rule Rn,

and the OLON is active under M — M ` ∆n — we conclude that ∆n ⊆ ΓP (M). Since λi /∈ ΓP (M) it

follows that ΓP (M) ` body(Rn). ut

Since head(Rn) = λn, and from this proposition 2.4.4 ΓP (M) ` body(Rn), it follows trivially that

λn ∈ ΓP (ΓP (M)), i.e., λn ∈ Γ2
P (M). From Corollary A.1.1 we know that Γ2

P (M) ⊇ ΓP (M).

We already know that a Minimal Model of an OLON, with top literal λi, has the form MOLON =

{λi, λi+1, λi+3, λi+5, . . . λi+ n−1
2
}

Now, Γ2
P (M) ⊇ {λi+1, λi+3, λi+5, . . . λi+1+n−2, λn}.

Inductively reiterating the application of the ΓP operator we will obtain λi ∈ Γn+1
P .

Let use see an example to help clarify the intuitive idea.

2.4. THE GELFOND-LIFSCHITZ OPERATOR - Γ OPERATOR 23

Example 2.4.1. ΓP circularity of the top literal of the OLON

Let P be the NLP
λ1 ←∼ λ2

λ2 ←∼ λ3

λ3 ←∼ λ1

For simplicity, the ∆i of the rules in this program are empty, but this does not change the general

case since it is guaranteed that the OLON is active under M .

Starting with a Minimal Model M = {λ1, λ2} we can see that ΓP (M) = {λ2}, and so, ΓP (ΓP (M)) =

Γ2
P (M) = {λ2, λ3}.

If we continue to apply the ΓP operator we will obtain: Γ3
P (M) = {λ3} ; Γ4

P (M) = {λ1, λ3}.
As we can see, this OLON has length 3 and it took us 4 = n + 1 iterations of the ΓP operator to

obtain back the top literal of the OLON under M : λ1.

It is also worth noticing that if we kept iterating ΓP we would obtain: Γ5
P (M) = {λ1}, and Γ6

P (M) =

{λ1, λ3} = M

After 2n iterations of the ΓP operator — or if we prefer, after n iterations of the Γ2
P operator — we

obtain again all the atoms in the original Minimal Model.

The remarks in this example are not just curiosities and they have deep implications.

Proposition 2.4.5. If P is a NLP, M is a Minimal Model of P , OLON ⊆ P is an active OLON under

M with length n and λi is the top literal of the OLON under M , then λi ∈ Γn+1
P (M)

Proof. We have already seen that if MOLON ⊆M is a Minimal Model of an OLON and if some λi is its

top literal then λi ∈M ∧λi /∈ ΓP (M) which is equivalent to say that λi ∈ RAAP (M) and this necessarily

implies that λi ∈ RAAP (MOLON). Moreover, as seen before, Γ2
P (M) is again a Classical Model of P and

so all the rules in OLON are again satisfied.

The ΓP operator iteration removes from the Model the λi top literal of the OLON and a new iteration

adds another composing literal of the OLON . Since the OLON ’s length is finite (otherwise it would not

be a Loop, let alone an Odd Loop); after n iterations of the ΓP operator, plus the initial one to remove

the λi, we will obtain again the initial λi. ut

Proposition 2.4.6. If P is a NLP, M is a Minimal Model of P and OLON ⊆ P is an active OLON

under M with length n and MOLON ⊆M is a Minimal Model of OLON , then Γ2n
P (M) ⊇M

Proof. Since each application of the ΓP operator will remove the top literal of the OLON and a new

iteration will add a new one, we know that the Γ2
P operator substitutes top literals of the OLON under

the new Model Γ2
P (M). I.e., suppose under M the top literal of the OLON is λi. Under Γ2

P (M) the

top literal of the OLON will be λ(i+1)mod(n) — where mod stands for the modulus operation, i.e., the

remainder of the integer division. Since i = (i + n)mod(n), after n iterations of Γ2
P operator we will

obtain back a Classical Model which contains the original Minimal Model: Γ2n
P (M) ⊇M . ut

24 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

2.4.4 Infinitely long support chains

In [19] François Fages showed that order-consistent Normal Logic Programs have Stable Models. Accord-

ing to his paper, an order-consistent NLP is one such that the ≤+ and ≤− relations are well-founded.

Fages defined the ≤+(≤−) relation in the following way: p ≤+ q(p ≤− q) “if there is a path in the

predicate dependency graph from p to q with an even (odd) number of negative edges.”

Still in Fages’ paper, ≤+(≤−) “is well-founded if there is no infinite decreasing chain x0 ≤+ (≤−
)x1 ≤+ (≤−) . . ., in particular ≤+ (≤−) must be acyclic to be well-founded.”

Also in [19], the author gives an example of a Normal Logic Program with no Odd-Loops Over

Negation that still has no Stable Models whatsoever. He’s example is as follows

Example 2.4.2 (Fages [19]). Let P =
p(X)← p(s(X))

p(X)←∼ p(s(X))
The grounded version of this program is

p(0)← p(s(0))

p(0)←∼ p(s(0))

p(s(0))← p(s(s(0)))

p(s(0))←∼ p(s(s(0)))

p(s(s(0)))← p(s(s(s(0))))

p(s(s(0)))←∼ p(s(s(s(0))))
...

Although P has no Odd-Loop Over Negation, its unique Minimal Classical Model — which takes p

to be true everywhere — is not a well-supported model, since it is not finitely justified.

M = {p(0), p(s(0)), p(s(s(0))), . . .}

Each p(X) is supported by an infinitely long chain — p(s(X)), p(s(s(X))), Since in a Stable Model

every atom must be consistently and finitely justified, P has no Stable Models.

According to Fages’ claim in [19], the cause of lack of Stable Models in this program is the infinitely

long support chain, which is, by its infinity, non-well-founded.

As claimed by the author in [19], in this example’s program, the cause of the lack of Stable Models

is the non-well-founded (infinitely long) ≤− relation. In fact, since the support chain is infinitely long,

one cannot truly refer to the ≤+ or ≤− relations as Fages proposed, since they correspond respectively

to chains with and even or odd number of default negated literals. In an infinitely long support chain

like the one in p(X) ←∼ p(s(X)) there is no even or odd number of negations: there is an infinite (ω,

the first limit ordinal) number of negations.

A note is appropriate here. If the unground program consisted only on the first rule p(X) ←
p(s(X)) there would be a Stable Model which would be the empty set ∅. Likewise, if the unground

2.5. SUSTAINABLE SETS 25

program consisted only on the second rule p(X) ←∼ p(s(X)) there would be two Stable Models:

{p(0), p(s(s(0))), p(s(s(s(s(0))))), . . .} and {p(s(0)), p(s(s(s(0)))), p(s(s(s(s(s(0)))))), . . .}.

The formal definition of an infinitely long support chain follows.

Definition 2.4.7. Infinitely Long Support Chain for atom a in P — ILSC(P,C, a)

Let P be a NLP, M a Minimal Model of P and a an atom of P . We say C is an Infinitely Long Support

Chain for a — ILSC(P,C, a) — iff C is an infinite subset of Rel(P, a). Formally,

ILSC(P,C, a)⇔ C ⊆ Rel(P, a) ∧ ∀n∈NLen(C) > n

We will often write just ILSC as a shorthand notation for Infinitely Long Support Chain.

Thus, an infinitely long support chain for some atom ‘l1’ must have the following general form
l1 ← L2,∆1

l2 ← L3,∆2

...

ln ← Ln+1,∆n

...
where Li = li ∨ Li =∼ li, for every i and each ∆i is an arbitrary conjunction of literals of the form

b1, b2, . . . , bm,∼ c1,∼ c2, . . . ,∼ co, with m, o ≥ 0.

Analogously to what we did for OLONs, we will say the {l1, l2, . . . , ln, . . .} atoms are the atoms involved

in the ILSC. Also, we will say C ⊆ P is an active ILSC under M iff ∀r∈C∆i ⊂ body(r)⇒M ` ∆i.

2.5 Sustainable Sets

In our developments in this Thesis we will need to define a new property for interpretations in Normal

Logic Programs — the notion of Sustainable Set. We define a Sustainable Set — which is an interpretation

S for a NLP P — as a set in which every atom a is true or undefined in the Well-Founded Model of P

when considered under the context of all other atoms in S, if in turn that subset S \ {a} is sustainable.

Definition 2.5.1. Sustainable Set

We say a set S is sustainable in NLP P iff any atom a in S does not “go against” the well-founded

consequences of the remaining atoms in S, whenever, S \ {a} itself is a sustainable set. The empty set

by definition is sustainable. Not “going against” means that atom a cannot be false in the WFM of

P ∪ S \ {a}, i.e., a is either true or undefined. That is, it belongs to set ΓP∪S\{a}(WFM(P ∪ S \ {a})).
Formally, we say S is sustainable iff

∀a∈SS \ {a} is sustainable ⇒ a ∈ ΓP∪S\{a}(WFM(P ∪ S \ {a}))
If S is empty the condition is trivially true.

26 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

Intuitively, if S is a sustainable set — and a subset of a Minimal Classical Model of P — then it is

possible to find a, possibly empty, sequence S of atoms si which constitute a partition of S, such that for

all i ≥ 0 all the sj atoms, with j > i, are true or undefined in the Well-Founded Model of P ∪{sk : k ≤ i}.
Formally, if M is a Minimal Model of P , and S ⊆M is sustainable then

∃S S =< s1, s2, . . . , sn > ∧
S = {si : 1 ≤ i ≤ n}∧
∀1≤i,j≤ni 6= j ⇒ si 6= sj∧
∀0≤i<j≤n

⋃
j sj ⊆ ΓP∪

S
i si

(WFM(P ∪
⋃

i si))

n ≥ 0

It is quite easy to see that S being sustainable it implies the previously stated.

In a constructive manner, we can always start with an empty sequence, calculate the Well-Founded

Model of P and then calculate its ΓP consequences — ΓP (WFM(P)) — which correspond to the set of

true or undefined atoms of P . Of this set it is always possible to choose one atom a and add it to P as a

fact — thus obtaining P ∪{a}. We can now reiterate the process and calculate ΓP∪{a}(WFM(P ∪{a}))
and again choose a new atom b∈ ΓP∪{a}(WFM(P ∪ {a})). The sequence is constructed in this way and

becomes < a, b, . . . >; and S = {a, b, . . .}.
The sets constructed in this way, provided that they are subsets of some Minimal Model of P , are

exactly the Sustainable Sets. The requirement for S being a subset of some Minimal Model of P aims at

guaranteeing that no unnecessary atoms are assumed as true. If that were the case it would be possible

that adding one such unnecessary atom to the program as a fact would render as false some other atom

of S. In this case it would not be possible to construct a sequence as decribed.

A thorough exploration of the properties of Sustainable Sets is not within the scope of this Thesis

and is considered for possible future work.

2.6 Current State-of-the-Art

Over the past few decades the scientific community dedicated to the knowledge representation and rea-

soning problems has developed a number of different semantics for Logic Programs.

2-valued logics semantics — like the Minimal Models, Clark’s Completion [13], and the Stable Models

[21], amongst others — strive to achieve the most complete information possible, assigning a truth-value

to every atom, if possible.

3-valued logics semantics — like the Well-Founded Semantics — sacrifice complete true-or-false infor-

mation about every atom in favor of some desirable properties that some 2-valued semantics lack. The

3-valued semantics also assign a truth-value to every atom — in some cases the truth-value is undefined.

There are also other approaches, including multi-valued logics. Some of these multi-valued logics

semantics tend to enter the realms of probabilistic reasoning, fuzzy-logic [25], [26] or other similar domains;

2.6. CURRENT STATE-OF-THE-ART 27

while others consider several logical values due to the nature of the specific problem they are used to

solve [8].

In this document, besides laying down the foundations of this new semantics, we consider some possible

extensions to it. For now these extensions remain on the 2-valued domain, and a possible extension to

a 3-valued setting is considered. Multi-valued extensions to Revised Stable Models could possibly be

considered in the future, but for now they remain outside the scope of the current goals.

In this Thesis we show the development of a new 2-valued semantics which is an extension to the Stable

Models semantics. This new semantics has some of the most important and convenient properties of one

3-valued semantics: the Well-Founded Semantics. With a clear intent to bridge together both Stable

Models (and Answer-Set Programming) and Well-Founded Semantics communities, this new semantics

offers an new way to handle the value of atoms which, in a 3-valued setting, would be undefined.

We now turn to a brief overview on the State-of-the-Art semantics for Normal Logic Programs.

2.6.1 Two-Valued Semantics

There are several 2-valued proposals for semantics of Logic Programs: Minimal Models, Clark’s Comple-

tion, Stable Models are some of the most well-known examples.

Generally accepted by the scientific community working on 2-valued semantics for Logic Programs as

the de facto standard, the Stable Models semantics [21] gives exactly the results one intuitively expects.

We examine the Stable Models definition in the next chapter.

Stable Models

The Stable Models were initially designed for Normal Logic Programs, and as its success spread through-

out the scientific community, soon an extension for Extended Logic Programs (with explicit negation)

was developed. The name Answer-Sets semantics [24] has become associated with the Stable Models

semantics for Extended Logic Programs. The Answer Set semantics is specially well-suited for knowledge

representation problems including reasoning about actions, planning, diagnosis and preferences.

Today, the Answer-Set Programming (ASP for short) community is large and active. The WASP —

Working group on Answer Set Programming [38] — is one of the most productive teams working with

the Answer Set semantics.

The ASP semantics, a 2-valued semantics for Extended Logic Programs, like the Stable Models,

doesn’t deal with self-defeating rules like a ←∼ a, or other arbitrarily long OLONs or ILSCs. Likewise,

the same problems Stable Models semantics suffers, are also present in ASP semantics: lack of guarantee

of Existence of a model, lack of Relevancy, and lack of Cumulativity. These will be discussed in the next

chapter.

Since the ASP semantics applies to Extended LPs there might arise explicit contradictions, for exam-

ple:

28 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

Example 2.6.1. In this ELP ‘∼’ is the default negation and ‘−’ is the explicit negation.
−a←∼ b

a←∼ b

c
In this case, since there is no way to prove b, it’s default negation is true and we conclude both a and

−a: an explicit contradiction.

In case an explicit contradiction arises, ASP semantics assumes the Ex Contradictio Quod Libet

principle and, thus, the unique model is the whole Herbrand Base. In this previous example, c’s truth

value — which should always be true — becomes unknown, since the unique model of the program is the

whole Herbrand Base.

Several other choices could be made, like using a para-consistent version of ASP that would keep c’s

truth value true, b’s truth value false, and assign the unknown or undefined truth value to a and −a.

2.6.2 Three-Valued Semantics

3-valued semantics usually have an elegant solution for most of the problems the 2-valued semantics have:

the undefined truth-value. By using a third unknown, or undefined, or something similar, truth-value,

the problem of self-defeating rules like a←∼ a is neatly solved.

On the domain of 3-valued semantics, the Well-Founded Semantics is by far the most generally

accepted and used.

Well-Founded Semantics

We can say the Well-Founded Semantics [20] (WFS for short) is to 3-valued semantics as Stable Models

is to 2-valued semantics: they both give as models the ones we intuitively expect. However, the WFS

has some highly desirable properties which Stable Models lack; namely, Existence, Relevancy and Cu-

mulativity. All of these properties are enjoyed by the WFS because it deals with self-defeating rules like

a←∼ a and other Odd-Loops Over Negation and Infinitely Long Support Chains. The WFS does so by

means of the undefined truth-value — which it also uses for Even-Loops Over Negation. Moreover, the

WFS has only one Model — the Well-Founded Model (WFM) — whereas the Stable Models can have

several models — despite its semantics be the intersection of the several models.

The positive or true atoms of the Well-Founded Model, defined as the least fixed point of the Γ2
P

operator [9] — Γ2
P (I) = ΓP (ΓP (I)) — can be computed on a bottom-up fashion starting with I = ∅.

The WFS has been extended to Logic Programs with explicit negation — the Extended Logic Pro-

grams. It became known as WFSX [31] — Well-Founded Semantics with eXplicit negation.

Taking the extension process one step further, a para-consistent version of the WFSX — the WFSXp

[16] — has also been developed. Under this new semantics, even if an atom and its explicit negation are

simultaneously derived, the truth-value of all atoms that do not depend on any of those contradictory ones

suffers no harm. Para-consistent Logic Programs [1] has been a fruitful area of research and this could

2.6. CURRENT STATE-OF-THE-ART 29

be an interesting possibility for future work under Revised Stable Models: a para-consistent extension to

this new semantics.

30 CHAPTER 2. BACKGROUND, DEFINITIONS, AND NOTATION

Chapter 3

A criticism of Stable Models

3.1 Definition

According to [21], Michael Gelfond’s and Vladimir Lifschitz’s Stable Models semantics take as models of

a Normal Logic Program any interpretation which is a fixed point of the ΓP operator we described in

section 2.4. Formally, an interpretation I for the NLP P is a Stable Model of P iff

I = ΓP (I)

3.2 Pros and Cons of Stable Models

The definition of Stable Models is a rather intuitive one, and it is extremely simple and elegant: a Stable

Model M of a NLP P is a set of atoms of P which, when assumed to be true, lead us to conclude what

was assumed, through the rules of P ; i.e., the assumptions fully corroborate themselves. Stable Models

informally translate into what could be named a “consistent scenario”.

No wonder it is still today a major reference and the de facto 2-valued standard semantics for NLPs.

Stable Models are also well-supported models, i.e., any atom in a Stable Model has a consistent finite

chain of justification atoms that belong to the same model. The several “well-behaved” properties of

Stable Models have been discovered and studied during the last years, even decades. Comparisons to

other 2-valued and 3-valued semantics have been performed and studied by many researchers.

Despite all of the research that has taken place around Stable Models, this elegant and effective

semantics has also some drawbacks, namely, the lack of guarantee of Existence of at least one model for

every Normal Logic Program. A very well known example of a Normal Logic Program with no Stable

Models is a←∼ a.

There are, of course, a number of reasons why this kind of Normal Logic Programs should not —

and does not — have any Stable Model. The most commonly used argument says that this a ←∼ a

31

32 CHAPTER 3. A CRITICISM OF STABLE MODELS

NLP is inconsistent: the truth-value of a literal depending on its own negation is not coherent. However,

negative self dependencies, as it is the case in the a ←∼ a logic program, can appear indirectly and/or

context-dependent, for example:

Example 3.2.1. Let P be the following NLP
P =

a← x,∼ b

b←∼ c

c←∼ a

x←∼ y

y←∼ x

In this example a depends indirectly on its own negation: a depends on ∼ b, b depends on ∼ c and

c depends on ∼ a. The odd number of negations in the dependency loop creates the inconsistency just

as in the a ←∼ a case. However, in this example, a’s self-dependency is conditioned by the truth value

of x, which can be either true or false, depending on y’s truth-value.

So we see, it is not always trivial to detect when a literal in a Normal Logic Program is involved

in a Loop Over Negation with an Odd number of default negations such as the ones presented here.

Moreover, in a scenario where a knowledge base (constructed in the form of a Normal Logic Program) is

kept updated by adding new rules and facts, it is hard to guarantee that the result of adding a new rule

will not create an Odd Loop Over Negation like the one in the previous example. A process that would

keep checking for OLONs every time a new rule was added would become increasingly computationally

expensive.

A motivating example can clarify why OLONs, for instance, can be needed to model knowledge, and

thus, show why we should to solve them by Reductio ad Absurdum reasoning.

Example 3.2.2. The president of Morelandia is considering invading another country. He reasons thus: if

I do not invade them now they are sure to deploy Weapons of Mass Destruction (WMD) sometime; on

the other hand, if they shall deploy WMD I should invade them now. This is coded by his analysts as:
P =

deploy WMD ←∼ invade now

invade now ← deploy WMD

Let us see how reasoning by Reductio ad absurdum is employed here. Assume that invade now is

false. By the first rule of the program we are forced to conclude that deploy WMD is true; and in this

case, by the second rule of the program, we are forced to conclude that invade now is true — and

this explicitly contradicts the first assumption that invade now was false. Having reached an absurd

— a contradiction — we are forced to revise our first assumption to the other possible 2-valued-logic

truth-value: invade now is true.

Under the Stable Models semantics this program has no models. Reasoning by absurdity to solve the

3.2. PROS AND CONS OF STABLE MODELS 33

OLON in this program is intuitive and guarantees the model existence. Under the new rSM semantics

invasion is warranted by the single model M = {invade now}, and no WMD will be deployed.

Clearly, OLONs can appear in Normal Logic Programs, even if they are not purposely programmed.

They can be built incrementally by the result of several updates to a common shared knowledge base,

coming from different external data sources; or even by self-updating of the knowledge base.

Truly, one can argument that if an OLON appears in a NLP then there is a fundamental flaw in the

program design and this should be reviewed at a deeper level because either there is some error in the

knowledge representation, i.e., there are some rules which do not truly represent the intended knowledge;

or the knowledge we are trying to represent is inconsistent in itself.

However, taking this approach could lead us to a dangerous pitfall; denying the problem will not

eliminate it. Since Knowledge Bases can be updated with new rules, a malicious agent with the intent to

breakdown some Knowledge Base service could simply send the following update rule to be added to the

service: a←∼ a. In case the service would run under the Stable Models semantics the whole Knowledge

Base would no longer have any model: the service would breakdown due to lack of semantics. Of course,

elementary OLONs as this one can always be easily detected and rejected; but as seen before, more

complicated OLONs can be built up and these can be extremely computationally expensive to detect.

We believe it is easier to allow such OLONs to appear and then deal with them in a newer way which

we propose with our new semantics.

A thread of updates (self, or external, or a mixture of both) can lead the knowledge base to have one or

more OLONs. Considering the Stable Models semantics, the risk of the resulting knowledge base having

no models at all — no semantics — is a real one. In this case, surely the knowledge base has become

generally inconsistent, but it is still possible that the truth value of some literals remains consistent.

Consider the following program that appeared in [11]:

Example 3.2.3 (Baral and Subrahmanian). :
P =

a←∼ a

p
This program P has no Stable Models, but still the truth value of p should be undeniably true and we

should be able to know it from P ’s models. The Well-Founded Semantics [20] solves this problem with

its unique Well-Founded Model which says that p is true and a is undefined. On the other hand, Stable

Models semantics says P has no Stable Models.

However, if we want to stick to a 2-valued semantics there is no current solution to this problem. The

closest approach to the 2-valued solution of this problem is given in [11]. We will return to this subject

in the next chapter and explore it further.

The lack of guarantee of Existence of a model for every Normal Logic Program is not the only drawback

of Stable Models semantics. The lack of the Relevancy property makes it impossible to design and build

34 CHAPTER 3. A CRITICISM OF STABLE MODELS

a top-down query-oriented proof-procedure, which is a very convenient type of tool for knowledge base

querying. Another useful property Stable Models semantics lacks is Cumulativity which allows the use of

tabling techniques to speedup computations. These are the main lines of motivation for the development

of a new 2-valued semantics.

3.3 Motivation

3.3.1 Desired Properties

For several years, the theoretical impossibility of development of top-down proof procedures for Stable

Models semantics (due to the lack of the Relevancy property) plus the also theoretical impossibility of

use of tabling techniques (due to the lack of the Cumulativity property) have represented uncomfortable

limitations for practical implementation issues.

More recently, and in the sequence of the Knowledge Base Updates research [3], [4], [6], [22], [23]

undertaken by several CENTRIA [29] members, the need of guarantee of Existence of at least one Model

no matter the course of updates became more and more important.

The EVOLP (section 5.1) language became one of the main practical platforms benefitting from the

guarantee of Existence of a Model. Also, the prototypes that will be implemented inside the recent

European REWERSE (section 5.2) project can naturally demand the guarantee of Existence of a Model.

The presence of these three properties — guarantee of Existence of a Model, Relevancy, and Cu-

mulativity — in a 2-valued semantics, became the major driving force for the development of a new

semantics.

Stable Models semantics is undeniably one of the most, if not the top most, studied 2-valued semantics,

and it has several desirable properties: Stable Models are supported models (every atom in a Stable Model

is the head of at least one rule whose body is true in the same Stable Model) and are Minimal Models.

Because of this, the new semantics should also be an extension to the Stable Models semantics in the

sense that every Stable Model of a NLP P should also be a Model in the new semantics.

3.3.2 The main problems

In [14] it is shown that a program like a ←∼ a, under Stable Models semantics, has the meaning of a

ex-or a, where ex-or is the exclusive-or logic connective. From this, it is trivial to understand why the

SM semantics gives no meaning — no model — to the a←∼ a program. Moreover, a careful look at the

“problems” affecting Stable Models leads us to the conclusion that the major cause of trouble are the

OLONs and the ILSCs.

In fact, from the notion that in a Stable Model every atom has a consistent finite support chain of

atoms which also belong to the same Stable Model we can easily see that there are two possible ways a

NLP P can have no Stable Models at all: for every Minimal Model M of P there is one atom A of M

3.3. MOTIVATION 35

such that either

1. its support chain is inconsistent; or

2. its support chain is infinite

In the first case an inconsistent support chain is one where an atom depends on its own negation

(which corresponds to Odd-Loops Over Negation).

In the second case an infinite support chain is one where an atom depends on another, and there are

infinitely many atoms in this dependency chain. These ideas were formalized in [15], [17], and [19].

In the next chapter we will see how this new semantics solves both problems — dealing with OLONs

and with infinite support chains — to guarantee the Existence of a Model, attain Relevancy and Cumu-

lativity.

36 CHAPTER 3. A CRITICISM OF STABLE MODELS

Part II

Revised Stable Models: a new

semantics for Normal Logic

Programs

37

38

Chapter 4

Revised Stable Models

In this chapter we lay the foundations and the definition of the Revised Stable Models semantics. We

examine the goals which this semantics pursues and the underlying principles that render those goals

achievable. The formal definition of the semantics is then presented and explained.

We then expose the desired properties of the semantics and show how intuitively they stem from the

definition of the semantics — formal proofs for the properties can be found in the Appendix A.

After this, a complexity analysis of the semantics is sketched, and we conclude this chapter presenting

two implementations for Revised Stable Models: one that calculates RSMs for a NLP, and the other

is a RSM meta-interpreter which, taking advantage of the Relevancy property of the RSM semantics,

allows the user to pose queries that are solved in a top-down fashion. The tests and results of both

implementations are presented.

4.1 Goals and Aims

The primary goals that motivated the research that led to the development of Revised Stable Models

semantics were, as summarized in the previous chapters, having a 2-valued semantics that: (1) guarantees

the Existence of a Model for every NLP, (2) that is Relevant, and (3) Cumulative, and (4) whose Models

are Minimal and supported including all the Stable Models. The notion of support, however, needs to

be extended in order to be possible to achieve the desired properties. In the subsection 4.2.1 we explain

how the notion of support must be extended.

4.1.1 Options and Choices

One easy and comfortable solution for dealing with the OLONs problem is by means of a third truth value,

as Well-Founded Semantics does. However, if we want to stay in a 2-valued semantics, the truth-value

of a literal in an OLON, like

39

40 CHAPTER 4. REVISED STABLE MODELS

a←∼ a

must be either true or false. Dealing with the OLON — or solving the OLON as we will often write

— forces us to choose a truth value of a.

Clearly, choosing the truth value false for a would render ∼ a true and we would be forced, by the

rule a←∼ a, to conclude that a is true — which would explicitly contradict the initial choice.

The only option left is choosing the truth value true for a. In this case ∼ a would be false and the

a ←∼ a could not be used to conclude a. In case there are no more rules with head a and true body,

there is no way to conclude that a is true, as first assumed. Traditionally, by Closed World Assumption,

the truth value of a would be default false, which would also contradict the initial choice. However, in

this case, as falsehood comes from a default reasoning; whereas in the previous case (a is assumed false),

as truth is explicitly proved.

This kind of reasoning by Reductio ad Absurdum is the intuitive idea chosen for dealing with OLONs

in Revised Stable Models semantics.

4.2 Fundamental Underlying Principles

Most generally accepted semantics for NLPs, such as Stable Models Semantics and Well-Founded Seman-

tics, have a common philosophical principle underlying them: a notion of support.

4.2.1 Notion of Support

Intuitively, being P a NLP, the traditional support concept says that an atom a is supported in a Model

M iff there is at least one rule R in P with head a and true body in M . Formally,

Definition 4.2.1. Classical Support — CSup(P, a,M)

Let P be a NLP, M a Minimal Model of P , and a ∈M .

We say a is classically supported in P by M — CSup(P, a,M) — iff

∃r∈P head(r) = a ∧M `ΓP
body(r)

This support notion is an embodiment of the philosophical need for justifiability of beliefs. “True

conclusions must be supported, caused, by some premises ” [30]. In this sense, Logic Programs try to

capture and express the physical causality of matters in the chosen subset of the world by means of logical

implications: rules.

There are, however, other more complex reasoning mechanisms that can be used. Mechanisms which

go beyond plain deduction: induction of new rules (a kind of learning driven by common patterns found

in examples), abduction of hypothesis to find an explanation for a given verified outcome (by choosing

4.2. FUNDAMENTAL UNDERLYING PRINCIPLES 41

one possible alternative scenario from a range of possibilities), Reductio ad Absurdum (RAA) reasoning

(by choosing one hypothesis over its negation if the later leads to an explicit contradiction), and many

others.

Of these, RAA reasoning provides an extension to the traditional notion of support. By the fact that

a specific hypothesis leads, through logically deducted consequences, to an explicit contradiction, we are

forced to recognize that the initially assumed hypothesis cannot be true and, thus, conclude the opposite

of it.

By RAA reasoning, we must “believe” in a if assuming ∼ a leads to a contradiction. The ‘reason’

for our belief in a is due to the explicit contradiction that would arise if we believed in ∼ a instead. as

support is the need to avoid the explicit contradiction.

Clearly, RAA reasoning takes place when ∼ a implies, directly or indirectly, a; and this happens only

when there are OLONs in the programs. In fact, that is the essential nature of an OLON: an atom

depending on its own negation. In this case we want to extend the notion of support by including an

RAA-support to the top literal of the OLON under some model M , which is the one that depends on its

own negation under M .

As we already know by proposition 2.4.5, λi ∈ Γn+1
P (M) when M is a Minimal Model of P and λi ∈M

is the top literal of OLON , such that OLON ⊆ P is an active OLON under M . This is the condition

for RAA-support of a literal.

Since a logic program can have several OLONs, we slightly relax this condition for RAA-support by

simply demanding that ∃α∈NΓα
P (M) 3 λi. This condition trivially includes the more specific one stated

in proposition 2.4.5 and it copes with logic programs having several OLONs.

Now, the generalized notion of support which will be considered throughout the rest of this Thesis is

formally defined as follows.

Definition 4.2.2. Generalized Support — GSup(P, a,M)

Let P be a NLP, M be an interpretation of P , and a an atom of M . We say that a ∈ M is a generally

supported literal by M in P

GSup(P, a,M)⇔
(
∃r∈P head(r) = a ∧M `ΓP

body(r)
)
∨

(
∃α∈NΓα

P (M) 3 a
)

With this extension to the notion of support, no longer the logical deduction is the only means to find

what should be believed; the RAA reasoning coupled with the tertium non datur principle — to ensure

2-valuedness — creates an extension to the classical notion of support.

It is precisely this extension of the notion of support — by means of RAA reasoning — that lies at

the foundation of the new Revised Stable Models semantics.

In general, RAA reasoning takes place when any contradiction arises (if we are not considering a para-

consistent semantics). The specific subset of RAA reasoning taken by Revised Stable Models consists of

assuming an atom a to be true in a Model M , if assuming its default negation ∼ a would lead to a self-

contradiction, namely getting a as a logically deduced consequence. Hence, the contradiction detection

42 CHAPTER 4. REVISED STABLE MODELS

in RSM semantics is limited to the case where the contradiction itself involves the assumed hypothesis.

The general RAA reasoning would be to revise a hypothesis in case any contradiction is detected. Such

additional contradictions are not available in NLPs, but only after introduction of explicit or default

negation in the heads of rules.

Next, we will see that we will require that every atom must in a model have a Generalized Support.

We will also require that every atom in a model must respect the consequences of all other atoms in the

model. This corresponds to the notion of Sustainable Set 2.5.1.

4.3 Definition of Revised Stable Models

In this section we present the formal definition of Revised Stable Models(RSM) and explain it. Next

we show how Integrity Constraints can be emulated under RSM semantics and give a hint on how to

implement them by a RSM Meta-Interpreter.

4.3.1 Definition

Revised Stable Models semantics intends to be a semantics that takes as models of a NLP P all its Stable

Models and just the extra Minimal Models necessary to guarantee Existence, Relevancy and Cumulativity.

Revised Stable Models semantics just takes Stable Models semantics one step further.

Our new semantics should then consider as models the Minimal ones where each and every atom

is Generally Supported, and every non-classically supported atom must be the top literal of an OLON

under that Model, or depend positively on it.

This intuitive description is captured by the following formal definition

Definition 4.3.1. Revised Stable Models

M is a Revised Stable Model of a Normal Logic Program P iff

1. M is a Minimal Classical Model of P , i.e., MMP (M)

2. ∃α≥2Γα
P (M) ⊇ RAAP (M)

3. RAAP (M) is sustainable

The Revised Stable Models semantics of a Normal Logic Program is the intersection of its models, just

as the Stable Models semantics is.

We write RSMP (M) to denote that M is a Revised Stable Model of P ; and we write RSMS(P) to

denote the semantics, according to Revised Stable Models, of the Normal Logic Program P . Since we

defined this as the intersection of all the Revised Stable Models of the program, we say that an atom a

belongs to the semantics of the program P iff it belongs to every RSM of P . Formally,

4.3. DEFINITION OF REVISED STABLE MODELS 43

RSMS(P) =
⋂

RSMP (M)

M (4.1)

a ∈ RSMS(P)⇔
(
∀MRSMP (M)⇒ a ∈M

)
(4.2)

Next we explain the function and justification of each condition above.

First condition: M is a Minimal Classical Model of P – Minimality of Models ensures maximal

classical supportedness of atoms. It is important to note that Minimality of Models, per se, does not

ensure supportedness of atoms; it only ensures that supported atoms are in a Model. The following

example helps to clarify this.

Example 4.3.1. P =

a←∼ b

This program has two Minimal Models: M1 = {a} and M2 = {b}. Clearly, there is no reason

whatsoever to believe in b, but it still is, nonetheless, a Minimal Model of P . The Model we wish to have

is just M1 = {a} because a is supported (classically) on the absence of a proof for b.

Minimality of Models does not prevent M2 = {b} to be considered a candidate for a Revised Stable

Model. However, it prevents the Classical Model M3 = {a, b} from reaching the status of candidate to

RSM. Undoubtedly, M3 = {a, b} satisfies all the rules in P (the only one, in this case), but since it is not

minimal, it is guaranteed that at least one atom of M3 is not supported. Hence, M3 is excluded from the

potential RSM candidates by the Minimality of Models condition.

Stable Models (SM) are Classically Supported Minimal Models, and we wish to keep them in Revised

Stable Models (RSM) as a special case. This condition does not eliminate any SM from being a candidate

RSM since SMs are Minimal Models. The proof that every SM is a RSM can be found in the Appendix

A — Theorem 4.4.1.

However, not all RSMs are SMs since NLPs with OLONs or ILSCs are dealt with in RSM semantics by

resolving the OLON and the ILSC in favor of the positive atom, as explained in previous sections. Atoms

in an infinite support chain may be considered in a RSM if they are absolutely minimally necessary.

RSMs are Generally Supported models. Other Minimal Models which are not Classically Supported

may or may not be Revised Stable Models; that depends if they respect the other two conditions of the

definition.

Example 4.3.2. Need for Minimality and Simple RAA reasoning

Let P be
a←∼ a

b←∼ a

44 CHAPTER 4. REVISED STABLE MODELS

The only candidate Minimal Model is {a}, since {} and {b} are not Models in the Classical sense

and {a, b} is not Minimal. The need for Reductio ad Absurdum reasoning comes from the requirement to

resolve the OLON – an issue not dealt with in the traditional Stable Model semantics.

In fact, considering the default negation ‘ ∼′ as classical negation ‘¬′, the above rules of this example

program P become
a⇐ ¬a
b⇐ ¬a

It is known that, generically, X ⇒ Y is equivalent to ¬X ∨ Y , which allows us to re-write the two

rules above as
a ∨ ¬¬a
b ∨ ¬¬a

which again are equivalent to
a ∨ a
b ∨ a

and to
a

b ∨ a
As we can see, what our initial rules meant was that ‘a must be true’, and ‘either b or a is true’. It is

clear that to solve this in a minimal way it is necessary to consider a as true, and that alone is sufficient.

Thus the unique RSM is {a}.
Let us now see how the reasoning by Reductio ad Absurdum is employed in this case. Considering the

first rule of P a←∼ a, and since we are working in a 2-valued logic (tertium non datur), we can consider

two possible scenarios:

1. assume a is false: in this case ∼ a is true and we are forced to conclude the head of the first rule:

a is true. This is clearly an explicit contradiction against the assumed hypothesis that a is false

2. assume a is true: in this case ∼ a is false and we cannot use the first rule a ←∼ a of P to prove

a. Since there are no other rules for a we have no way to prove a. Traditionally, by Closed-World

Assumption (CWA), we conclude a is false.

The important point in this RAA reasoning is that in the second scenario we get a far more weak

inconsistency than the one we get in the first scenario. Notice that in the first scenario we assume a

is false and we explicitly conclude a is true — a true contradiction. On the other hand, in the second

scenario we assume a as true and we simply do not conclude a is true; there is no evidence for as truth —

but then again, there is no explicit conclusion that a is false (since in NLPs there are no default literals,

nor explicit negation in the heads of rules), which is a much weaker inconsistency.

So, by RAA reasoning, we conclude that a must be true, and in this case the body of the second rule

is false and thus the rule b←∼ a is already satisfied. The only model of this program is {a}.

4.3. DEFINITION OF REVISED STABLE MODELS 45

Second condition: ∃α≥2Γα
P (M) ⊇ RAAP (M) – As explained before, each and every atom in a RSM

must be Generally Supported, i.e., it either is Classically Supported — ∃r∈P head(r) = a ∧M ` body(r)

— or it is supported by RAA reasoning — ∃α∈NΓα
P (M) 3 a.

Atoms in a RSM that are Classically supported are in ΓP (M). This follows trivially from the notion

of Classical Support. So, the only atoms of a RSM that need RAA support are those in RAAP (M) =

M − ΓP (M). This is, in fact, the reason for the naming of the RAAP (M) set.

As we already seen in proposition 2.4.2, every atom λi in a Minimal Model M of a NLP P that is the

top literal of an active OLON complies with λi ∈ M ∧ λi /∈ ΓP (M). From this is follows immediately

that λi ∈ RAAP (M).

Thus, this second condition of the definition of the RSM semantics ensures that every literal in

RAAP (M) has RAA support.

Example 4.3.3. Let P be the following NLP:
a←∼ b

b←∼ a

t← a, b

k ←∼ t

i←∼ k

P has 4 Minimal Models:

M1 = {a, k}, M2 = {a, t, i}, M3 = {b, k}, M4 = {b, t, i}. Their correspondent ΓP (Mi) and RAAP (Mi)

are: ΓP (M1) = M1 and RAAP (M1) = ∅; ΓP (M2) = {a, i} and RAAP (M2) = {t}; ΓP (M3) = M3 and

RAAP (M3) = ∅; ΓP (M4) = {b, i} and RAAP (M4) = {t}.
Since M1 and M3 are Stable Models they trivially satisfy the second condition of the RSM definition.

Let us see now what happens with M2 and M4.

M2 = {a, t, i},ΓP (M2) = {a, i},Γ2
P (M2) = {a, k, i},Γ3

P (M2) = {a, k},Γ4
P (M2) = {a, k} = Γ3

P (M2).

So, after 3 iterations of ΓP we reach a fixed point, starting from M2. One should note that the atoms

in RAAP (M2) = {t} are not elements of any of Γi
P (M2), with i ≥ 1 — one can guarantee this because

Γ3
P (M2) is a fixed point of the ΓP operator.

The second condition of the definition of RSMs is intended to detect negative self-dependencies of

atoms in the RAA set. This is clearly not the case with the atom ‘t’: the atom does not depend on itself,

let alone depending on its own negation. For this reason ‘t’ is not a “legitimate” atom to appear in any

RAA set.

The case of M4 is precisely the same as M2.

Third condition: the RAAP (M) set is sustainable — The first two conditions of the RSM definition

cope with the guarantee that every atom in a RSM is Generally Supported. There is, however, an

additional necessary condition: the atoms in the RAA set must respect that natural stratification of

the program. By respecting the natural stratification we mean that if we create a sequence S of atoms

46 CHAPTER 4. REVISED STABLE MODELS

made out of all the atoms in the RAA set, and the order of these atoms in the sequence is in accordance

with the strata induced by the program’s dependency graph, then every sj atom of S must be true or

undefined in the context of P plus all the si atoms where i < j.

Let us see a clarifying example.

Example 4.3.4. Negative dependency on OLON

Let P be the NLP
a←∼ a

b←∼ a

k ← a,∼ b

We have two Minimal Models M1 = {a, k} and M2 = {a, b}. Clearly a is involved in an OLON which

is always active under any interpretation; hence a should be in every RSM. This means that the body of

the second rule should always be false and so ‘b’ should not be a member of any RSM. Both M1 and M2

respect the second condition of the RSM definition, so a third condition is needed in order for M1 to be

the only RSM of P . The third condition of the RSM definition ensures this. Let us see why.

RAAP (M1) = M1 − ΓP (M1) = {a, k} − ∅ = {a, k}, and RAAP (M2) = M2 − ΓP (M2) = {a, b} − ∅ =

{a, b}.
In this example we can split the program into two strata: the first has just the rule a←∼ a, and the

second has the two rules b←∼ a and k ← a,∼ b. Both RAA sets for M1 and M2 have a as an element.

The point is that, since a is the only atom in the first stratum it must the the first in the sequence. So

we add a as a fact to P and we get
a

a←∼ a

b←∼ a

k ← a,∼ b

At this point a is now true in the Well-Founded Model of P ∪ {a}, and, more importantly, b became

false; whereas k became also true. This clearly shows that the RAA set of M2 — {a, b} — is not

Sustainable; whereas the RAA set of M1 — {a, k} — is.

Every Normal Logic Program has a natural stratification, just like as explained in [34]. We want to

make sure that every Revised Stable Model respects this natural stratification of the program and that

is the role of the Sustainability condition. By requiring that every atom in the RAA set to be true or

undefined in the context of all the others we are really demanding that this atom cannot be false when

the others are considered true. I.e., every atom of the RAA must be consistent (not contradicted, not

rendered false) by assuming the others as true. This proviso is only enforced whenever the subset (the

one without the atom we are testing) is itself Sustainable.

The intrinsic recursivity in the Sustainability notion definition reflects the natural stratification of the

program and thus Sustainable Sets are the ones respecting the stratification.

Let us see another example with a comprehensive explanation.

4.3. DEFINITION OF REVISED STABLE MODELS 47

Example 4.3.5. “Illegal” atom in RAAP (M)

Let P be the NLP
a←∼ a

b←∼ a

c←∼ b

d←∼ c

This program has two Minimal Models: M1 = {a, c} and M2 = {a, b, d}. Intuitively, one would expect

only M1 to be the unique RSM — and that is precisely what we get with the RSM definition, due to the

third condition.

The first rule, as we have already seen, forces us to conclude that a will be in every RSM. With this

in mind, the body of the second rule (b ←∼ a) should always be false and ‘b’ should never be in any

RSM. Reiterating this line of thought, ‘c’ should be in every RSM, and ‘d’ should not. Thus, the unique

RSM should be M1.

Let us see what the first two conditions of the RSM definition have to say about the possibility of

both M1 and M2 being RSMs.

Both M1 and M2 are Minimal Models of P , and so they comply with the first condition. ΓP (M1) =

{c} and so RAAP (M1) = M1 − ΓP (M1) = {a, c} − {c} = {a}, which is the top literal of the unique

active OLON . Γ2
P (M1) = ΓP (ΓP (M1)) = ΓP ({c}) = {a, b, c}. Since {a, b, c} ⊇ {a}, we conclude that

Γ2
P (M1) ⊇ RAAP (M1), which complies with the second condition of the definition of RSM.

ΓP (M2) = {d} and so RAAP (M2) = M2 − ΓP (M2) = {a, b, d} − {d} = {a, b}. At this point, it is

worth noticing that the natural stratification of the program says we must choose the truth-value for a

before we do it for b; and since, by Reductio Ad Absurdum a must be true, b must be false, and this is

the reason why M2 should not be accepted as a RSM, but that is detected only by the third condition of

the definition.

Γ2
P (M2) = ΓP (ΓP (M2)) = ΓP ({d}) = {a, b, c, d}. Since {a, b, c, d} ⊇ {a, b}, we conclude that

Γ2
P (M2) ⊇ RAAP (M2), which complies with the second condition of the definition of RSM.

As we see, the two first conditions of the definition alone are not enough to perfectly characterize the

nature of the elements in the RAAP (M) set.

We have already seen that M1 = {a, c} and M2 = {a, b, d} are both Minimal Models that respect

the second condition of the definition. Let us see now what happens with M1 and M2 under the third

condition of the definition of RSM.

M1 = {a, c}, ΓP (M1) = {c}, RAAP (M1) = {a}. M2 = {a, b, d}, ΓP (M2) = {d}, RAAP (M2) = {a, b}.
Since RAAM1 = {a} is a singleton set it is trivial to see that it is Sustainable.

Now, concerning M2 we can see that it is not a Sustainable Set because there is one subset of

RAAP (M2) obtained by removing one of its atoms — RAAP (M2) − {b} in this case — such that the

atom removed (b) becomes false when the other atoms of the RAAP (M2)− {b} are assumed true in the

program.

We can see that by calculating the following set of true or undefined atoms of P ∪RAAP (M2)−{b}:

48 CHAPTER 4. REVISED STABLE MODELS

RAAP (M2) − {b} = {a, b} − {b} = {a}, hence, P ∪ RAAP (M2) − {b} = P ∪ {a}. We now calculate

the true atoms of P ∪ {a} — WFM(P ∪ {a}) = {a, c} — and then the true or undefined atoms of

P ∪ {a} = ΓP∪{a}({a, c}) = {a, c}.
And now we can see that b is not an element of {a, c} which are the true or undefined atoms of

P ∪RAAP (M2)−{b}, i.e., b is not respected (it is rendered false) by the other atoms in the RAAP (M2);

hence RAAP (M2) is not Sustainable.

Let us take a closer step-by-step look. We add a to P as a fact and obtain the following resulting

program

P ′ =
a

a←∼ a

b←∼ a

c←∼ b

d←∼ c

The set of positive atoms of the Well-Founded Model of a Normal Logic Program can be calculated

by obtaining the minimal fixed-point of the Γ2
P operator [9]. So, starting with the minimal interpretation

∅ — the empty set — we get

Γ2
P ′(∅) = ΓP ′(ΓP ′(∅)) = ΓP ′({a, b, c, d}) = {a};

Γ2
P ′({a}) = ΓP ′(ΓP ′({a})) = ΓP ′({a, c, d}) = {a, c};

Γ2
P ′({a, c}) = ΓP ′(ΓP ′({a, c})) = ΓP ′({a, c}) = {a, c};

At this stage a fixed-point of the Γ2
P ′ operator has been reached and the Γ2

P ′ iteration stops: WFP (P ′ =

P ∪{a}) = {a, c}. We can now calculate the set of true or undefined atoms of P ′ = P ∪{a} by calculating

ΓP ′(WFM(P ′)) = ΓP ′({a, c}) = {a, c}.

Let us consider another example showing the opposite case: when a Minimal Model with a non-minimal

RAAP (M) set is a RSM.

Example 4.3.6. Revised Stable Model with non-minimal RAA set

Let P be
a←∼ b

b←∼ a

c← a,∼ c

c← b,∼ c

d← b,∼ d

There are two Minimal Models for this NLP: M1 = {a, c} and M2 = {b, c, d}. They both are Revised

Stable Models, but let us see why.

M1 = {a, c}, ΓP (M1) = ΓP ({a, c}) = {a}, RAAP (M1) = M1 − ΓP (M1) = {a, c} − {a} = {c}.
Γ2

P (M1) = ΓP (ΓP (M1)) = ΓP ({a}) = {a, c}, so Γ2
P (M1) ⊇ RAAP (M1) — the second condition of

the definition of RSM is satisfied by M1. Since RAAP (M1) is a singleton set it is trivially Sustainable.

4.3. DEFINITION OF REVISED STABLE MODELS 49

Let us look now into M2. M2 = {b, c, d}, ΓP (M2) = ΓP ({b, c, d}) = {b}, RAAP (M2) = M2 −
ΓP (M2) = {b, c, d} − {b} = {c, d}.

Γ2
P (M2) = ΓP (ΓP (M2)) = ΓP ({b}) = {b, c, d}, so Γ2

P (M2) ⊇ RAAP (M2) — the second condition of

the definition of RSM is satisfied by M2.

We can see that the rules for c do not depend on d and vice-versa; hence, assuming one of them

true should have absolutely no impact on the truth value of the other, and this is why RAAP (M2) is

Sustainable.

Let us consider adding c to P as a fact. We will obtain the following resulting program:

P ′ =
c

a←∼ b

b←∼ a

c← a,∼ c

c← b,∼ c

d← b,∼ d

We now calculate the Well-Founded Model of this program by iterating the Γ2
P operator until a

minimal fixed-point is reached.

Γ2
P ′(∅) = ΓP ′(ΓP ′(∅)) = ΓP ′({a, b, c, d}) = {c};

Γ2
P ′({c}) = ΓP ′(ΓP ′({c})) = ΓP ′({a, b, c, d}) = {c}

A fixed-point has been reached: WFM(P ∪R2) = {c}. If we now calculate the set of true or undefined

atoms of P ′ we get ΓP ′(WFM(P ′)) = ΓP ′({c}) = {a, b, c, d}. Since d is an element of this set we know

it remains true or undefined in the context of assuming c as true— d is respected by assuming c.

The inverse also holds (c is respected by assuming d as true). Hence we conclude that RAAP (M2) is

Sustainable and M2 is a RSM.

4.3.2 Integrity Constraints

Integrity Constraints (ICs for short) are a useful programming tool profusely used by the community

of logic programming. There are also other computer science related communities that use the generic

notion of IC for modelling requirements and ensuring consistency or other demanding.

For the logic programming community, the semantics of an IC is usually the forbidding of some

conjunction of literals. Intuitively, its meaning is “this and that must not hold under these conditions”.

When using the Stable Models semantics as the underlying platform, ICs are usually written in the

form

SomeLiteral← IC,∼ SomeLiteral

As we can see, in this form, ICs are written as OLONs with length 1 (we usually call these direct

OLONs). The interesting part of this form of writing an IC is that the OLON is only an active OLON

50 CHAPTER 4. REVISED STABLE MODELS

under some Model M when M ` IC.

What the programmer intends when writing the IC is to render such Models M unStable, so to speak.

I.e., the programmer wants to make every Model M , such that M ` IC holds, a non-Stable Model. And,

of course, that can be done by means of an OLON. It does not really matter what the top literal of the

OLON is, as long as it does not occur anywhere else in the program — except maybe in other ICs as

head.

This is an elegant and convenient form of writing ICs, taking advantage from the fact that the SM

semantics does not deal with OLON as we have seen before, and so eliminating all the Models that turn

active any OLON.

On the other hand, it is precisely this double-faced feature (not dealing with OLONs) that turns out

to be the cause of lack of guarantee of Existence of a Model for every NLP — for instance, if there where

an active OLON for each and every Minimal Model of a NLP. It is also the cause of lack of the Relevancy

property. Consider this example

Example 4.3.7. OLON as IC

P =
c← a,∼ c

a←∼ b

b←∼ a

There are two Minimal Models: M1 = {a, c} and M2 = {b}. Of these, only M2 is a Stable Model.

Under Stable Models semantics the truth value of a depends not only on the Relevant part of the

dependency graph (which only includes the rule with head a and the rule with head ‘b’), but also on the

rule with head ‘c’ because since that rule is an OLON it acts like an IC. That OLON becomes active

under a Model with ‘a. Since in every Stable Model every OLON must not be active, the Minimal Model

M1 is not a Stable Model because it includes a — the literal that turns the OLON active.

Since Revised Stable Models allows OLONs to be active one would at first expect that it is not possible

to use ICs under RSM semantics. This is clearly not the case. The programmer can still write ICs as it

used to do, in the way just described.

In the example 4.3.7 above, both Minimal Models described are Revised Stable Models. Likewise, in

case the programmer would have written the program as
falsum← a,∼ falsum

a←∼ b

b←∼ a

There would still be two RSM: M1 = {a, falsum} and M2 = {b}. This is just a syntactic change.

If the programmer uses the literal falsum for the heads of ICs, and wants to reject models with

falsum, then there is just a small additional work to do: to filter the RSMs by rejecting those that have

falsum.

On the other hand, since the RSM semantics is Relevant (see subsection 4.4.3), the programmer

4.4. PROPERTIES 51

can use a top-down proof-procedure to pose queries to the knowledge base. In this case, if one wants

only answers to queries that ensure that falsum is not derived, then the programmer just needs to add

∼ falsum to the query.

For example, considering the previous program with falsum as the head of the IC, if intended original

query was

?− a

the programmer just has to pose the query

?− a,∼ falsum

In this case, the top-down proof procedure would just use the Relevant rules of the program a←∼ b

and b←∼ a to find out the truth value for a, and it would conclude that a can be true. Next, considering

a true, the top-down proof procedure would try to prove ∼ falsum. Since falsum is the top literal

of an active OLON under {a}, the top-down proof procedure would conclude that falsum is true; and

therefore, that ∼ falsum is false. Hence, the final answer to the ? − a,∼ falsum query would be ‘no’,

thus respecting the programmed IC.

The details of the implemented top-down proof procedure can be found in subsection 4.6.1.

4.4 Properties

4.4.1 Stable Models Extension

Let SMP (M) denote the fact that M is a Stable Model of the Normal Logic Program P , and let

RSMP (M) denote that M is a Revised Stable Model of the Normal Logic Program P .

Theorem 4.4.1. Stable Models Extension

Every Stable Model of a NLP P is a Revised Stable Model of P

Formally,

∀MSMP (M)⇒ RSMP (M)

The proof of this theorem can be found in the Appendix A.

The guarantee that every Stable Model of a NLP is also a Revised Stable Model of it allows the

end-user to keep benefitting from the useful properties of Stable Models, whenever they exist.

4.4.2 Existence

The Revised Stable Models semantics ensures that every Normal Logic Program has a semantics by

guaranteeing that there is always, at least, one Revised Stable Model. In this section we show the

52 CHAPTER 4. REVISED STABLE MODELS

intuitive idea behind this claim. The formal proof for this Existence property can be found in the

Appendix A.

Let NLP (P) denote the fact that P is a Normal Logic Program, and let RSMP (M) denote that M

is a Revised Stable Model of P .

Theorem 4.4.2. Existence — Every Normal Logic Program has, at least, one Revised Stable Model

Formally,

∀P NLP (P)⇒ ∃MRSM(P)

The formal proof of this theorem can be found in the Appendix A.

The intuitive idea for the proof is the following. Since every SM of a NLP P is also a RSM of it, the

need to prove the Existence of a RSM for the NLP boils down to the case where P has no Stable Models

at all; otherwise the Existence is trivially proven.

So, considering that P has no Stable Models at all, we already know that for every Minimal Model

of P either there is an infinitely long support chain for some atoms, or there are active OLONs.

Every NLP P has at least one Minimal Model — that is a known fact, and it ensures that the first

condition of the definition is always satisfied by at least one candidate model.

For every Minimal Model M of P we can calculate its correspondent ΓP (M) set, and also its

RAAP (M) = M −ΓP (M). Amongst the several RAAP (M) sets it is always possible to find at least one

which is Sustainable— thus satisfying the third condition of the definition.

If there are active OLONs under some Minimal Model M — M being one of the Minimal Models

with Sustainable RAAP (M) set — then we already know by propositions 2.4.2 and 2.4.5 that M satisfies

the second condition of the definition.

If P has ILSCs, and I is the set of all the atoms involved in the ILSC which are in RAAP (M), then

we show that Γ2
P (M) ⊇ I.

And this finishes the proof for Existence.

4.4.3 Relevancy

The Relevancy property is a conditio sine qua non for having the possibility of building a top-down

query-driven proof-procedure. Without the Relevancy property it is guaranteed that it is not possible

the develop such a program — one that can answer queries in a top-down proof fashion.

This was one of the major concerns that were in the origin of Revised Stable Models: the definition

of a new semantics that extended Stable Models and that enjoyed the Relevancy property.

Let us recall here, for a clearer reading, the definition of the Relevancy property.

Property 4.4.1. Relevancy

Let Sem(P) denote the semantics of the NLP P . Considering the Revised Stable Models, the seman-

tics of a NLP P is the intersection of its models, just as explained in definition 4.3.1.

4.4. PROPERTIES 53

We say that A directly depends on B if B occurs in the body of some rule with head A. Also A depends

on B if A directly depends on B or there is a C such that A directly depends on C and C depends on B.

Formally,
DirectlyDependsP (A,B)⇔ (∃r∈P head(r) = A ∧B ∈ body(r))

DependsP (A,B)⇔ DirectlyDependsP (A,B)∨
(∃CDirectlyDependsP (A,C)∧
DependsP (C,B))

Let also Rel(P,A) denote the subset of all rules of P whose head is A, or some B on which A depends

on. Formally,

Rel(P,A) = {r ∈ P : (head(r) = A) ∨ (head(r) = B ∧DependsP (A,B))}

This definition is equivalent to that of 2.2.8.

Definition 4.4.1. Relevancy A semantics is said to be Relevant — or to enjoy the Relevancy property

— iff for every program P

A ∈ Sem(P)⇔ A ∈ Sem(Rel(P,A))

In the case of Revised Stable Models, by equations 4.1 and 4.2 we know that, in order for the RSM

semantics to be Relevant

(∀MRSMP (M)⇒ a ∈M)⇔ (∀Ma
RSMRel(P,a)(Ma)⇒ a ∈Ma)

must hold.

Theorem 4.4.3. The Revised Stable Models semantics is Relevant

(∀MRSMP (M)⇒ a ∈M)⇔ (∀Ma
RSMRel(P,a)(Ma)⇒ a ∈Ma)

The proof for this theorem can be found in the Appendix A.

4.4.4 Cumulativity

Cumulativity is the formal property of a semantics which is ultimately the guarantee that the use of

tabling/memoizing techniques is allowed.

Intuitively, a Cumulative semantics is one such that it is guaranteed that the atoms which are true in

every model of the semantics, remain true even after adding as fact some other true atom in all models.

This corresponds to the storing of intermediate lemmas. If one has derived some literal, and found it to

be true in every model then, if adding it as a fact to the program causes no change in the truth value of

other atoms, then we say the semantics is Cumulative.

54 CHAPTER 4. REVISED STABLE MODELS

Definition 4.4.2. Cumulativity A semantics is said to be Cumulative — or to enjoy the Cumulativity

property — iff for every program P

A ∈ Sem(P) ∧B ∈ Sem(P)⇔ B ∈ Sem(P ∪ {A})

Theorem 4.4.4. The Revised Stable Models semantics is Cumulative

∀P NLP (P)⇒
(
∀a,ba ∈ RSM(P) ∧ b ∈ RSM(P)⇒ b ∈ RSM(P ∪ {a})

)
The proof for this theorem can be found in the Appendix A.

4.4.5 Special-Case Properties of Stable Models

We have seen that the Revised Stable Model semantics is an extension to the Stable Models semantics,

in the sense that every Stable Model of a NLP is also a RSM of the same NLP.

Keeping this is mind, the interesting properties of the Revised Stable Models — namely guarantee of

Existence of a Model, Relevancy and Cumulativity — turn out to be useful somehow extensible results

about the Stable Models semantics itself. Let us see why.

Whenever a Normal Logic Program has no active OLONs under any Minimal Model and no active

ILSCs under any Minimal Model there is no need for Generalized Support for any atom. In this case,

all the RSMs are the SMs of the program: the two semantics coincide. This means that, in these special

cases where there are no active OLONs and no active ILSCs under whichever Minimal Models, the Stable

Models semantics guarantees the Existence of a Model, is Relevant and Cumulative — the same properties

the Revised Stable Models enjoys.

The difference, in what these useful properties are concerned, between SM semantics and RSM se-

mantics, is that RSM semantics always enjoys the Existence, Relevancy and Cumulativity properties no

matter what the NLP is; whereas the SM semantics only enjoys these properties when the NLP has no

active OLONs and no active ILSCs no matter under what Minimal Model.

These results — about the Existence, Relevancy and Cumulativity properties — about the Stable

Models semantics, to the best of our knowledge, have never before appeared in the literature. Even if

the usefulness of the Revised Stable Models semantics is questioned, or its need or motivation considered

minor, these results about the properties of Stable Models semantics, made possible only due to the

research that involved the Revised Stable Models semantics, are themselves a contribute to a better

understanding of the current de facto standard in 2-valued semantics for NLPs.

This means that, if one can ensure that his/hers NLP have no OLONs and no ILSCs whatsoever, then,

using the Stable Models semantics, it is possible to design and implement a top-down proof-procedure

capable of solving queries a la Prolog, because in those cases the Relevancy is ensured.

Also, in the same scenario where the absence of OLONs and ILSCs is assured, one can use tabling/memoizing

techniques under the SM semantics, because Cumulativity is granted. Moreover, one is sure that there

4.5. COMPLEXITY ANALYSIS 55

is always at least one Stable Model if the NLP has no OLONs and no ILSCs.

These results about the SM semantics open new doors to practical implementations of SM-based

systems, as long as absence of OLONs and ILSCs is assured.

4.5 Complexity Analysis

A profound complexity analysis of this semantics has not yet been performed and it is one of the subjects

for future work.

However, a brief glance over the conditions of the definition of the Revised Stable Models semantics

allows us to take some safe conclusions: since the minimality of models is required — and this is a

typically NP problem — the complexity of the semantics should not be under NP.

The other conditions of the definition essentially involve iterations of the ΓP operator — either to

determine if ∃α≥2Γα
P (M) ⊇ RAAP (M) or to check if the RAA set is Sustainable (the Well-Founded

Model can be calculated by obtaining the least fixed point of the Γ2
P operator).

Each ΓP iteration should be at most polynomial, so for now our conjecture is that the Revised Stable

Models semantics is at least NP-complete.

Conjecture 4.5.1. The complexity of the Revised Stable Models semantics is at least NP-complete.

4.6 Implementation

4.6.1 Implementing a RSM Meta-Interpreter

A RSM Meta-Interpreter, as we conceived it, consists in a program that allows the user to load his/hers

knowledge base written in the form of a grounded Normal Logic Program. After the loading of the KB is

done, the user can then pose queries to the Meta-Interpreter which uses the underlying RSM semantics.

This Meta-Interpreter answers the queries in a top-down fashion — taking advantage of the Relevance

property of the RSM semantics. In order to avoid entering in infinite loops, the RSM Meta-Interpreter

has a built-in mechanism for detecting and dealing with loops.

Dealing with Loops

Loop Detection The loop detection mechanism in the RSM Meta-Interpreter consists basically of a

list of ancestor literals in the query derivation path, from its root to the current literal. If the literal

currently under proof is already in the ancestor list (either positively or negatively) a loop occurs and

this situation is detected.

In this case, the RSM Meta-Interpreter will no longer obtain a rule for the literal it is trying to prove

— for that would launch the Meta-Interpreter in an infinite loop of proofs.

56 CHAPTER 4. REVISED STABLE MODELS

Instead, the RSM Meta-Interpreter first classifies the loop, and the resolves it. Loop detection and

resolution is performed in a bottom-up fashion, i.e., when solving a query the meta-interpreter goes down

the dependency graph. At some point it may detect a loop which is classified and resolved. The resolution

of the loop is then propagated upwards in the dependency graph; hence every loop lyes at the bottom of

the query graph. This mechanism of solving the loops and propagating their resolutions bottom-up is in

close relation to the Sustainability condition of the definition — the resolution of the loop is considered

true and used in the evaluation of the truth-value of the literals above the loop in the query graph,

thereby respecting the Sustainability.

Loop Classification A loop is classified as Positive Loop if the literal being proved is positive, and all

the literals in between them are also positive; i.e., there is not one single default negation between the

first occurrence of the literal and the second (including the later).

A loop is classified as Even (Odd) Loop if there is an even (odd) number of default negated literals

in between the first occurrence of the literal in the ancestors list and the last. If the first occurrence

of the literal is itself default negated that one negation does not count for the determination of the

“even(odd)-hood” of default literals.

Loop Resolution Positive Loops are always solved by assuming the literal in the loop to be false —

there is no reason to believe a is true if we have, for instance, a ← a. On the other hand, Even (Odd)

Loops are solved by assuming the literal in the loop is true (false) — for this will lead, through the even

(odd) number of negations upwards, to the conclusion that the literal is true. In the case of Even Loops

that is a consistent result: assuming the literal true we conclude it is true. On the other hand, for Odd

Loops, since we want to provide RAA support for atoms in Odd Loops, we want them to be concluded

true. For that to happen, since the literal is in an Odd Loop, it must be assumed to be false so the odd

number of negations between itself and its equal ancestor toggles the truth value to true.

Keeping Consistency

Throughout the derivation process, the RSM Meta-Interpreter keeps all the conclusions it derived and the

assumptions it made for resolving Even Loops in a list of Current Context. Besides being a mechanism

for ensuring that future choices for Even Loops are consistent with the other choices already made, this

Current Context list serves also as a kind of tabling since it stores the intermediate results it derives.

The literals in this Current Context list are not added to the program as facts, they are just kept in

memory to enforce consistency. A positive side-effect of this list is that it reduces the computation time

in case we try to prove some literal that has already been proven, or that has been assumed to be false.

When the Meta-Interpreter is asked to try to prove a literal, one of the first things it does is to

check in the Current Context list if it was already derived, or its negation assumed. In either case, the

computation for that literal stops and the process continues to the next part of the query.

4.6. IMPLEMENTATION 57

Capabilities and Limitations

This first implementation of the RSM Meta-Interpreter is prepared only to deal with grounded NLPs,

and its design was with the aim of developing a Rapid Prototype that would show the expected behavior,

considering the Revised Stable Models semantics. As said in the Future Work section, a more powerful

and efficient implementation of this RSM engine is one of the priorities.

Using Integrity Constraints

The simulation and use of Integrity Constraints has already been depicted in subsection 4.3.2. It is up

to the programmer to add such rules and tailor the queries so as to include the ∼ falsum or ∼ no good,

or some other literal of choice for enforcing the respect of the Integrity Constraints.

4.6.2 Implementation of a Revised Stable Models calculator

The RSM Calculator implementation takes an approach different from the RSM Meta-Interpreter. We

are now interested in a program that, after loading the user’s knowledge base in the form of a grounded

NLP, calculates all the RSMs of that knowledge base.

Clearly, the process of calculating all the RSMs of a given NLP is a much more computationally

expensive task than the simple query-answering one.

Like the RSM Meta-Interpreter, this RSM Calculator was developed with the aim of having a basic

mechanism for calculating RSMs; there was no concern for efficiency at this stage. Since the semantics

in itself has a high degree of complexity, the process of calculating all the RSMs of a NLP is quite slow.

Therefore, we used only small NLPs for the tests. However, we believe the test set used pin-point touches

the crucial issues.

Moreover, the implementation of the RSM Calculator follows precisely the formal definition of the

RSM semantics: first the RSM Calculator identifies all the Minimal Models of the NLP, then excludes

all those that do not respect the second and the third conditions of the definition. This is done precisely

as written in the definition: calculating the RAA set for each Minimal Model, checking if ∃α≥2Γα
P (M) ⊇

RAAP (M), and then check if the RAA set is Sustainable.

Thus, this implementation of the RSM Calculator turns out to have built-in a series of mechanisms

used in deriving consequences of NLP, namely: a TP operator, a ΓP operator, a Γ2
P operator, the detection

of fixed points of TP , ΓP , and Γ2
P , and also the calculus of the Well-Founded Model of a NLP, and a

Sustainability checker.

58 CHAPTER 4. REVISED STABLE MODELS

Chapter 5

Applications

Many kinds of knowledge-oriented applications can benefit from this new semantics. For one, applications

managing knowledge bases usually have to deal with knowledge updates. The more complex these

knowledge updates become, the more flexible the underlying semantics has to be.

The 2-valued Stable Models semantics does not always guarantee the existence of a semantics for

whichever knowledge base. The continuous update of a knowledge base can lead it to a state where,

under Stable Models, it has no semantics, no model. This is an extreme case we seriously want to avoid.

We now examine two scenarios under which the knowledge base evolution is a constant issue. Nat-

urally, the concern about the guarantee of existence of semantics on these scenarios is of paramount

importance.

5.1 EVOLP

The new EVOLP [3] language provides a simple yet powerful means for programming software agents

which evolve over time. The simple and natural way both external updates as well as self-updates are

programmed are the main innovations of this language. Naturally, in such a setting one desires to be

sure that his/her agent always has a semantics, a model.

The EVOLP language extends common Prolog with a new kind of assert, besides nots in the heads.

The argument of the new assert can be any arbitrarily complex rule, including another nested assert. An

example,

Example 5.1.1. A typical EVOLP program
a← not b.

not c← not a.

assert(assert(b← not a)← not c)← not assert(b← assert(c)).

The semantics of EVOLP programs is defined in [3] and we will not enter into details about it here.

59

60 CHAPTER 5. APPLICATIONS

The point that matters to this dissertation, though, is closely related to the semantics of a generic evolving

knowledge-base; and an EVOLP program is just a particular case of that scenario.

Consider, for instance, the following EVOLP program

Example 5.1.2. EVOLP program with camouflaged OLON
a← not b.

assert(b← not c)← not d.

assert(assert(c← not a))← not e.
Let us consider the case where we use the Stable Models semantics as the underlying semantics for

this EVOLP program.

Initially, the only Stable Model of this program is {a, assert(b← not c), assert(assert(c← not a))},
since none of {b, d, e} holds. EVOLP programs have the ability to update themselves without exterior

intervention, and that is precisely what happens when there is an EVOLP program rule of the form

assert(X)← Y . In the next time step, X becomes a new rule of the program if Y holds in the previous

time step model. Since d does not hold in the first model, the new rule b← not c is added to the program.

Also, since e does not hold in the first model of the program, the new rule assert(c← not a) is added

to it. In a nutshell, in the second time step the program becomes
a← not b.

b← not c.

assert(b← not c)← not d.

assert(assert(c← not a))← not e.

assert(c← not a).
and its new model is {b, assert(b← not c), assert(assert(c← not a)), assert(c← not a)}.
A new evolution step occurs, due to the ‘assert’ atoms in the model, and the third time step program

becomes
a← not b.

b← not c.

c← not a.

assert(b← not c)← not d.

assert(assert(c← not a))← not e.

assert(c← not a).
Redundant effects of ‘asserts’ are discarded, i.e., asserting a rule that is already in the program results

in keeping the rule in the program and not adding the duplicate one.

This is the time step where the problem arises. Under Stable Models semantics this EVOLP program

no longer has a model due to the first three rules which constitute an Odd-Loop over Negation. This

OLON was somehow camouflaged by the ‘assert’ EVOLP rules in the first time step program. As the

natural evolution of the program unfolded it, the Odd-Loop Over Negation reached the ‘surface’ and

revealed itself.

5.2. REWERSE 61

When one programs a knowledge-processing software agent with the ability to be updated (either by

self-updates or by external ones) the need of an underlying semantics that copes with possible emergent

Odd-Loops Over Negation cannot be simply refused. Otherwise, one incurs in the risk of seeing its agent

breakdown due to a sudden lack of semantics.

Even if an agent does not perform self-updates, it can be externally updated. If the underlying

semantics does not deal with Odd-Loops Over Negation, a malicious external agent can send our agent

a new rule a ← not a. If our agent accepts this new rule and it runs on Stable Models semantics, it is

doomed to lack of semantics forever.

Obviously, one can argument in favor of the beforehand detection and prevention of such OLONs. In

the case of simple, direct Odd-Loops Over Negation — such as the case of a← not a — this is a simple

process. But to detect a more elaborate OLON — like the one in our previous example 5.1.2 turns out

to be a very computational expensive operation. In the worst case scenario, every rule of the program

must be checked to ensure that there are no hidden OLONs. Moreover, every time a new rule is added

to the knowledge base a full scan must be ran over the program to ensure it is OLON-free. This is a task

that becomes more and more computationally expensive as the program gets bigger due to updates.

For all this, we believe the Revised Stable Models semantics can be a more effective and robust

underlying semantics for EVOLP programs than classical Stable Models. And since Revised Stable

Models is an extension to Stable Models each and every desirable property of the current standard

2-valued semantics is preserved.

5.2 REWERSE

REWERSE [37] is a research ”Network of Excellence” (NoE) on ”Reasoning on the Web” that is funded

by the EU Commission and Switzerland within the ”6th Framework Program” (FP6), Information Society

Technologies (IST), Priority 2 under the project reference number 506779. REWERSE addresses the IST

strategic action line ”Semantic-based knowledge systems”.

REWERSE’s goals include the development of a coherent and complete, yet minimal, collection of

inter-operable reasoning languages for advanced Web systems and applications. These languages, which

should reach the level of open pre-standards amenable to submissions to standardization bodies such as

the W3C [39], must comprehend mechanisms for the development of autonomous evolving and reacting

Web resources (such as agents, knowledge bases, and others).

One of the Working Groups of REWERSE — namely Working Group I5 — is specially devoted to

the definition of principles, languages, and semantics of evolving and reacting Web resources.

The existence of semantics for every Web resource, no matter what its course of evolution might

be, is of upmost importance. Moreover, for usability and efficiency, one can easily understand that the

ability to pose queries — which can be answered through a top-down approach procedure — is absolutely

necessary. Nowadays, even the most simplistic databases allow users to pose simple queries. The user

62 CHAPTER 5. APPLICATIONS

expects the answering engine behind the interface to be sufficiently efficient to give him/her an answer

in a short time period. Surely, in a knowledge-base with thousands of facts and rules, if a query simply

depends on a few literals, the user expects the answer to come up quickly.

In a knowledge-base written in a rule-style declarative language, a la Prolog, this can only be possible

if the underlying semantics is Relevant.

Moreover, to speed up computations of answers to queries, one expects to be possible to use tabling/memoizing

techniques which make it possible to store intermediate results. Again, this is only possible if the under-

lying semantics is Cumulative.

In such a competitive and fast changing environment as the Internet, and more specifically the World

Wide Web, the applications must meet the ever-growing demands of the users. The languages and pre-

standards the REWERSE project is committed to develop are to be submitted to the Consortium and

other organizations for approval and to become de facto standards. For the success of these approvals

and the acceptance of the general community of computer scientists and professional software developers,

it is necessary that the underlying reasoning mechanism of the Semantic Web guarantee a high level of

efficiency. Relevancy and Cumulativity are two cornerstones for the building of an efficient reasoning

engine, and we believe Revised Stable Models semantics can give a contribute here.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Stable Models are the current state-of-the-art 2-valued semantics. Any new semantics that aspires to be

considered as another useful underlying platform for 2-valued reasoning must be a natural extension of

Stable Models (in the sense that every Stable Model of a NLP P is also a Revised Stable Model of the

same NLP).

We propose this new semantics — Revised Stable Models — to the Knowledge Representation and

Reasoning scientific community with the intent of giving a contribution to the diversification of available

reasoning tools and mechanisms.

We propose Revised Stable Models semantics to be considered as another useful tool in the Knowledge

Representation and Reasoning researchers’ toolbox. A new tool that, by its convenient properties of

Existence, Relevancy and Cumulativity, allows the implementation of handy top-down proof procedures,

the use of tabling techniques, always guaranteeing the existence of a Model.

Since every Stable Model of a NLP is also a Revised Stable Model of the same NLP, the interested

researcher can always check if the obtained Model is consistent, i.e., if it is also a Stable Model; or,

otherwise, if there are some literals in the Model which were considered true by RAA reasoning.

The fact that Revised Stable Models semantics is an extension to the Stable Models semantics allowed

us to conclude that the Stable Models semantics, under certain special conditions, also ensures the

Existence of a Model, enjoys Relevancy and Cumulativity. These, as far as we were able to find, are

new results about the SM semantics and may prove to be useful in opening new doors to practical

implementations of SM-based systems.

63

64 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.2 Future Work

6.2.1 Extensions

The foundations of the Revised Stable Models semantics have been laid, and it them a new range of

possibilities is open, a new form of resolving OLONs and ILSCs has been proposed. RSM semantics

has been proposed for Normal Logic Programs and we have showed the useful properties it enjoys. The

next step is to expand the Revised Stable Models semantics to Extended Logic Programs (with explicit

negation) and to Generalized Logic Programs (with default negations in the heads of rules).

The first steps of future work taken in this area will consider these extensions of the RSM semantics,

as well as its use for including the general RAA reasoning as a form of Belief Revision.

Extended Logic Programs and the Revised Answer-Sets

Extended Logic Program [2] take the knowledge representation formalism one step further than Normal

Logic Programs by including Explicit Negation — sometimes referred to as Strong Negation. This allows

the programmer to write rules like

¬a← b,∼ c

where ¬ corresponds to the Explicit Negation whereas ∼ corresponds to the Default Negation.

Under Extended Logic Programs (ELPs) one can, ultimately, have a program that, under some specific

interpretation, derives an explicit contradiction.

Example 6.2.1. Extended Logic Program with explicit contradiction

Let P be
¬a←∼ b

a←∼ b

Since there is no rule for ‘b’ in P , its unique Minimal Model is {a,¬a}, which is explicitly contradictory.

ELPs, by its additional logic construct — the explicit negation — provide to the programmer a tool

with a higher expressive power; at the cost of allowing explicit contradictions to arise. It is up to the

programmer to ensure — if he/she wants to — the program is contradiction-free.

The version of the Stable Models semantics for Extended Logic Programs is generally known as

Answer-Set Programming (ASP). The ASP semantics is grosso modo similar to the Stable Models se-

mantics with the additional proviso that no Answer-Set (the equivalent to a Stable Model) can have an

explicit contradiction, i.e., an atom and its explicit negation. The ASP semantics says that when in a

ELP every Minimal Model has an explicit contradiction, then there is just one Answer-Set which is the

whole Herbrand Base. Thus, the ASP semantics follows the Ex Contradictio Quod Libet principle.

Besides the issue of explicit contradiction, the ASP semantics, just like the Stable Models semantics,

does not deal with OLONs nor with ILSCs. Keeping this in mind and following a similar procedure,

6.2. FUTURE WORK 65

we believe an extension the Answer-Set Programming semantics can be built using the same principles

behind Revised Stable Models.

A Revised Answer Sets (RAS) semantics, extending the Answer-Set Programming semantics, should

not differ much from the RSM semantics and enjoy at least some of its properties.

Generalized Logic Programs and the Revised GLP Semantics

Generalized Logic Programs (GLPs), similarly to what happens with ELPs, are an extension to Normal

Logic Programs. In the case of GLPs there is no explicit negation, but the rules of the program are

allowed to have default negated literals in the heads. Hence, the same potential problem of deriving a

contradiction is present. The differences between ELPs and GLPs are subtle and they are not the main

concern here.

An example of a GLP follows.

Example 6.2.2. Generalized Logic Program with contradiction

Let P be
∼ a←∼ b

a←∼ b

Since there is no rule for ‘b’ in P , its unique Minimal Model is {a,∼ a}, which is contradictory.

We believe that it is possible to define an extension to the Answer-Set Programming semantics used for

GLPs such that this new Revised Generalized Logic Programming (RGLP) semantics takes the advantages

of the Generalized Logic Programs expressive power, keeping at least some of the useful properties of the

Revised Stable Models.

One would expect that the definition of the RGLP semantics should not differ much from the definition

of the RAS semantics.

Revised Well-Founded Semantics

An additional extension to the RSM semantics can be attained by entering the domain of 3-valued logics.

This can be done by extending, with the already known mechanisms for dealing with OLONs and ILSCs,

the Well-Founded Semantics.

Under the new Revised Well-Founded Semantics (RWFS) only the atoms in ELONs would have the

undefined truth-value. Atoms involved in OLONs or in ILSCs would be treated in the same way as in

the RSM semantics. Since the Well-Founded Semantics already guarantees the Existence of a model, is

Relevant and Cumulative, the RWFS should keep these properties.

Belief Revision

General RAA reasoning is the general procedure of Belief Revision which consists of finding one, or

more, possible assumed hypothesis revision when a contradiction arises. In this way, a reduced form

66 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of Belief Revision is embedded in Revised Stable Models through its inherent reduced form of RAA

reasoning. Taking the RSM semantics one step further to Extended Logic Programs or to Generalized

Logic Programs could yield the possibility of having a general Belief Revision mechanism imbedded in

the semantics.

Having such kind of full Belief Revision imbedded in the semantics can free the top-level programmer

from developing a complex Belief Revision system as it happens today. In this sense, a generalized form

of Revised Stable Models, such as Revised Answer-Sets, can absorb the complexity of a general Belief

Revision system.

Naturally, such an extended version of the RSM semantics will have a higher degree of complexity,

since the burden of general Belief Revision will be imbedded in the semantics.

6.2.2 Further work

Besides investigating the possibilities of extending the Revised Stable Models semantics for ELPs, GLPs,

and others, a formal comparison of the RSM semantics against other semantics (like Clark’s Completion

[13], Well-Founded Semantics [20]), and other logics (Intuitionist Logic [27], Here-and-There Logic, and

others) is one of the next main research steps to be taken. The Revised Stable Models semantics has

just been born and it must be carefully studied and all its most important properties discovered and

compared to other semantics’ in order to fully understood. A thorough exploration of the properties of

Sustainable Sets as presented in definition 2.5.1 is also in our research agenda.

Still on the theoretical side of further work, a formal and thorough complexity analysis of this semantics

is also in our schedule. This is clearly a matter of major importance since it will ultimately give an insight

on the computational usability of this semantics.

Also, the implementations described in this Thesis were developed with the intent of showing that

they are feasible and usable. These implementations are very far from being efficient and optimized —

that was not their current aim. Future work in Revised Stable Models includes the development of a

more efficient top-down proof-procedure for solving queries a la Prolog, and also a more efficient RSM

calculator — like the SModels [28]. A possible way of doing this efficient implementation is by means of

a program transformation which guarantees that the Stable Models of the resulting transformed program

are the Revised Stable Models of the original one. This way, after transforming the program, the resulting

set of rules can be ‘given’ to a SModels implementation to obtain its Stable Models, i.e., the RSMs of

the original program.

67

68 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] João Alcântara, Carlos Viegas Damásio, and Lúıs Moniz Pereira. Paraconsistent logic programs. In

In S. Flesca and G. Ianni, editors, Proceedings of the 8th European Conference of Logics In Artificial

Intelligence, JELIA 2002, volume 2424, pages 345–356. Springer, September 2002.

[2] José Júlio Alferes. Semantics of Logic Programs with Explicit Negation. PhD thesis, Universidade

Noval de Lisboa, October 1993.

[3] José Júlio Alferes, Antonio Brogi, João Alexandre Leite, and Lúıs Moniz Pereira. Evolving logic

programs. In S. Flesca, S. Greco, N. Leone, and G. Ianni, editors, Procs. of the 8th European

Conf. on Logics in Artificial Intelligence (JELIA’02), number 2424 in LNCS, pages 50–61. Springer,

September 2002.

[4] José Júlio Alferes, João Alexandre Leite, Lúıs Moniz Pereira, H. Przymusinska, and T. C. Przy-

musinski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic Programming,

45(1–3):43–70, September/October 2000.

[5] José Júlio Alferes and Lúıs Moniz Pereira. Reasoning with Logic Programming, volume 1111 of

Lecture Notes in Artificial Intelligence. Springer-Verlag, 1996.

[6] José Júlio Alferes, Lúıs Moniz Pereira, H. Przymusinska, and T. C. Przymusinski. Lups - a language

for udating logic programs. Artificial Intelligence, 138(1–2), 2002.

[7] José Júlio Alferes, Lúıs Moniz Pereira, and Terrance Swift. Abduction in well-founded semantics

and generalized stable models via tabled dual programs. Theory and Practice of Logic Programming,

4(4):383–428, July 2004.

[8] Francisco Azevedo. Constraint Solving over Multi-valued Logics - Application to Digital Circuits,

volume 91 of Frontiers of Artificial Intelligence and Applications. IOS Press, 2003.

[9] Federico Banti, José Júlio Alferes, and Antonio Brogi. Well founded semantics for logic program

updates. In J. A. González C. Lemâıtre, C. A. Reyes, editor, Advances in Artificial Intelligence -

IBERAMIA 2004, 9th Ibero-American Conference on AI, volume 3315 of Lecture Notes in Computer

Science, pages 397–407. Springer-Verlag, 2004.

69

70 BIBLIOGRAPHY

[10] Chitta Baral and V. S. Subrahmanian. Stable and extension class theory for logic programs and

default logics - technical report cs-tr-2402. Technical report, University of Maryland, 1990.

[11] Chitta Baral and V. S. Subrahmanian. Stable and extension class theory for logic programs and

default logics. Journal of Automated Reasoning, 8:345–366, 1992.

[12] Stefan Brass and Jürgen Dix. Semantics of (disjunctive) logic programs based on partial evaluation.

J. Log. Program., 40(1):1–46, 1999.

[13] K. Clark. Negation as failure. In H.Gallaire and J.Minker, editors, Logic and Databases, pages

293–322. Plenum Press, 1978.

[14] Stefania Costantini. Contributions to the stable models semantics of logic programs with negation.

Theoretical Computer Science, 149(2):231–255, 1995.

[15] Stefania Costantini. On the existence of stable models of non-stratified logic programs. Under

consideration for publication in Theory and Practice of Logic Programming, 2003.

[16] Carlos Viegas Damásio and Lúıs Moniz Pereira. A paraconsistent semantics detecting contradiction

support. In J. Dix, U. Furbach, and A. Nerode, editors, Logic Programming and NonMonotonic

Reasoning, 4th Int. Conf., number 1265 in LNAI, pages 224–243. Springer, July 1997.

[17] Phan Minh Dung. On the relations between stable and well-founded semantics of logic programs.

Theoretical Computer Science, 105:7–25, 1992.

[18] M. H. Van Emden and R. A. Kowalski. The semantics of predicate logic as a programming language.

J. ACM, 23(4):733–742, October 1976. ISSN:0004-5411.

[19] François Fages. Consistency of clark’s completion and existence of stable models. Methods of Logic

in Computer Science, 1:51–60, 1994.

[20] Allen Van Gelder, Kenneth A. Ross, and John S. Schlipf. The well-founded semantics for general

logic programs. Journal of the ACM, 38(3):620–650, July 1991.

[21] Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic programming. In In

Procs. of ICLP-88, pages 1070–1080. International Conference on Logic Programming 88, 1988.

[22] João Alexandre Leite. Evolving Knowledge Bases - Specification and Semantics. IOS Press, 2003.

[23] João Alexandre Leite, José Júlio Alferes, Lúıs Moniz Pereira, H. Przymusinska, and T. C. Przy-

musinski. A language for multi-dimensional updates. Electronic Notes in Theoretical Computer

Science, 70(5), 2002.

[24] Vladimir Lifschitz. Answer set planning. In Proceedings of the International Conference on Logic

Programming, pages 23–37, 1999.

BIBLIOGRAPHY 71

[25] Thomas Lukasiewicz. Probabilistic and truth-functional many-valued logic programming. Technical

report, Institute für Informatik - Justus-Liebig-Universität Giessen, December 1998. IFIG Research

Report 9809.

[26] Bamshad Mobasher, Don Pigozzi, and Giora Slutzki. Multi-valued logic programming semantics:

An algebraic approach. Theoretical Computer Science, 171(1–2):77–109, 1997.

[27] Joan Moschovakis. Intuitionistic logic. In Edward N. Zalta, editor, The Stanford Encyclopedia of

Philosophy. Spring 2004.

[28] Ilkka Niemelä and P. Simons. Smodels - an implementation of the stable model and well-founded

semantics for normal logic programs. In Proceedings of the 4th International Conference on Logic

Programming and Nonmonotonic Reasoning, volume 1265 of Lecture Notes in Artificial Intelligence,

pages 420–429, July 1997.

[29] Artificial Intelligence Centre of the Computer Science Department at Universidade Nova de Lisboa.

Centria — artificial intelligence centre web site. Web Site.

[30] Lúıs Moniz Pereira. Handbook of the Logic of Argument and Inference, volume 1 of Studies in Logic

and Practical Reasoning, chapter Philosophical Incidences of Logic Programming, pages 425–448.

Elsevier Science, 2002.

[31] Lúıs Moniz Pereira and José Júlio Alferes. Well founded semantics for logic programs with explicit

negation. In B. Neumann, editor, European Conf. on Artificial Intelligence, pages 102–106. John

Wiley & Sons, 1992.

[32] Lúıs Moniz Pereira and Alexandre Miguel Pinto. Revised stable models - a new semantics for logic

programs. In In Procs. Convegno Italiano di Logica Computazionale (CILC’04). Convegno Italiano

di Logica Computazionale (CILC’04), July 2004. Parma, Italy.

[33] H. Przymusinska and T. Przymusinski. Semantic issues in deductive databases and logic programs.

In R. Banerji, editor, Formal Techniques in Artificial Intelligence, a Sourcebook, pages 321–367.

North Holland, 1990.

[34] T. C. Przymusinski. Every logic program has a natural stratification and an iterated least fixed

point model. In PODS ’89: Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium

on Principles of database systems, pages 11–21, New York, NY, USA, 1989. ACM Press.

[35] Raymond Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[36] Abhik Roychoudhury, K. Narayan Kumar, C.R.Ramakrishnan, and I.V. Ramakrishnan. A

parametrized unfold/fold transformation framework for definite logic programs. In Proceedings of

PPDP’99, volume 1702 of LNCS. Springer-Verlag, 1999.

72 BIBLIOGRAPHY

[37] The REWERSE Team. Rewerse - reasoning on the web with rules and semantics. WWW.

[38] WASP Team. Working group on answer set programming. WWW.

[39] W3C. World wide web consortium. WWW.

73

74 BIBLIOGRAPHY

Appendix A

Proofs of Theorems

A.1 Minimal and Classical Models Theorems, Lemmas and Corol-

laries

Theorem A.1.1. Alternative Classical Model of P

If M is a Minimal Classical Model of P , then Γ2
P (M) is a Classical Model of P .

MMP (M)⇒ CMP (Γ2
P (M)) (A.1)

Proof. Let us analyze in turn the cases where RAAP (M) = ∅ and RAAP (M) 6= ∅.
If RAAP (M) = ∅ then M = ΓP (M), by definition of RAAP (M). In this case M = ΓP (M) = Γ2

P (M);

hence M = Γ2
P (M).

Since M is a Minimal Classical Model of P , and M = Γ2
P (M), we conclude that Γ2

P (M) is also a

Minimal Classical Model of P and, necessarily, a Classical Model of P .

Let us now consider the case where RAAP (M) 6= ∅.
Since M is a Minimal Model of P , by definition of Minimal Model, any proper subset of M is

not a Classical Model of P . We know that M ⊇ ΓP (M) by [14]. Also, since RAAP (M) 6= ∅ and

M = ΓP (M) ∪RAAP (M), we conclude that ΓP (M) is necessarily not a Classical Model of P .

By Theorem 2.3.1 we know that the rules of P that are no longer satisfied in P by ΓP (M) are those

that were uniquely satisfied by the atoms that were in M but are not in ΓP (M), i.e., the atoms in

RAAP (M).

Let UP (M) — the ‘unsupported rules’ of P — denote the set of rules of P which are uniquely satisfied

by the atoms in RAAP (M). Formally,

UP (M) =
⋃

a∈RAAP (M)

SUSR(P, a,M)

75

76 APPENDIX A. PROOFS OF THEOREMS

So, the rules in P which are not satisfied by ΓP (M) are those in UP (M), so CMP−UP (M)(ΓP (M))

holds.

In order to obtain another Classical Model of P , starting from ΓP (M) we need to add some more

atoms such that the rules in UP (M) — those that are not satisfied in ΓP (M) — become now satisfied.

The fact that these rules are not satisfied under ΓP (M) means that their heads are not in ΓP (M) and

their bodies are satisfied by ΓP (M). I.e.,

∀r∈UP (M)head(r) /∈ ΓP (M) ∧ ΓP (M) `ΓP
body(r)

Since all the atoms in ΓP (M) are classically supported — otherwise they would not be in ΓP (M) —

they will also be in ΓP (ΓP (M)). Moreover, all the heads of the rules in UP (M) will also be in ΓP (ΓP (M))

since their bodies are satisfied under ΓP (M). From this it follows that all rules in P become satisfied

under ΓP (ΓP (M)) = Γ2
P (M). Hence, CMP (Γ2

P (M)). ut

Corollary A.1.1. MMP (M)⇒ Γ2
P (M) ⊇ ΓP (M)

Proof. It follows trivially from the previous theorem A.1.1. ut

A generalization of the previous theorem can be made to Classical Models. We do that in the following

Theorem A.1.2. The Γ2
P application is closed within the set of Classical Models of a Normal Logic

Program

If M is a Classical Model of P, then Γ2
P (M) is also a Classical Model of P.

CMP (M)⇒ CMP (Γ2
P (M)) (A.2)

Proof. By theorem A.1.1 we know that if M is a Minimal Model of P then Γ2
P (M) is a Classical Model

of P .

We also know that the ΓP operator is anti-monotonic, i.e.,

M ⊇M ′ ⇒ ΓP (M) ⊆ ΓP (M ′) (A.3)

A Classical Model of a NLP is, by definition, a superset of some Minimal Model of P

CMP (M ′)⇒ ∃M⊆M ′MMP (M)

Conversely, the other way around interpretation, says that if M is a Minimal Model of P then there

is at least one superset of M that is a Classical Model of P

MMP (M)⇒ ∃M ′⊇MCMP (M ′) (A.4)

A.1. MINIMAL AND CLASSICAL MODELS THEOREMS, LEMMAS AND COROLLARIES 77

So, let M be a Minimal Model of P and M ′ be a Classical Model of P such that M ′ ⊇M . By equation

A.3 we know that ΓP (M ′) ⊆ ΓP (M), and again, ΓP (ΓP (M ′)) ⊇ ΓP (ΓP (M)), i.e., Γ2
P (M ′) ⊇ Γ2

P (M).

Since we know Γ2
P (M) is a Classical Model of P , all the rules of P are satisfied in Γ2

P (M). Also, since

Γ2
P (M ′) ⊇ Γ2

P (M) the only rules in P that could no longer be satisfied are the ones that were Satisfied

by the Absence of a Literal in Γ2
P (M). If the literal whose absence satisfied one of those rules appears

in Γ2
P (M ′), so does the head of the same rule — the ΓP operator performs a transfinite iteration of TP

obtaining all possible consequences (heads of rules whose body is true).

Hence, Γ2
P (M ′) also satisfies all rules in P, i.e., Γ2

P (M) is a Classical Model of P . ut

Lemma A.1.1. Existence of Γ2k
P fixed point for finite Classical Models

If P is a NLP with a finite number n of Classical Models then, there is at least one Classical Model of

P , which is a fixed point of the Γ2k
P operator, for some k ∈ N.

#CM(P) = n ∧ n ∈ N⇒ ∃MCMP (M) : ∃k∈NΓ2k
P (M) = M

Proof. Let P be a NLP with a finite number of Classical Models, and let M be one (any) of the Classical

Models of P.

By theorem A.1.2 we know that Γ2
P (M) is also a Classical Model of P. If M = Γ2

P (M), M is one of

the fixed points of the Γ2k
P operator — where k = 1.

If M 6= Γ2
P (M) then we can apply again the Γ2

P operator — thus getting as a result Γ2
P (Γ2

P (M)) =

Γ4
P (M) = Γ2k

P (M), where k = 2. We can keep applying the Γ2
P operator until some Γ2k

P (M) equals some

Γ2j
P (M), with j < k.

If after n — the number of Classical Models of P — consecutive applications of the Γ2
P operator we

have still not reached a fixed point (every previous application of Γ2
P gave as result a different Classical

Model of P) then, inevitably, the n + 1th application of Γ2
P will get as a result a Classical Model which

was already Γ2j
P (M) for some 0 ≤ j ≤ n, since P has a finite number of Classical Models.

So, necessarily, ∃0≤j<φ≤n+1Γ
2φ
P (M) = Γ2j

P (M)

Γ2j
P (M) is thus a fixed point of the Γ2φ−2j

P = Γ2(φ−j)
P operator. Since, by hypothesis, j < φ, k =

φ− j ≥ 1, Γ2j
P (M) is a fixed point of the Γ2k

P operator; where k ≥ 1⇔ k ∈ N. ut

Theorem A.1.3. If M is a Classical Model then ∀n∈NΓ2n
P is also a Classical Model

CMP (M)⇒ ∀n∈NCMP (Γ2n
P (M)) (A.5)

Proof. The previous theorem A.1.2 says that, M being a Classical Model of P, Γ2
P (M) is also a Classical

Model of P.

It it trivial to prove, by simple induction, that CMP (Γ2n
P (M)), if CMP (M), for any n ∈ N. By

theorem A.1.2 we know that

CMP (M)⇒ CMP (Γ2
P (M))

78 APPENDIX A. PROOFS OF THEOREMS

If CMP (Γ2(n−1)
P (M)) then, again by theorem A.1.2 we conclude

CMP (Γ2
P (Γ2(n−1)

P (M)))⇔ CMP (Γ2(n−1)+2
P (M))⇔

CMP (Γ2n−2+2
P (M))⇔ CMP (Γ2n

P (M))

ut

A.2 Lemmas about the ΓP operator and Interpretations

Lemma A.2.1. Existence of rule for classically supported atoms

Let I be an Interpretation for Normal Logic Program P. For every atom a in ΓP (I) there is at least one

rule in P with head a, and that rule is satisfied only by a.

a ∈ ΓP (I)⇒ ∃r∈P head(r) = a

Proof. By definition of the ΓP operator

ΓP (I) = lfp(TP ↑ω (P/I))

where lfp stands for least fixed point and the program division P/M is the one defined in section 2.4.

The ΓP operator turns out to be the consecutive iteration of the TP operator until a fixed point is

attained. Since the TP operator just collects heads of rules whose bodies are true in the interpretation,

we know that ΓP (I) must be a subset of the heads of the rules of P, i.e., ΓP (I) ⊆ Heads(P). Moreover,

a ∈ ΓP (I) iff there is at least one rule in P with head a and true body under I.

Formally,

a ∈ ΓP (I)⇔ ∃r∈P head(r) = a ∧ I `ΓP
body(r)

Hence, if an atom a is in ΓP (I) then it must be the head of some rule of P, which concludes this

proof. ut

Lemma A.2.2. a ∈ ΓP (M)⇒ ∃r∈P head(r) = a ∧ r ∈ SUSR(P, a,M)

Proof. By lemma A.2.1 we know that a ∈ ΓP (M)⇒ ∃r∈P head(r) = a ∧M `ΓP
body(r)

Since, under M , the whole body of the rule is true, the only way the rule can be satisfied is by having

the atom in its head also in the interpretation. So, for every rule r of P such that head(r) = a ∧M `ΓP

body(r) holds, we conclude that r is in the Set of Uniquely Satisfied Rules of P, by literal a — the head

of the rule.

A.3. REVISED STABLE MODELS THEOREMS AND LEMMAS 79

head(r) = a ∧M `ΓP
body(r)⇒ r ∈ SUSR(P, a,M)

By lemma A.2.1 it follows that

a ∈ ΓP (M)⇒ ∃r∈P head(r) = a ∧ r ∈ SUSR(P, a,M)

ut

A.3 Revised Stable Models Theorems and Lemmas

Lemma A.3.1. Existence of rule for atoms in a Revised Stable Model

If M is a Revised Stable Model of a NLP P then, for every atom a in M there is at least one rule in P

with head a.

RSMP (M)⇒ ∀a∈M∃r∈P head(r) = a

Proof. By definition of Revised Stable Model,

RSMP (M) ∧ a ∈M ⇒ (a ∈ ΓP (M) ∨ a ∈ RAAP (M))

If a ∈ ΓP (M) then, by lemma A.2.1 we know that ∃r∈P head(r) = a.

If a ∈ RAAP (M), by definition of RSM we know that ∃α≥2Γα
P (M) ⊇ RAAP (M). This means that

∃α≥2a ∈ Γα
P (M).

We know that Γα
P (M) is just a shorthand notation for ΓP (Γα−1

P (M), and we also know that Γα−1
P (M) is

just an interpretation of P. Let us call this interpretation I = Γα−1
P (M). Then, we have that ∃Ia ∈ ΓP (I).

From lemma A.2.1 we conclude again that ∃r∈P head(r) = a. ut

Theorem A.3.1. Stable Models Extension

Every Stable Model of a NLP P is a Revised Stable Model of P — Theorem 4.4.1

Formally,

∀MSMP (M)⇒ RSMP (M)

Proof. Let P be a Normal Logic Program, and let M be such that SMP (M) holds, i.e., M is a Stable

Model of P .

Every Stable Model M of a NLP P is a Minimal Classical Model of P ; thus M complies with the first

condition of the RSM definition.

By definition of Stable Model, M = ΓP (M), and so RAAP (M) = M − ΓP (M) = ∅.
Since RAAP (M) = ∅, the second condition of the RSM definition is trivially satisfied

∃α≥2Γα
P (M) ⊇ RAAP (M) = ∅

80 APPENDIX A. PROOFS OF THEOREMS

Also, since RAAP (M) = ∅ it trivially complies with the third condition of the RSM definition.

M complying with all three conditions of the RSM definition, it is proven that M is a Revised Stable

Model of P . ut

Theorem A.3.2. Existence

Every Normal Logic Program has, at least, one Revised Stable Model

Proof. We have already showed, in Theorem 4.4.1 that every Stable Model of a NLP P is also a Revised

Stable Model of P . So, the proof of the Existence of Revised Stable Models for any NLP P is reduced to

the case where P has no Stable Models at all — otherwise the Existence of Revised Stable Models would

be trivially assured. Hence, we now concentrate only on the case where P , a Normal Logic Program, has

no Stable Models.

Every NLP P has a Well-Founded Model [20], so it is always possible to calculate WFM(P) =<

WFM+(P),WFM−(P),WFMu(P) >, where WFM+(P) is the subset of positive atoms of WFM(P),

WFM−(P) is the subset of negative atoms of WFM(P), and WFMu(P) is the subset of undefined

atoms of WFM(P).

Likewise, it is always possible to calculate the Residual Program of P — PR, — i.e., the most simplified

version of P which preserves its semantics. To calculate PR follow these steps:

1. calculate the WFM(P)

2. delete from P all the rules with ∼ a in the body where a ∈WFM+(P)

3. delete from the bodies of rules all the occurrences of a where a ∈WFM+(P)

4. delete from P all the rules with head a where a ∈WFM+(P)

5. add all the atoms of WFM+(P) to P as facts

6. delete from the bodies of rules all the occurrences of ∼ b where b ∈WFM−(P)

7. delete from P all the rules with b in the body where b ∈WFM−(P)

8. delete from P all the rules with head b where b ∈WFM−(P)

We name the resulting program PR the Residual Program of P . By construction, PR has the same

semantics as P .

Since every NLP has at least one Minimal Model we can calculate one such Minimal Model M of

PR. We can also always calculate its Γ consequences, i.e., ΓP R(M). Again, we can make a further

simplification of PR by doing with ΓP R(M) the steps 2–5 of the previous Residual Program calculation

procedure: deleting from PR all the rules that contradict ΓP R(M) and adding ΓP R(M) as facts. We

will name PR×ΓP R (M) to the resulting program. By construction, it is always possible to build such a

program. Clearly, all the Minimal Models of PR×ΓP R (M) are also Minimal Models of P .

A.3. REVISED STABLE MODELS THEOREMS AND LEMMAS 81

Now we add to PR×ΓP R (M) all the top literals of all active OLONs and all active ILSCs under M as

facts. And now we reiterate this whole process (starting from the Residual Program calculation) at most

ω times — where ω is the first limit ordinal — until a fixed-point program is achieved. By construction,

the Minimal Models of the resulting program are Minimal Models of P . Also by construction, all Minimal

Models of the resulting program respect the third condition of the RSM definition

RAAP (M) is sustainable

By construction, in each step of the transformation process we delete some rules and add a few facts

to the program; this ensures that all Minimal Models of the subsequent intermediate programs of the

transformation process include all added facts — thus “respecting” (accordingly to the notion of “respect”

we defined in 2.5.1) those added facts.

Doing this process with every Minimal Model Mi of P — where {M1,M2, . . . ,Mm} is the set of

Minimal Models of P — we will obtain, at most, n resulting fixed-point programs P i. By construction,

every Minimal Model of every P i is a Minimal Model of P and it respects the third condition of the RSM

definition.

Let MP denote the set of Minimal Models of all P i, i.e.,

MP = {Mj : ∀j≤nMMP i(Mj)}

In subsection 2.4.4 we learned that only NLPs with OLONs or ILSCs with an infinite number of

default negated atoms involved in the ILSC can have no Stable Models. Since this is the case we are

studying now, the NLP P we are considering must have at least one OLON or at least one such ILSC

(or both, in any number).

Let us now consider M ∈ MP . From propositions 2.4.2 and 2.4.5 we know that for every top literal

λi of any active OLON under M , λi ∈ RAAP (M) ∧ Γn+1
P ≥ {λi}, where n is the length of the OLON.

If P has m active OLONs under M with n1, n2, . . . , nm as respective lengths, then, with at most α =

(n1 + 1)(n2 + 1) . . . (nm + 1), we know that Γα
P (M) ⊇ {λ1, λ2, . . . , λm}, where λ1, λ2, . . . , λm are the top

literals of the active OLONs under M .

So, for all {λ1, λ2, . . . , λm} such that each λi is the top literal of an active OLON under M , it is

guaranteed that ∃αΓα
P (M) ⊇ {λ1, λ2, . . . , λm}.

Since the minimum length of an OLON is 1, and by proposition 2.4.5 we know that Γn+1
P ≥ {λi} we

conclude that α ≥ 2 must hold. Hence, finally we conclude that

∃α≥2Γα
P (M) ⊇ {λ1, λ2, . . . , λm}

Consider now, according to [19], the remaining case: the ≤+ relation in P is non-well-founded because

there is an infinitely long decreasing chain along ≤+, i.e., there is at least one ILSC C with an infinite

number of default negations, and C is active under M .

82 APPENDIX A. PROOFS OF THEOREMS

Let C be one of such ILSC in P with {l1, l2, . . . , ln, . . .} as the atoms involved in the ILSC.

If the ILSC C in P with the infinite number of negations is the only ILSC, then, apart from possible

OLONs in P , there are two Stable Models in P : I1 which corresponds to the set of evenly negated

atoms and their consequences, and I2 which corresponds to the set of oddly negated atoms and their

consequences. It is easy to verify that if M ⊇ I1 then I1 ⊆ ΓP (M), and also if M ⊇ I2 then I2 ⊆ ΓP (M).

Let us formalize this intuitive idea and see why it must hold.

Consider Model I1 = {a : l ≤+ a} ∪ {l}, such that l is the top atom of the ILSC C, and C has an

infinite number of rules with at least one default negated atom involved in the ILSC in the body, as just

informally described.

Since there are no loops in the ILSC, if M ⊇ I1, in applying the ΓP operator — described in 2.4 —

with M , the program division part will eliminate all the rules r ∈ P such that ∃li+1∈M ∼ li+1 ∈ body(r).

By definition of ILSC, we know that rule r is such that head(r) = li. Since we assumed I1 to be

{a : l ≤+ a} ∪ {l}, i.e., the set of atoms involved in the ILSC which have an even number of default

negations in the dependency graph from the top literal of the ILSC to themselves, and that the ILSC is

active under M , we must conclude that li — the head of the rule with ∼ li+1 in the body — is not in

ΓP (M).

Consequently, since the ILSC is active under M , ∼ li will be true in ΓP (M). Hence, ∀r′∈C ∼ li ∈
body(r′)⇒M ` body(r′), where C is the ILSC, and so li−1 = head(r′) ∈ ΓP (M).

Moreover, since li−1 ∈ ΓP (M) and li−1 = head(r′)∧ ∼ li ∈ body(r′) and head(r) = li∧ ∼ li+1 ∈
body(r) and li+1 ∈ I1, we must conclude that li−1 ∈ I1 also. Hence, all the atoms in I1 are in ΓP (M),

i.e., M ⊇ I1 ⇒ I1 ⊆ ΓP (M) and none of the atoms in I1 is in RAAP (M). An analogous reasoning can

be used for I2.

This settled, since we assumed that at least one of the atoms involved in the ILSC is in RAAP (M),

we are forced to conclude that the ILSC with an infinite number of rules with default negated atoms in

the bodies is not the cause of those RAA-supported atoms.

So, since the atoms in I1 (I2), for instance, are in ΓP (M), the RAA atoms that are involved in an

ILSC must not be in I1 (I2). Considering the case of I1, the RAA-supported atoms involved in the ILSC

must thus be the ones in I2 (and vice-versa). This means that both I1 and I2 must be subsets of M . In

this case, all the rules in the ILSC with default negated atoms (which are involved in the ILSC) in the

bodies will have their bodies false under M . Hence, none of the I1 nor I2 atoms will be in ΓP (M). On

the other hand, since ΓP (M) has none of the I1 and I2 atoms, ΓP (ΓP (M)) will have all of them — since

under ΓP (M) all the ∼ li are true.

So we conclude that Γ2
P (M) ⊇ I, where I ⊆ RAAP (M) is the set of atoms involved in the ILSC.

If any one of the li atoms is in RAAP (M) then we know that ∀r∈P head(r) = li ⇒ M 0ΓP
body(r);

and either M 0 body(r) or M ` body(r).

In case M 0 body(r) we know that the rule r is satisfied by the body and so r /∈ SUSR(P, li,M). In

case M ` body(r) the only possibility is that ∃b∈body(r)b ∈M ∧ b /∈ ΓP (M), i.e., ∃b∈body(r)b ∈ RAAP (M).

A.3. REVISED STABLE MODELS THEOREMS AND LEMMAS 83

So, if r ∈ SUSR(P, li,M) then, by definition of ILSC, either head(r) = li−1∧ ∼ li ∈ body(r) or

∃b∈RAAP (M)b ∈ body(r).

Let us consider the case where head(r) = li−1∧ ∼ li ∈ body(r)∧@b 6=li∧b 6=li−1∈body(r)b ∈ RAAP (M). We

know that M −{li} `ΓP
body(r). If we take M −L, where L = {li : li ∈ RAAP (M)∧ (∃r∈ILCShead(r) =

li−1∧ ∼ li ∈ body(r)) ∧ @b 6=li∧b 6=li−1∈body(r)b ∈ RAAP (M)}, then M − L `ΓP
body(r). Now, the only

atoms in {l1, l2, . . . , ln, . . .}−L which are in RAAP (M) are those {lj , lk, . . . , lx, . . .} where ∃b∈RAAP (M)b ∈
body(rj)∧head(rj) = lj holds, i.e., they are the RAAP (M) atoms which are in the RAAP (M) set because

they depend on other RAAP (M) atoms.

Thus, if we take M − RAAP (M) = ΓP (M) and calculate its ΓP consequences we will get all the

li atoms which are heads of rules of the ILSC. The ΓP consequences of M − RAAP (M) are simply

ΓP (M −RAAP (M)) = ΓP (ΓP (M)) = Γ2
P (M).

Thus, considering only the RAAP (M) atoms which are involved in an ILSC — let us name it I, —

we conclude that Γ2
P (M) ⊇ I.

Also, since the ΓP operator performs a transfinite iteration of the TP operator, we will also get all

the other atoms of the RAAP (M) set that depend on other RAAP (M) atoms — be they involved in an

ILSC or top literals of OLONs.

We know that RAAP (M) atoms are either top literals of active OLONs or atoms involved in ILSCs.

We already know that if RAAOLON ⊆ RAAP (M) is such that every atom a ∈ RAAOLON is a top literal

of an active OLON under M , then

∃α≥2Γα
P (M) ⊇ RAAOLON

Also, we just concluded that, if RAAILSC ⊆ RAAP (M) is the subset of atoms involved in an active

ILSC under M , then

Γ2
P (M) ⊇ RAAILSC

Since we assumed that P has no Stable Models, we know that every RAA set is partitioned into top

literals of active OLONs, atoms that depend positively on such top literals — which together make up

RAAOLON , — and atoms involved in active ILSCs and atoms that depend positively on such ILSC atoms

— which is RAAILSC , — we conclude that, at most,

Γ2α
P (M) ⊇ RAAP (M)

where α is such that Γα
P (M) ⊇ RAAOLON .

Hence, finally, we proved that

∃α≥2Γα
P (M) ⊇ RAAP (M)

84 APPENDIX A. PROOFS OF THEOREMS

which concludes our proof of Existence of at least one RSM for every NLP.

Lemma A.3.2. Existence of Supermodel

Let P be a NLP such that P = Pa ∪ Pa ∧ Pa ∩ Pa = ∅, Pa = Rel(P, a), and Ma a RSM of Pa.

There is at least one RSM M of P such that M ⊇Ma.

∀MaRSMPa(Ma)⇒ ∃RSMP (M)M ⊇Ma

Proof. Let P be a NLP such that P = Pa ∪ Pa ∧ Pa ∩ Pa = ∅, Pa = Rel(P, a), and Ma a RSM of Pa.

By theorem 4.4.2 we know that every NLP has at least one RSM. So, let M be a RSM of Pa ∪Ma.

Clearly M ⊇Ma, since all the atoms in Ma are facts in Pa ∪Ma.

Since Ma is a RSM of Pa and M is a RSM of Pa ∪Ma, it follows trivially that M is a Minimal Model

of Pa ∪ Pa = P .

Since Ma is a RSM of Pa we know that ∃α≥2Γα
Pa

(Ma) ⊇ RAAPa
(Ma). Moreover, since M is a RSM of

Pa∪Ma we also know that ∃α′≥2Γα′

Pa∪Ma
(M) ⊇ RAAPa∪Ma

(M). Hence, ∃2≤α′′≤αα′Γα′′

P (M) ⊇ RAAP (M).

Again, since Ma is a RSM of Pa, we know that RAAPa(Ma) is sustainable. Also, RAAPa∪Ma(M) is

sustainable. We know that RAAP (M) = M − ΓP (M) = M − ΓPa∪ΓPa (Ma)(M). Also, RAAPa∪Ma
(M) =

M − ΓPa∪Ma
(M) = M − ΓPa∪ΓPa (Ma)∪RAAPa (Ma)(M). Naturally, RAAP (M) ⊇ RAAPa∪Ma

(M), and

the atoms in RAAP (M)−RAAPa∪Ma
(M) are just the RAAPa

(Ma) plus the atoms of RAAP (M) which

depend positively on atoms of RAAPa(Ma). We already know that both RAAPa(Ma) and RAAPa∪Ma(M)

are sustainable. The only possibility for RAAP (M) to be not sustainable is, by definition of sustainable

set, to have some atom a such that RAAP (M)−{a} is sustainable and a /∈ ΓP∪(RAAP (M)−{a})(WFM(P∪
(RAAP (M)− {a}))). We have just seen that the atoms in RAAP (M) which are not in RAAPa∪Ma

(M)

are RAAPa(Ma) and the ones that depend positively on them. So, as soon as we add some atom of

RAAPa(Ma) to P that atom becomes true in the WFM ; and this can only render all other atoms which

depend positively on that atom as true or else they remain undefined. Thus, there is no possibility

RAAP (M) is not sustainable.

M complying with all three RSM definition conditions, since M is such that RSMPa∪Ma(M) holds,

then M ⊇Ma ∧RSMP (M) also holds. ut

Lemma A.3.3. Decomposition of the RAA set

Let P be a NLP such that P = Pa ∪ Pa ∧ Pa ∩ Pa = ∅, and Pa = Rel(P, a), and M a RSM of P .

RAAP (M) = RAAPa(Ma) ∪
(
RAAPa∪ΓPa (Ma)(M)−Ma

)
Proof. Let P be a NLP such that P = Pa ∪ Pa ∧ Pa ∩ Pa = ∅, and Pa = Rel(P, a), and M a RSM of P .

From lemma A.3.1 we know that M ⊆ Heads(P). So, it is possible to partition M in the following

way: M = Ma ∪Ma, where Ma ⊆ Heads(Pa) and Ma ⊆ Heads(Pa).

Since RAAP (M) ⊆M , we can also partition RAAP (M) into RAAPa and RAAPa , such that RAAPa ⊆
Ma and RAAPa ⊆Ma.

A.3. REVISED STABLE MODELS THEOREMS AND LEMMAS 85

Naturally, RAAPa ⊆ Heads(Pa) and RAAPa ⊆ Head(Pa).

Since Pa = Rel(P, a), none of the rules in Pa is used by the Γ operator to obtain as conclusion any

head of Pa. By RAAPa
⊆Ma we know that RAAPa

= RAAPa
(Ma). Hence, RAAPa

(M) = RAAP (M)−
RAAPa

(Ma) = (M − ΓP (M))− (Ma − ΓPa
(Ma)) = M − ΓP (M)−Ma, since ΓPa

(Ma) ⊆ ΓP (M).

Since P ⊇ Pa and Pa = Rel(P, a), we know that ΓPa(Ma) = ΓPa(M), because none of the atoms

in M −Ma can be used by the Γ operator to derive anything, or prevent anything from being derived,

under Pa.

On the other hand, the atoms in Ma can be used by the TP operator iteration performed by the Γ

operator to derive atoms under P − Pa = Pa. So, ΓP (M) = ΓPa(Ma) ∪ ΓPa∪ΓPa
(Ma)(M).

Now, RAAP (M) − RAAPa
(Ma) = M − ΓP (M) −Ma = M − (ΓPa

(Ma) ∪ ΓPa∪ΓPa
(Ma)(M)) −Ma =

RAAPa∪ΓPa
(Ma)(M)−Ma. Hence RAAP (M) = RAAPa

(Ma) ∪
(
RAAPa∪ΓPa (Ma)(M)−Ma

)
. ut

Lemma A.3.4. Existence of submodel

Let P be a NLP such that P = Pa ∪ Pa ∧ Pa ∩ Pa = ∅, and Pa = Rel(P, a).

For every M that is a Revised Stable Model of P there is at least one Ma, subset of M , such that Ma

is a Revised Stable Model of Rel(P, a) = Pa.

∀MRSMP (M)⇒ ∃MaRSMPa(Ma) ∧M ⊇Ma (A.6)

Proof. Let M be a RSM of P , RSMP (M). We know that Rel(P, a) = Pa ⊆ P . Since M is a RSM of P

we know it is a Minimal Model of P — by definition of Minimal Model. This means that all the rules in

P are minimally satisfied by M .

Let Ma = M −Heads(Pa). Ma is then the subset of M which is a Minimal Model of Pa.

If Ma = ΓPa
(Ma), i.e., Ma is a Stable Model of Pa, and by Theorem 4.4.1 we already know that Ma

is a RSM of Pa.

Let us now analyze the remaining case where Ma is not a Stable Model of Pa.

Since M ⊆ Heads(P) and Ma = M − Heads(Pa), we conclude that Ma ⊆ Heads(Pa), and also

RAAPa
(Ma) ⊆ RAAP (M).

Knowing M is a RSM of P , we know that ∃α≥2Γα
P (M) ⊇ RAAP (M) ⊇ RAAPa

(Ma).

So, clearly, ∃α′≥2Γα′

Pa
(Ma) ⊇ RAAPa(Ma), and α′ ≤ α such that ∃α≥2Γα

P (M) ⊇ RAAP (M).

Also, since M is a RSM of P we know that RAAP (M) is sustainable. By lemma A.3.3 we know that

RAAP (M) = RAAPa
(Ma) ∪

(
RAAPa∪ΓPa (Ma)(M)−Ma

)
. This means that RAAPa

(Ma) ⊆ RAAP (M).

RAAPa
(Ma) ⊆ Ma, and by the recursive nature of the Sustainability definition, since Ma is a Minimal

Model of Pa and RAAP (M) is sustainable we conclude that RAAPa(Ma) is also sustainable.

Ma complying with all three RSM definition conditions we conclude that Ma ⊆ M is a RSM of

Pa = Rel(P, a) ⊆ P , where RSMP (M). ut

Theorem A.3.3. The Revised Stable Models semantics is Relevant (Theorem 4.4.3)

If P is a NLP such that P = Pa ∪ Pa ∧ Pa ∩ Pa = ∅ ∧ Pa = Rel(P, a), then

86 APPENDIX A. PROOFS OF THEOREMS

(∀MRSMP (M)⇒ a ∈M)⇔ (∀Ma
RSMPa

(Ma)⇒ a ∈Ma)

Proof. If we assume by hypothesis that ∀Ma
RSMPa

(Ma)⇒ a ∈Ma then, by lemma A.3.4 it is trivial to

conclude that ∀MRSMP (M)⇒ a ∈M .

On the other hand, let us now consider that ∀MRSMP (M) ⇒ a ∈ M . By definition 2.2.8 we know

that (P = Pa ∪ Pa) ∧ (Pa ∩ Pa = ∅), where Pa stands for Rel(P, a).

We are assuming that ∀MRSMP (M) ⇒ a ∈ M . Since a ∈ M then either a ∈ ΓP (M) or a ∈
RAAP (M). In this second case — where a ∈ RAAP (M) — by definition of RSM, ∃α≥2Γα

P (M) ⊇
RAAP (M) 3 a. We can thus trivially conclude that

a ∈M ⇒ ∃n∈Na ∈ Γn
P (M)

By lemma A.2.2 we know that a ∈ ΓP (I) ⇒ ∃r∈P head(r) = a ∧ r ∈ SUSR(P, a, I). Clearly, such a

rule r with head a is in Rel(P, a) = Pa. Since r ∈ Pa ∧ head(r) = a ∧ a ∈ ΓP (M) then we conclude that

a ∈ ΓPa(M).

By lemma A.3.2 we know that ∀Ma
RSMPa

(Ma) ⇒ ∃M⊇Ma
RSMP (M). Since a ∈ ΓPa

(M) it follows

trivially that a ∈ ΓPa
(Ma), and so a ∈Ma. From this we conclude that ∀Ma

RSMPa
(Ma)⇒ a ∈Ma. ut

Theorem A.3.4. The Revised Stable Models semantics is Cumulative (Theorem 4.4.4)

∀P NLP (P)⇒
(
∀a,ba ∈ RSMS(P) ∧ b ∈ RSMS(P)⇒ b ∈ RSMS(P ∪ {a})

)
Proof. Let P be a NLP and a and b be such that a ∈ RSMS(P) ∧ b ∈ RSMS(P). Let us also assume

that b /∈ RSMS(P ∪ {a}). In this case we know that ∃MRSMP∪{a}(M) ∧ b /∈M .

Since we know that ∀M ′RSMP (M ′) ⇒ b ∈ M ′, by corollary 2.3.1 ∀M ′RSMP (M ′) ⇒ ∃r∈P r ∈
SUSR(P, b, M ′). If ∃MRSMP∪{a}(M) ∧ b /∈M then ∀M ′RSMP (M ′)⇒ ∀r∈SUSR(P,b,M ′)r /∈ SUSR(P ∪
{a}, b,M) — in fact, SUSR(P ∪ {a}, b,M) = ∅.

Since r ∈ SUSR(P, b, M ′) we know that either head(r) = b ∧M ′ ` body(r) or ∼ b ∈ body(r) ∧M ′ `
body(r)− {∼ b}.

In the first case — head(r) = b ∧ M ′ ` body(r) — the only way the addition of a as a fact to

P can make r /∈ SUSR(P ∪ {a}, b,M) hold is if ∼ a ∈ body(r). In that case, since we assumed

∀M ′RSMP (M ′)⇒ a ∈M ′, we must conclude that r /∈ SUSR(P, b, M ′), because a also satisfies the rule

r. This contradicts the previously assumed hypothesis that r ∈ SUSR(P, b, M ′).

The only possibility left is ∼ b ∈ body(r)∧M ′ ` body(r)−{∼ b}. By the same kind of reasoning, ∼ a

must not be in body(r), otherwise since ∀M ′RSMP (M ′) ⇒ a ∈ M ′, we conclude r /∈ SUSR(P, b, M ′).

So the only possibility is that head(r) = a; but also this must not be the case, otherwise S(P, r, a), and

r /∈ SUSR(P, b, M ′). This again contradicts the initial hypothesis that r ∈ SUSR(P, b, M ′).

Hence, we must conclude that ∃MRSMP∪{a}(M) ∧ b /∈ M does not hold, i.e., the Revised Stable

Models semantics is Cumulative. ut

Appendix B

Examples

In this chapter we present a series of examples we used throughout the process of definition of the Revised

Stable Models semantics. These NLPs, though simple, test very precise conditions and situations and

revealed themselves as a valuable tool for testing the conditions of the definition against the intended

result.

For simplicity and for the sake of minimality of space used, in the following examples we only show

the Minimal Models of the NLPs instead of all its possible interpretations.

B.1 Examples vs RSM conditions

Example B.1.1. Simple Odd-Loop

a←∼ a

Candidate Min.Mod. M {a}
ΓP (M) ∅

RAAP (M) = M − ΓP (M) {a}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2

RAAP (M) is Sustainable? Yes

Is RSM ? Yes

Example B.1.2. Simple Even-Loop

a←∼ b

b←∼ a

87

88 APPENDIX B. EXAMPLES

Candidate Min.Mod. M {a} {b}
ΓP (M) {a} {b}

RAAP (M) = M − ΓP (M) ∅ ∅
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2 Yes, α = 2

RAAP (M) is Sustainable? Yes Yes

Is RSM ? Yes Yes

Example B.1.3. Odd-Loop Over 3 Literals
a←∼ b

b←∼ c

c←∼ a

Candidate Min.Mod. M {a, b} {b, c} {a, c}
ΓP (M) {b} {c} {a}

RAAP (M) = M − ΓP (M) {a} {b} {c}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 4 Yes, α = 4 Yes, α = 4

RAAP (M) is Sustainable? Yes Yes Yes

Is RSM ? Yes Yes Yes

Example B.1.4. Even-Loop vs Odd-Loop
c← a,∼ c

a←∼ b

b←∼ a

Candidate Min.Mod. M {b} {a, c}
ΓP (M) {b} {a}

RAAP (M) = M − ΓP (M) ∅ {c}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2 Yes, α = 2

RAAP (M) is Sustainable? Yes Yes

Is RSM ? Yes Yes

Example B.1.5. Complex Odd-Loop
a←∼ a,∼ b

d←∼ a

b← d,∼ b

Candidate Min.Mod. M {a} {b, d}
ΓP (M) ∅ {d}

RAAP (M) = M − ΓP (M) {a} {b}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2 Yes, α = 2

RAAP (M) is Sustainable? Yes Yes

Is RSM ? Yes Yes

B.1. EXAMPLES VS RSM CONDITIONS 89

Example B.1.6. Illegal atom in the RAA set
a←∼ b

b←∼ a

t← a, b

k ←∼ t

i←∼ k

Candidate Min.Mod. M {a, k} {b, k} {a, t, i} {b, t, i}
ΓP (M) {a, k} {b, k} {a, i} {b, i}

RAAP (M) = M − ΓP (M) ∅ ∅ {t} {t}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2 Yes, α = 2 No No

RAAP (M) is Sustainable? Yes Yes Yes Yes

Is RSM ? Yes Yes No No

Example B.1.7. Illegal non-minimal RAA set
a←∼ a

b←∼ a

c←∼ b

d←∼ c

Candidate Min.Mod. M {a, c} {a, b, d}
ΓP (M) {c} {d}

RAAP (M) = M − ΓP (M) {a} {a, b}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2 Yes, α = 2

RAAP (M) is Sustainable? Yes No

Is RSM ? Yes No

Example B.1.8. Legal non-minimal RAA set
a←∼ b

b←∼ a

c← a,∼ c

c← b,∼ c

d← b,∼ d

Candidate Min.Mod. M {a, c} {b, c, d}
ΓP (M) {a} {b}

RAAP (M) = M − ΓP (M) {c} {c, d}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2 Yes, α = 2

RAAP (M) is Sustainable? Yes Yes

Is RSM ? Yes Yes

Example B.1.9. Intermixed OLONs

90 APPENDIX B. EXAMPLES

a←∼ b

b←∼ c, e

c←∼ a

e←∼ e, a

Candidate Min.Mod. M {a, c, e} {b, c} {a, b, e}
ΓP (M) {a} {c} {}

RAAP (M) = M − ΓP (M) {c, e} {b} {a, b, e}
∃α≥2Γα

P (M) ⊇ RAAP (M) Yes, α = 2 Yes, α = 2 Yes, α = 2

RAAP (M) is Sustainable? Yes Yes Yes

Is RSM ? Yes Yes Yes

Appendix C

Source Code of the Implementations

Both implementations here shown were designed and built to cope with just simple rules of a Normal

Logic Program, in the sense that there must not be any variables in the program. These implementations

are thus prepared only for grounded NLPs.

More general and efficient implementations are already in the plans of our future work.

C.1 The Meta-Interpreter for RSM

The implementation of the RSM Meta-Interpreter here presented runs under SWI-Prolog and, with minor

modifications, it can be run under XSB-Prolog. This implementations consists on 2 files: “utils.P” which

contains several useful predicates; and “rsm_interpreter.P” which contains the main predicates for

top-down query answering based on Revised Stable Models.

We now show the contents of each of these files.

rsm_interpreter.P:

%%%

%

% Revised Stable Models Top-Down Query Solver

%

% Coded by: Alexandre Miguel Pinto amp@di.fct.unl.pt

% 2005/01

%

% Usage:

%

% * predicate loadRSMProgram/1 loads the rules in a file. The rules

91

92 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

% should be Normal Logic Program rules, i.e., without "not"s in the

% heads of rules.

%

% Rules take thus the form: head <- lit1, not lit2, ..., litn

%

% * predicate query/4 solves the query-list in the first argument

% considering as true the literals in the second argument. Typically

% the 2nd argument is an empty list in order not to influence the

% derivation process. However, this 2nd argument can be used as a

% mechanism for reasoning under hypothetical scenarios (possibly

% counterfactual reasoning?). The third argument should be a

% variable and it will contain the literals that were considered true

% in the derivation process (a kind of mixture of abduction with

% tabling). The fourth argument should also be a variable an it is

% just for internal use - it keeps the list of ancestors during the

% derivation process.

%

% This implementation is just a first prototype built to illustrate how

% the Revised Stable Models semantics allows top-down query answering.

%

%%%

%:- import append/3,member/2 from basics.

%:- dynamic hasRules/1, fact/1, rule/2.

:- op(900, fy, not).

:- op(1110, xfy, <-).

:- op(1200, xfx, :-).

:- [’utils.P’].

%%%

%

% Loading of KB

%

init :- clean,

C.1. THE META-INTERPRETER FOR RSM 93

touch(fact/1),

touch(hasRules/1),

touch(rule/2).

clean :-

retractall(hasRules(_)),

retractall(fact(_)),

retractall(rule(_,_)).

loadRSMProgram(Filename) :-

init,

exists_file(Filename),

see(Filename),

loadRSMRules, !,

seen.

loadRSMRules :- (repeat, continue, !) ; true.

continue :-

(read(Rule),

Rule \= end_of_file, !,

loadRSMRule(Rule), !,

fail);

true.

loadRSMRule((Head <- Body)) :- !,

my_assert(hasRules(Head)), !,

body2list(Body, BodyList),

my_assert(rule(Head, BodyList)), !.

loadRSMRule(Fact) :- !,

my_assert(hasRules(Fact)), !,

my_assert(fact(Fact)), !.

body2list((First, Rest), [First|LRest]) :- body2list(Rest, LRest).

body2list(Elem, [Elem]).

94 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

%

% Loading of KB

%

%%%

%%%

%

% Specific utilities

%

negLit(not Lit, not Lit) :- !.

negLit(Lit, not Lit).

negLit(not _).

posLit(not Lit, Lit) :- !.

posLit(Lit, Lit).

posLit(not _) :- !, fail. posLit(_).

toggle(Lit, TLit) :- posLit(Lit), !, negLit(Lit, TLit), !.

toggle(Lit, TLit) :- negLit(Lit), !, posLit(Lit, TLit), !.

%

% Specific utilities

%

%%

%%

%

% query

%

query([], A, A, _) :- !.

query([Lit|Rest], AbdsIn, AbdsOut, Ancestors) :-

queryLit(Lit, AbdsIn, AbdsTemp, Ancestors), !,

query(Rest, AbdsTemp, AbdsOut, Ancestors).

%

C.1. THE META-INTERPRETER FOR RSM 95

% query

%

%%

%%

%

% queryLit

%

queryLit(Lit, AbdsIn, AbdsOut, _) :-

((fact(Lit), append(AbdsIn, [Lit], AbdsOut)) ;

(member(Lit, AbdsIn), AbdsOut = AbdsIn)), !.

queryLit(Lit, Abds, _, _) :-

toggle(Lit, TLit),

member(TLit, Abds), !,

fail.

queryLit(Lit, _, _, _) :-

posLit(Lit),

\+hasRules(Lit), !,

fail.

queryLit(not Lit, AbdsIn, AbdsOut, _) :-

\+ hasRules(Lit), !,

append(AbdsIn, [not Lit], AbdsOut).

queryLit(Lit, AbdsIn, AbdsOut, Ancestors) :-

posLit(Lit), !,

append(Ancestors, [Lit], PossibleLoop), !,

(loop(PossibleLoop, _, LoopType) ->

(LoopType = positiveLoop ->

(!, fail)

;

append(AbdsIn, [Lit], AbdsOut), !

), !

;

(rule(Lit, Body),

append(Ancestors, [Lit], DeepAncestors),

query(Body, AbdsIn, AbdsOut, DeepAncestors), !)).

96 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

queryLit(not Lit, AbdsIn, AbdsOut, Ancestors) :- !,

append(Ancestors, [not Lit], PossibleLoop), !,

(loop(PossibleLoop, _, LoopType) ->

append(AbdsIn, [Lit], AbdsOut), !,

(LoopType = evenLoop -> !, fail ; true), !

;

rule(Lit, Body),

append(Ancestors, [not Lit], DeepAncestors), !,

\+ query(Body, AbdsIn, AbdsOut, DeepAncestors), !,

append(AbdsIn, [not Lit], AbdsOut), !).

%

% queryLit

%

%%

%%

%

% Loop Detection

%

loop(Path, LitInLoop, LoopType) :- !,

append(Begining, [LastLit], Path), !,

posLit(LastLit, PosLastLit), !,

negLit(LastLit, NegLastLit), !,

(nth(PosLastLit, TempPIndex, Begining) ->

(nth(NegLastLit, TempNIndex, Begining) ->

min([TempPIndex, TempNIndex], Index)

;

Index = TempPIndex

)

;

nth(NegLastLit, Index, Begining)

), !,

LitInLoop = PosLastLit, !,

get_sublist(Path, Index, last, Loop), !,

get_loop_type(Loop, LoopType), !.

C.1. THE META-INTERPRETER FOR RSM 97

nnl([], 0).

nnl([not _|Rest], Number) :- !,

nnl(Rest, NumberAux),

Number is NumberAux + 1.

nnl([_|Rest], Number) :- !, nnl(Rest, Number).

get_loop_type(Loop, LoopType) :-

nnl(Loop, NNLAux),

Loop = [First|_],

(negLit(First) ->

NNL is NNLAux - 1

;

NNL = NNLAux),

(NNL = 0 ->

LoopType = positiveLoop

;

(even(NNL) ->

LoopType = evenLoop

;

LoopType = oddLoop)).

%

% Loop Detection

%

%%

utils.P:

%%

%

% Aritmetic utilities

%

min([N], N).

min([F|R], F) :- min(R, X), F < X, !.

min([_|R], X) :- min(R, X).

98 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

max([N], N).

max([F|R], F) :- max(R, X), F > X, !.

max([_|R], X) :- max(R, X).

even(N) :- (X is N mod 2), X = 0.

odd(N) :- (X is N mod 2), X = 1.

%

% Aritmetic utilities

%

%%%

%%%

%

% Assert / Retract utilities

%

my_assert(G) :- (\+ retract(G) -> assert(G) ; assert(G)).

my_retract(G) :- G, !, retract(G), my_retract(G).

my_retract(_).

touch(Predicate/Arity) :-

functor(Term, Predicate, Arity),

assert(Term),

retract(Term).

%

% Assert / Retract utilities

%

%%%

%%%

%

% List utilities

%

C.1. THE META-INTERPRETER FOR RSM 99

is_sublist([],_).

is_sublist(_,[]) :- !, fail.

is_sublist([H|T], L) :- member(H,L), is_sublist(T,L).

get_sublist([], _, _, []).

get_sublist(L, S, last, SL) :-

length(L, Length),

get_sublist(L, S, Length, SL).

get_sublist(_, StartIndex, EndIndex, []) :-

StartIndex > EndIndex, !.

get_sublist(List, StartIndex, EndIndex, SubList) :-

StartIndex < 1, !,

get_sublist(List, 1, EndIndex, SubList).

get_sublist(List, StartIndex, _, []) :-

length(List, Length),

StartIndex > Length, !.

get_sublist(List, StartIndex, EndIndex, SubList) :-

length(List, Length),

EndIndex > Length, !,

get_sublist(List, StartIndex, Length, SubList).

get_sublist(List, I, I, [Elem]) :-

nth(Elem, I, List), !.

get_sublist([First|Rest], 1, EndIndex, [First|SubRest]) :-

NewEndIndex is EndIndex - 1,

get_sublist(Rest, 1, NewEndIndex, SubRest).

get_sublist([_|Rest], StartIndex, EndIndex, SubList) :-

NewStartIndex is StartIndex - 1,

get_sublist(Rest, NewStartIndex, EndIndex, SubList).

nth(_, _, []) :- !, fail.

nth(E, 1, [E|_]) :- !.

nth(E, N, [X|R]) :-

E \= X,

nth(E, M, R),

100 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

N is M + 1.

intersection([], _, []).

intersection(_, [], []).

intersection([Elem|Rest], List, [Elem|IRest]) :-

member(Elem, List), !,

intersection(Rest, List, IRest).

intersection([_|Rest], L2, L3) :- intersection(Rest, L2, L3).

union([], L, L).

union(L, [], L).

union([First|Rest], L2, URest) :-

member(First, L2), !,

union(Rest, L2, URest).

union([First|Rest], L2, [First|URest]) :- union(Rest, L2, URest).

subtract(L, [], L).

subtract([], _, []).

subtract([Elem|Rest], L2, L3) :-

member(Elem, L2), !,

subtract(Rest, L2, L3).

subtract([Elem|Rest], L2, [Elem|L3]) :- subtract(Rest, L2, L3).

num(X,[X|T],T).

num(X,[H|T],[H|B]) :- num(X,T,B).

get_subset([],_).

get_subset([H|T],A) :- num(H,A,B), get_subset(T,B).

sort_lists([], []).

sort_lists([First|Rest], [SFirst|SRest]) :-

sort(First, SFirst),

sort_lists(Rest, SRest).

powerset(Set, PS) :-

setof(S, get_subset(S, Set), GPS),

sort_lists(GPS, SGPS),

C.1. THE META-INTERPRETER FOR RSM 101

remove_duplicates(SGPS, PS).

remove_duplicates([],[]).

remove_duplicates([E|L],R) :-

member(E,L), !,

remove_duplicates(L,R).

remove_duplicates([E|L],[E|R]) :-

remove_duplicates(L,R).

permutation([], []).

permutation(L1, L2) :-

length(L1, TL),

length(L2, TL),

is_sublist(L1, L2),

is_sublist(L2, L1).

reverse([], []) :- !.

reverse([E|R], L) :-

reverse(R, RestRev), !,

append(RestRev, [E], L), !.

%

% List utilities

%

%%

%%

%

% String utilities

%

string_replace(’’, _, _, ’’).

string_replace(String, Search, _, String) :-

\+ sub_string(String, _, _, _, Search).

string_replace(String, Search, Replace, Result) :-

102 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

string_concat(Begining, Rest, String),

string_concat(Head, Search, Begining),

string_concat(Head, Replace, NewBegining),

string_replace(Rest, Search, Replace, RestResult),

string_concat(NewBegining, RestResult, Result).

%

% String utilities

%

%%%

C.2 The RSM Calculator

The implementation of the RSM Calculator is, like the top-dow implementation, based on 2 files: the

“utils.P” file already shown in the previous section, and the following “rsm_calculator.P” file.

rsm_calculator.P:

%%%

%

% Revised Stable Models Generator

%

% Coded by: Alexandre Miguel Pinto amp@di.fct.unl.pt

% 2005/02

%

% Usage:

%

% * predicate loadRSMProgram/1 is the same as in the top-down

% query solver.

%

% * predicate genRSMs/1 produces as output the list of Revised

% Stable Models of the loaded RSM Program.

%

%

%%%

%:- import append/3,member/2 from basics.

C.2. THE RSM CALCULATOR 103

%:- import reverse/2 from lists.

%:- dynamic hasRules/1, fact/1, rule/2.

:- op(900, fy, not).

:- op(1110, xfy, <-).

:- op(1200, xfx, :-).

:- [’utils.P’].

%%%

%

% Loading of KB

%

init :-

op(900, fy, not),

op(1110, xfy, <-),

op(1200, xfx, :-),

[’utils.P’],

clean,

touch(fact/1),

touch(hasRules/1),

touch(rule/2),

touch(lit/1).

clean :-

retractall(hasRules(_)),

retractall(fact(_)),

retractall(rule(_,_)),

retractall(lit(_)).

loadRSMProgram(Filename) :-

init,

exists_file(Filename),

see(Filename),

loadRSMRules, !,

seen.

104 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

loadRSMRules :- (repeat, continue, !) ; true.

continue :-

(read(Rule),

Rule \= end_of_file, !,

loadRSMRule(Rule), !,

fail);

true.

loadRSMRule((Head <- Body)) :- !,

my_assert(hasRules(Head)), !,

my_assert(lit(Head)), !,

body2list(Body, BodyList), !,

my_assert_lits(BodyList), !,

my_assert(rule(Head, BodyList)), !.

loadRSMRule(Fact) :- !,

my_assert(hasRules(Fact)), !,

my_assert(fact(Fact)), !,

my_assert(lit(Fact)), !.

body2list((First, Rest), [First|LRest]) :- body2list(Rest, LRest).

body2list(Elem, [Elem]).

my_assert_lits([]). my_assert_lits([not Lit|Rest]) :- !,

my_assert(lit(Lit)), !,

my_assert_lits(Rest).

my_assert_lits([Lit|Rest]) :- !,

my_assert(lit(Lit)), !,

my_assert_lits(Rest).

%

% Loading of KB

%

%%%

C.2. THE RSM CALCULATOR 105

%%%

%

% RSM Detector

%

is_sm(Model) :- raa(Model, []), !.

is_rsm(Model) :-

raa(Model, RAA), !,

(RAA = [] -> % It’s a Stable Model!

true, ! % So, it’s a Revised Stable Model

;

% If it’s not a Stable Model

sustainable(RAA),!,

% Check if it complies with the 3rd condition

gammaNsupseteqRAA(Model, RAA, _)

% and with the 2nd condition of the RSM definition

).

sustainable([]) :- !.

sustainable([_]) :- !.

sustainable(L) :- forall(member(X,L), sustainability_implication(X,L)).

sustainability_implication(X,[]) :- !.

sustainability_implication(X,L) :-

delete(L,X,L_X),

(\+ sustainable(L_X) ;

add_facts(L_X), !,

wfm(WFM_P_U_L_X), !,

gamma(WFM_P_U_L_X, TrueOrUndefOfP_U_L_X), !,

member(X, TrueOrUndefOfP_U_L_X)).

add_facts([]) :- !. add_facts([Fact|RestFacts]) :-

my_assert(fact(Fact)), !,

add_facts(RestFacts).

106 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

remove_added_facts([]) :- !.

remove_added_facts([Fact|RestFacts]) :-

my_retract(fact(Fact)), !,

remove_added_facts(RestFacts).

%

% RSM Detector

%

%%

%%

%

% Generate Revised Stable Models

%

genRSMs(RSMs) :-

genMMs(MMs), !,

% RSMs are Minimal Models - generate

% the possible candidates: the MMs

findRSMs(MMs, RSMs), !.

findRSMs(MMs, RSMs) :-

reverse(MMs, RMMs), !,

buildRSMs(RMMs, RSMsAux), !,

reverse(RSMsAux, RSMs), !.

buildRSMs([], []) :- !.

buildRSMs([MM|RestMMs], RSMs) :-

(is_rsm(MM, RestMMs) ->

buildRSMs(RestMMs, RestRSMs), !,

append([MM], RestRSMs, RSMs), !

;

buildRSMs(RestMMs, RSMs)

).

%

% Generate Revised Stable Models

C.2. THE RSM CALCULATOR 107

%

%%%

%%%

%

% Generate Candidate Minimal Models

%

genMMs(MMs) :-

setof(Lit, lit(Lit), Lits), !,

powerset(Lits, Interpretations), !,

getCMs(Interpretations, CMs), !,

minimize(CMs, MMs), !.

getCMs([], []) :- !.

getCMs([Interpretation|RestInterpretations], CMs) :-

(is_CM(Interpretation) -> % Interpretation is a Classical Model

getCMs(RestInterpretations, RestCMs), !,

append([Interpretation], RestCMs, CMs), !

;

getCMs(RestInterpretations, CMs), !).

is_CM(Interpretation) :-

program_division(Interpretation, Rules), !,

iterate_Tp(Interpretation, Rules, Result), !,

(setof(Fact, fact(Fact), Fs) ->

Facts = Fs

;

Facts = []

), !,

union(Facts, Result, TPResult), !,

is_sublist(TPResult, Interpretation), !.

minimize([], []) :- !.

minimize(CMs, MMs) :-

append(Before, [LastCM], CMs), !,

(is_minimal(LastCM, Before) ->

108 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

minimize(Before, OtherMMs), !,

append(OtherMMs, [LastCM], MMs), !

;

minimize(Before, MMs)), !.

is_minimal(_, []) :- !.

is_minimal(Set, [FirstSet|RestSetList]) :- !,

\+ is_sublist(FirstSet, Set), !,

is_minimal(Set, RestSetList), !.

%

% Generate Candidate Minimal Models

%

%%%

%%%

%

% WFM

%

wfm(WFM) :- iterateGamma2ToFixpoint([], WFM).

iterateGamma2ToFixpoint(LastGamma2, Fixpoint) :-

gamma2(LastGamma2, NewGamma2), !, % apply Gamma2

(LastGamma2 = NewGamma2 -> % If it is a fixpoint

Fixpoint = LastGamma2 % then stop

;

iterateGamma2ToFixpoint(NewGamma2, Fixpoint)).

% else continue Gamma2 iterations

%

% WFM

%

%%%

%%%

%

C.2. THE RSM CALCULATOR 109

% Gamma^N

%

gamma(Model, 0, Model) :- !.

gamma(Model, 1, Gamma) :- !,

gamma(Model, Gamma), !.

gamma(Model, N, GammaN) :- !,

gamma(Model, Gamma), !,

M is N - 1, !,

gamma(Gamma, M, GammaN), !.

%%%%%%%%%

% Gamma2

gamma2(Model, Gamma2) :- !, gamma(Model, 2, Gamma2), !.

% Gamma2

%%%%%%%%%

%

% Gamma^N

%

%%

%%

%

% Gamma^N >= RAA_P(M) ?

%

gammaNsupseteqRAA(Model, RAA, N) :-

gamma(Model, FirstGamma), !,

gamma(FirstGamma, SecondGamma), !,

anyGammaSupseteqRAA([SecondGamma], RAA, M), !,

N is M + 1.

anyGammaSupseteqRAA(GammasList, RAA, M) :-

append(_, [LastGamma], GammasList), !,

(is_sublist(RAA, LastGamma) ->

length(GammasList, M)

110 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

;

gamma(LastGamma, NewGamma), !,

(member(NewGamma, GammasList) ->

!, fail, !

;

append(GammasList, [NewGamma], NewGammasList), !,

anyGammaSupseteqRAA(NewGammasList, RAA, M), !

)

).

%

% Gamma^N >= RAA_P(M) ?

%

%%

%%

%

% Gamma^N Fixpoint

%

gammaNfixpoint(Interpretation, N, Fixpoint) :-

gammaNfixpoint(Interpretation, [], N, Fixpoint), !.

gammaNfixpoint(Interpretation, [], N, Fixpoint) :- !,

gammaNfixpoint(Interpretation, [Interpretation], N, Fixpoint), !.

gammaNfixpoint(Interpretation, GammasList, N, Fixpoint) :-

append(RestBefore, [LastGamma], GammasList), !,

(nth(LastGamma, Index, RestBefore) ->

N is Index - 1,

Fixpoint = LastGamma

;

gamma(LastGamma, NewGamma), !,

append(GammasList, [NewGamma], NewGammasList), !,

gammaNfixpoint(Interpretation, NewGammasList, N, Fixpoint), !), !.

%

% Gamma^N Fixpoint

%

C.2. THE RSM CALCULATOR 111

%%

%%

%

% RAA Set

%

raa(Model, RAA) :-

gamma(Model, Gamma), !,

is_sublist(Gamma, Model), !,

% Any Classical Model is greater than or equal to its Gamma

subtract(Model, Gamma, RAA), !.

%

% RAA Set

%

%%

%%

%

% Gamma Operator

%

gamma(Interpretation, Result) :-

program_division(Interpretation, Rules), !,

iterate_Tp_omega(Rules, Result).

program_division(Interpretation, Rules) :-

get_alive_rules(Interpretation, AliveRules), !,

remove_defaults(AliveRules, Rules), !.

get_alive_rules([], AliveRules) :- !,

setof(rule(H,B), rule(H,B), AliveRules), !.

get_alive_rules([Lit|Rest], AliveRules) :-

setof(rule(H,B), rule(H,B), AllRules), !,

get_remaining_alive_rules([Lit|Rest], AllRules, AliveRules), !.

112 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

get_remaining_alive_rules([], AllRules, AllRules) :- !.

get_remaining_alive_rules([Lit|Rest], AllRules, AliveRules) :-

remove_rules_with_not_Lit(AllRules, Lit, RemainingRules), !,

get_remaining_alive_rules(Rest, RemainingRules, AliveRules).

remove_rules_with_not_Lit([], _, []) :- !.

remove_rules_with_not_Lit([Rule|RestRules], Lit, RemainingRules) :-

Rule = rule(_, B),

member(not Lit, B), !,

remove_rules_with_not_Lit(RestRules, Lit, RemainingRules), !.

remove_rules_with_not_Lit([Rule|RestRules], Lit, RemainingRules) :- !,

remove_rules_with_not_Lit(RestRules, Lit, RemainingRulesAux), !,

append([Rule], RemainingRulesAux, RemainingRules), !.

remove_defaults([], []) :- !.

remove_defaults([Rule|RestRules], Rules) :-

Rule = rule(H, B),

remove_defaults_from_body(B, PB), !,

remove_defaults(RestRules, OtherRules), !,

append([rule(H, PB)], OtherRules, Rules).

remove_defaults_from_body([], []) :- !.

remove_defaults_from_body([not _|Rest], PB) :- !,

remove_defaults_from_body(Rest, PB), !.

remove_defaults_from_body([Lit|Rest], PB) :- !,

remove_defaults_from_body(Rest, PBAux), !,

append([Lit], PBAux, PB), !.

iterate_Tp_omega([], Result) :- !,

(setof(Fact, fact(Fact), Facts) ->

Result = Facts

;

Result = []), !.

iterate_Tp_omega(Rules, Result) :- !,

C.2. THE RSM CALCULATOR 113

(setof(Fact, fact(Fact), Fs) ->

Facts = Fs

;

Facts = []), !,

iterate_Tp(Facts, Rules, Result), !.

iterate_Tp(Facts, [], Facts) :- !.

iterate_Tp(Facts, Rules, Result) :-

tp(Facts, Rules, TempResult), !,

(Facts = TempResult ->

Result = Facts

;

iterate_Tp(TempResult, Rules, Result)

) ,!.

tp(Facts, Rules, Result) :-

remove_facts_from_bodies(Facts, Rules, CleanRules), !,

get_heads_of_empty_rules(CleanRules, Heads), !,

union(Facts, Heads, Result), !.

remove_facts_from_bodies([], Rules, Rules) :- !.

remove_facts_from_bodies(_, [], []) :- !.

remove_facts_from_bodies([Fact|RestFacts], Rules, CleanRules) :-

remove_fact_from_bodies(Fact, Rules, AuxCleanRules), !,

remove_facts_from_bodies(RestFacts, AuxCleanRules, CleanRules), !.

remove_fact_from_bodies(_, [], []) :- !.

remove_fact_from_bodies(Fact, [Rule|RestRules], [CleanRule|RestCleanRules]) :-

remove_fact_from_body(Fact, Rule, CleanRule), !,

remove_fact_from_bodies(Fact, RestRules, RestCleanRules), !.

remove_fact_from_body(Fact,Rule,rule(H, CleanBody)) :-

Rule = rule(H, B), !,

subtract(B, [Fact], CleanBody), !.

get_heads_of_empty_rules([], []) :- !.

get_heads_of_empty_rules([rule(H, [])|RestCleanRules], Heads) :- !,

114 APPENDIX C. SOURCE CODE OF THE IMPLEMENTATIONS

get_heads_of_empty_rules(RestCleanRules, RestHeads), !,

append([H], RestHeads, Heads).

get_heads_of_empty_rules([rule(_, _)|RestCleanRules], Heads) :- !,

get_heads_of_empty_rules(RestCleanRules, Heads), !.

%

% Gamma Operator

%

%%

%%

%

% Specific utilities

%

negLit(not Lit, not Lit) :- !.

negLit(Lit, not Lit).

negLit(not _).

posLit(not Lit, Lit) :- !.

posLit(Lit, Lit).

posLit(not _) :- !, fail.

posLit(_).

toggle(Lit, TLit) :- posLit(Lit), !, negLit(Lit, TLit), !.

toggle(Lit, TLit) :- negLit(Lit), !, posLit(Lit, TLit), !.

%

% Specific utilities

%

%%%

Appendix D

Tests and results of the RSM

Implementations

For testing the implementations of the top-down proof-procedure for query solving, and of the RSM

calculator the following set of NLPs was used.

P1 =

a <- not b.

b <- not a.

c <- a, not c.

c <- b, not c.

d <- b, not d.

P2 =

a <- not b.

b <- not a.

t <- a, b.

k <- not t.

i <- not k.

P3 =

a <- not a.

115

116 APPENDIX D. TESTS AND RESULTS OF THE RSM IMPLEMENTATIONS

b <- not a.

c <- not b.

d <- not c.

P4 =

a.

b <- not c.

d <- e.

Using the test program P1 above we obtained the following results
Query Result

query([a],[],_,_) Yes

query([b],[],_,_) Yes

query([c],[],_,_) Yes

query([d],[],_,_) Yes

query([a,b],[],_,_) No

query([a,c],[],_,_) Yes

query([a,d],[],_,_) No

query([b,c],[],_,_) Yes

query([b,d],[],_,_) Yes

query([b,c,d],[],_,_) Yes
?- genRSMs(RSMs)

RSMs = [[a, c], [b, c, d]]

For the test program P2 the results were
Query Result

query([a],[],_,_) Yes

query([b],[],_,_) Yes

query([t],[],_,_) No

query([k],[],_,_) Yes

query([i],[],_,_) No

query([a,k],[],_,_) Yes

query([a,t],[],_,_) No

query([a,b],[],_,_) No

query([a,i],[],_,_) No

query([k,i],[],_,_) No

query([k,t],[],_,_) No

117

?- genRSMs(RSMs)

RSMs = [[a, k], [b, k]]

With the test program P3 the results were
Query Result

query([a],[],_,_) Yes

query([b],[],_,_) No

query([c],[],_,_) Yes

query([d],[],_,_) No

query([a,b,d],[],_,_) No

query([a,c],[],_,_) Yes
?- genRSMs(RSMs)

RSMs = [[a, c]]

Finally, the test program P4 gave the following results
Query Result

query([a],[],_,_) Yes

query([b],[],_,_) Yes

query([c],[],_,_) No

query([d],[],_,_) No
?- genRSMs(RSMs)

RSMs = [[a, b]]

All the results here presented correspond precisely to the ones expected under the Revised Stable

Models semantics, both under the top-down proof-procedure query-solver, and the RSM calculator.

