
Every normal logic program has a 2-valued
Minimal Hypotheses semantics

Alexandre Miguel Pinto and Luís Moniz Pereira
{amp|lmp}@di.fct.unl.pt

Centro de Inteligência Artificial (CENTRIA), Departamento de Informática
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa

2829-516 Caparica, Portugal

Abstract. In this paper we explore a unifying approach — that of hypotheses
assumption — as a means to provide a semantics for all Normal Logic Programs
(NLPs), the Minimal Hypotheses (MH) semantics 1. This semantics takes a posi-
tive hypotheses assumption approach as a means to guarantee the desirable prop-
erties of model existence, relevance and cumulativity, and of generalizing the Sta-
ble Models semantics in the process. To do so we first introduce the fundamental
semantic concept of minimality of assumed positive hypotheses, define the MH
semantics, and analyze the semantics’ properties and applicability. Indeed, ab-
ductive Logic Programming can be conceptually captured by a strategy centered
on the assumption of abducibles (or hypotheses). Likewise, the Argumentation
perspective of Logic Programs (e.g. [5]) also lends itself to a arguments (or hy-
potheses) assumption approach. Previous works on Abduction (e.g. [10]) have
depicted the atoms of default negated literals in Normal Logic Programs as ab-
ducibles, i.e., assumable hypotheses. We take a complementary and more general
view than these works to NLP semantics by employing positive hypotheses in-
stead.
Keywords: Hypotheses, Semantics, NLPs, Abduction, Argumentation.

1 Background

Logic Programs have long been used in Knowledge Representation and Reasoning.

Definition 1. Normal Logic Program. By an alphabet A of a language L we mean
(finite or countably infinite) disjoint sets of constants, predicate symbols, and function
symbols, with at least one constant. In addition, any alphabet is assumed to contain
a countably infinite set of distinguished variable symbols. A term over A is defined
recursively as either a variable, a constant or an expression of the form f(t1, . . . , tn)
where f is a function symbol of A, n its arity, and the ti are terms. An atom over A is
an expression of the form P (t1, . . . , tn) where P is a predicate symbol of A, and the ti
are terms. A literal is either an atom A or its default negation not A. We dub default
literals (or default negated literals — DNLs, for short) those of the form not A. A term

1 This paper is a very condensed summary of some of the main contributions of the PhD Thesis
[17] of the first author, supported by FCT-MCTES grant SFRH / BD / 28761 / 2006, and
supervised by the second author.

(resp. atom, literal) is said ground if it does not contain variables. The set of all ground
terms (resp. atoms) ofA is called the Herbrand universe (resp. base) ofA. For short we
useH to denote the Herbrand base of A. A Normal Logic Program (NLP) is a possibly
infinite set of rules (with no infinite descending chains of syntactical dependency) of the
form

H ← B1, . . . , Bn, not C1, . . . , not Cm, (with m,n ≥ 0 and finite)

whereH , theBi and theCj are atoms, and each rule stands for all its ground instances.
In conformity with the standard convention, we write rules of the formH ← also simply
asH (known as “facts”). An NLP P is called definite if none of its rules contain default
literals. H is the head of the rule r, denoted by head(r), and body(r) denotes the set
{B1, . . . , Bn, not C1, . . . , not Cm} of all the literals in the body of r.

When doing problem modelling with logic programs, rules of the form

⊥ ← B1, . . . , Bn, not C1, . . . , not Cm, (with m,n ≥ 0 and finite)

with a non-empty body are known as a type of Integrity Constraints (ICs), specifically
denials, and they are normally used to prune out unwanted candidate solutions. We
abuse the ‘not ’ default negation notation applying it to non-empty sets of literals too:
we write not S to denote {not s : s ∈ S}, and confound not not a ≡ a. When S is an
arbitrary, non-empty set of literals S = {B1, . . . , Bn, not C1, . . . , not Cm} we use

– S+ denotes the set {B1, . . . , Bn} of positive literals in S
– S− denotes the set {not C1, . . . , not Cm} of negative literals in S
– |S| = S+ ∪ (not S−) denotes the {B1, . . . , Bn, C1, . . . , Cm} of atoms of S

As expected, we say a set of literals S is consistent iff S+ ∩ |S−| = ∅. We also write
heads(P) to denote the set of heads of non-IC rules of a (possibly constrained) program
P , i.e., heads(P) = {head(r) : r ∈ P} \ {⊥}, and facts(P) to denote the set of facts
of P — facts(P) = {head(r) : r ∈ P ∧ body(r) = ∅}.

Definition 2. Part of body of a rule not in loop. Let P be an NLP and r a rule of
P . We write body(r) to denote the subset of body(r) whose atoms do not depend on r.
Formally, body(r) is the largest set of literals such that

body(r) ⊆ body(r) ∧ ∀
a∈|body(r)|@ra∈Phead(ra) = a ∧ ra � r

where ra � r means rule ra depends on rule r, i.e., either head(r) ∈ |body(ra)| or
there is some other rule r′ ∈ P such that ra � r′ and head(r) ∈ |body(r′)|.

Definition 3. Layer Supported and Classically supported interpretations. We say an
interpretation I of an NLP P is layer (classically) supported iff every atom a of I is
layer (classically) supported in I . a is layer (classically) supported in I iff there is
some rule r in P with head(r) = a such that I |= body(r) (I |= body(r)). Likewise,
we say the rule r is layer (classically) supported in I iff I |= body(r) (I |= body(r)).

Literals in body(r) are, by definition, not in loop with r. The notion of layered support
requires that all such literals be true under I in order for head(r) to be layer supported
in I . Hence, if body(r) is empty, head(r) is ipso facto layer supported.

Proposition 1. Classical Support implies Layered Support. Given a NLP P , an inter-
pretation I , and an atom a such that a ∈ I , if a is classically supported in I then a is
also layer supported in I .

Proof. Knowing that, by definition, body(r) ⊆ body(r) for every rule r, it follows
trivially that a is layer supported in I if a is classically supported in I .

2 Motivation

“Why the need for another 2-valued semantics for NLPs since we already have the Sta-
ble Models one?” The question has its merit since the Stable Models (SMs) semantics
[7] is exactly what is necessary for so many problem solving issues, but the answer
to it is best understood when we ask it the other way around: “Is there any situation
where the SMs semantics does not provide all the intended models?” and “Is there any
2-valued generalization of SMs that keeps the intended models it does provide, adds
the missing intended ones, and also enjoys the useful properties of guarantee of model
existence, relevance, and cumulativity?”

Example 1. A Joint Vacation Problem — Merging Logic Programs. Three friends
are planning a joint vacation. First friend says “If we don’t go to the mountains, then
we should go to the beach”. The second friend says “If we don’t go to travelling, then
we should go to the mountains”. The third friend says “If we don’t go to the beach, then
we should go travelling”. We code this information as the following NLP:

beach← not mountain
mountain← not travel

travel← not beach

Each of these individual consistent rules come from a different friend. According to
the SMs, each friend had a “solution” (a SM) for his own rule, but when we put
the three rules together, because they form an odd loop over negation, the resulting
merged logic program has no SM. If we assume beach is true then we cannot con-
clude travel and therefore we conclude mountain is also true — this gives rise to
the {beach,mountain, not travel} joint and multi-place vacation solution. The other
(symmetric) two are {mountain, not beach, travel} and {travel, not mountain,
beach}. This example too shows the importance of having a 2-valued semantics guaran-
teeing model existence, in this case for the sake of arbitrary merging of logic programs
(and for the sake of existence of a joint vacation for these three friends).

Increased Declarativity. An IC is a rule whose head is ⊥, and although such syntacti-
cal definition of IC is generally accepted as standard, the SM semantics can employ odd
loops over negation, such as the a← not a,X to act as ICs, thereby mixing and unnec-
essarily confounding two distinct Knowledge Representation issues: the one of IC use,
and the one of assigning semantics to loops. For the sake of declarativity, rules with ⊥
head should be the only way to write ICs in a LP: no rule, or combination of rules, with
head different from ⊥ should possibly act as IC(s) under any given semantics.

Argumentation From an argumentation perspective, the author of [5], states:

“Stable extensions do not capture the intuitive semantics of every meaning-
ful argumentation system.”

where the “stable extensions” have a one-to-one correspondence to the Stable Models
([5]), and also

“Let P be a knowledge base represented either as a logic program, or as
a nonmonotonic theory or as an argumentation framework. Then there is not
necessarily a “bug” in P if P has no stable semantics.

This theorem defeats an often held opinion in the logic programming and
nonmonotonic reasoning community that if a logic program or a nonmonotonic
theory has no stable semantics then there is something “wrong” in it.”

Thus, a criterion different from the stability one must be used in order to effectively
model every argumentation framework adequately.

Arbitrary Updates and/or Merges One of the main goals behind the conception of
non-monotonic logics was the ability to deal with the changing, evolving, updating
of knowledge. There are scenarios where it is possible and useful to combine several
Knowledge Bases (possibly from different authors or sources) into a single one, and/or
to update a given KB with new knowledge. Assuming the KBs are coded as IC-free
NLPs, as well as the updates, the resulting KB is also an IC-free NLP. In such a case,
the resulting (merged and/or updated) KB should always have a semantics. This should
be true particularly in the case of NLPs where no negations are allowed in the heads of
rules. In this case no contradictions can arise because there are no conflicting rule heads.
The lack of such guarantee when the underlying semantics used is the Stable Models,
for example, compromises the possibility of arbitrarily updating and/or merging KBs
(coded as IC-free NLPs). In the case of self-updating programs, the desirable “liveness”
property is put into question, even without outside intervention.

These motivational issues raise the questions “Which should be the 2-valued models
of an NLP when it has no Stable Models?”, “How do these relate to SMs?”, “Is there
a uniform approach to characterize both such models and the SMs?”, and “Is there any
2-valued generalization of the SMs that encompasses the intuitive semantics of every
logic program?”. Answering such questions is a paramount motivation and thrust in this
paper.

2.1 Intuitively Desired Semantics

It is commonly accepted that the non-stratification of the default not is the funda-
mental ingredient which allows for the possibility of existence of several models for a
program. The non-stratified DNLs (i.e., in a loop) of a program can thus be seen as non-
deterministically assumable choices. The rules in the program, as well as the particular
semantics we wish to assign them, is what constrains which sets of those choices we
take as acceptable.

2.2 Desirable Formal Properties

Only ICs (rules with ⊥ head) should “endanger” model existence in a logic program.
Therefore, a semantics for NLPs with no ICs should guarantee model existence —
which, e.g., does not occur with SM semantics. Relevance is also a useful property
since it allows the development of top-down query-driven proof-procedures that allow
for the sound and complete search for answers to a user’s query. This is useful in the
sense that in order to find an answer to a query only the relevant part of the program
must be considered, whereas with a non-relevant semantics the whole program must
be considered, with corresponding performance disadvantage compared to a relevant
semantics.

Definition 4. Relevant part of P for atom a. The relevant part of NLP P for atom a is
RelP (a) = {ra ∈ P : head(ra) = a} ∪ {r ∈ P : ∃ra∈P∧head(ra)=ara � r}

Definition 5. Relevance (adapted from [3]). A semantics Sem for logic programs is
said Relevant iff for every program P

∀a∈HP
(∀M∈ModelsSem(P)a ∈M)⇔ (∀Ma∈ModelsSem(RelP (a))a ∈Ma)

Moreover, cumulativity also plays a role in performance enhancement in the sense that
only a semantics enjoying this property can take advantage of storing intermediate lem-
mas to speed up future computations.

Definition 6. Cumulativity (adapted from [4]). Let P be an NLP, and a, b two atoms
ofHP . A semantics Sem is Cumulative iff the semantics of P remains unchanged when
any atom true in the semantics is added to P as a fact:

∀a,b∈HP

(
(∀M∈ModelsSem(P)a ∈M)⇒

(∀M∈ModelsSem(P)b ∈M ⇔ ∀Ma∈ModelsSem(P∪{a})b ∈Ma)
)

Finally, each individual SM of a program, by being minimal and classically supported,
should be accepted as a model according to every 2-valued semantics, and hence every
2-valued semantics should be a model conservative extension of Stable Models.

3 Syntactic Operations

It is commonly accepted that definite LPs (i.e., without default negation) have only
one 2-valued model — its least model which coincides with the well-founded model.
This is also the case for locally stratified LPs. In such cases we can use a deterministic
operator performing syntactic transformations on a program to obtain that model. In
[2] the author defined the program Remainder operator (denoted by P̂) for calculating
the Well-Founded Model, which coincides with the unique perfect model for locally
stratified LPs. The Remainder can thus be seen as a generalization for NLPs of the T
operator, the latter applicable only to the subclass of definite LPs. We recap here the
definitions necessary for the Remainder operator because we will use it in the definition
of our Minimal Hypotheses semantics. The intuitive gist of MH semantics (formally

defined in section 4) is as follows: an interpretation MH is a MH model of program P
iff there is some minimal set of hypotheses H such that the truth-values of all atoms
of P become determined assuming the atoms in H as true. We resort to the program
Remainder operator as a deterministic (and efficient, i.e., computable in polynomial
time) means to find out if the truth-values of all literals became determined or not —
we will see below how the Remainder can be used to find this out.

3.1 Program Remainder operator

For self-containment, we include here the definitions of [2] upon which the Remainder
operator relies, and adapt them where convenient to better match the syntactic conven-
tions used throughout this paper.

Definition 7. Program transformation (def. 4.2 of [2]). A program transformation is
a relation 7→ between ground logic programs. A semantics S allows a transformation
7→ iff ModelsS(P1) = ModelsS(P2) for all P1 and P2 with P1 7→ P2. We write 7→∗
to denote the fixed point of the 7→ operation, i.e., P 7→∗ P ′ where @P ′′ 6=P ′P ′ 7→ P ′′. It
follows that P 7→∗ P ′ ⇒ P ′ 7→ P ′.

Definition 8. Positive reduction (def. 4.6 of [2]). Let P1 and P2 be ground programs.
Program P2 results from P1 by positive reduction (P1 7→P P2) iff there is a rule r ∈ P1

and a negative literal not b ∈ body(r) such that b /∈ heads(P1), i.e., there is no rule
for b in P1, and P2 = (P1 \ {r}) ∪ {head(r)← (body(r) \ {not b})}.

Definition 9. Negative reduction (def. 4.7 of [2]). Let P1 and P2 be ground programs.
Program P2 results from P1 by negative reduction (P1 7→N P2) iff there is a rule r ∈ P1

and a negative literal not b ∈ body(r) such that b ∈ facts(P1), i.e., b appears as a
fact in P1, and P2 = P1 \ {r}.

Negative reduction is consistent with classical support, but not with the layered one.
Therefore, we introduce now a layered version of the negative reduction operation.

Definition 10. Layered negative reduction. Let P1 and P2 be ground programs. Pro-
gram P2 results from P1 by layered negative reduction (P1 7→LN P2) iff there is a rule
r ∈ P1 and a negative literal not b ∈ body(r) such that b ∈ facts(P1), i.e., b appears
as a fact in P1, and P2 = P1 \ {r}.

The Strongly Connected Components (SCCs) of rules of a program can be calculated in
polynomial time [18]. Once the SCCs of rules have beed identified, the body(r) subset
of body(r), for each rule r, is identifiable in linear time — one needs to check just once
for each literal in body(r) if it is also in body(r). Therefore, these polynomial time
complexity operations are all the added complexity Layered negative reduction adds
over regular Negative reduction.

Definition 11. Success (def. 5.2 of [2]). Let P1 and P2 be ground programs. Program
P2 results from P1 by success (P1 7→S P2) iff there are a rule r ∈ P1 and a fact b ∈
facts(P1) such that b ∈ body(r), and P2 = (P1\{r})∪{head(r)← (body(r)\{b})}.

Definition 12. Failure (def. 5.3 of [2]). Let P1 and P2 be ground programs. Program
P2 results from P1 by failure (P1 7→F P2) iff there are a rule r ∈ P1 and a positive
literal b ∈ body(r) such that b /∈ heads(P1), i.e., there are no rules for b in P1, and
P2 = P1 \ {r}.

Definition 13. Loop detection (def. 5.10 of [2]). Let P1 and P2 be ground programs.
Program P2 results from P1 by loop detection (P1 7→L P2) iff there is a setA of ground
atoms such that

1. for each rule r ∈ P1, if head(r) ∈ A, then body(r) ∩ A 6= ∅,
2. P2 := {r ∈ P1|body(r) ∩ A = ∅},
3. P1 6= P2.

We are not entering here into the details of the loop detection step, but just taking note
that 1) such a set A corresponds to an unfounded set (cf. [6]); 2) loop detection is
computationally equivalent to finding the SCCs [18], and is known to be of polynomial
time complexity; and 3) the atoms in the unfounded set A have all their corresponding
rules involved in SCCs where all heads of rules in loop appear positive in the bodies of
the rules in loop.

Definition 14. Reduction (def. 5.15 of [2]).
Let 7→X denote the rewriting system: 7→X :=7→P ∪ 7→N ∪ 7→S ∪ 7→F ∪ 7→L.

Definition 15. Layered reduction.
Let 7→LX denote the rewriting system: 7→LX :=7→P ∪ 7→LN ∪ 7→S ∪ 7→F ∪ 7→L.

Definition 16. Remainder (def. 5.17 of [2]). Let P be a program. Let P̂ satisfy
ground(P) 7→∗X P̂ . Then P̂ is called the remainder of P , and is guaranteed to exist
and to be unique to P . Moreover, the calculus of 7→∗X is known to be of polynomial time
complexity [2]. When convenient, we write Rem(P) instead of P̂ .

An important result from [2] is that the Well-Founded Model (WFM — [6]) of P is
such that WFM+(P) = facts(P̂), WFM+u = heads(P̂), and WFM−(P) =
HP \ WFM+u(P), where WFM+(P) denotes the set of atoms of P true in the
WFM, WFM+u(P) denotes the set of atoms of P true or undefined in the WFM, and
WFM−(P) denotes the set of atoms of P false in the WFM.

Definition 17. Layered Remainder. Let P be a program. Let the program P̊ satisfy
ground(P) 7→∗LX P̊ . Then P̊ is called a layered remainder of P . Since P̊ is equivalent
to P̂ , apart from the difference between 7→LN and 7→N , it is trivial that P̊ is also
guaranteed to exist and to be unique for P . Moreover, the calculus of 7→∗LX is likewise
of polynomial time complexity because 7→LN is also of polynomial time complexity.

Example 2. P̊ versus P̂ . Recall the program from example 1 but now with an addi-
tional fourth stubborn friend who insists on going to the beach no matter what. P =

beach← not mountain
mountain← not travel

travel← not beach
beach

We can clearly see that the single fact rule does not depend on any other, and that
the remaining three rules forming the loop all depend on each other and on the fact
rule beach. P̂ is the fixed point of 7→X , i.e., the fixed point of 7→P ∪ 7→N ∪ 7→S

∪ 7→F ∪ 7→L. Since beach is a fact, the 7→N (Negative reduction — definition 9)
transformation deletes the travel← not beach rule; i.e., P 7→N P ′ is such that

P ′ = {beach← not mountain mountain← not travel beach←}
Now in P ′ there are no rules for travel and hence we can apply the 7→P (Positive

reduction — definition 8) transformation which deletes the not travel from the body
of mountain’s rule; i.e, P ′ 7→P P ′′ where

P ′′ = {beach← not mountain mountain← beach←}
Finally, in P ′′ mountain is a fact and hence we can again apply the 7→N obtaining

P ′′ 7→P P ′′′ where P ′′′ = {mountain ← beach ←} upon which no more transfor-
mations can be applied, so P̂ = P ′′′. Instead, P̊ = P is the fixed point of 7→LX , i.e.,
the fixed point of 7→P ∪ 7→LN ∪ 7→S ∪ 7→F ∪ 7→L.

4 Minimal Hypotheses Semantics

4.1 Choosing Hypotheses

The abductive perspective of [10] depicts the atoms of default negated literals (DNLs)
as abducibles, i.e., assumable hypotheses. Atoms of DNLs can be considered as ab-
ducibles, i.e., assumable hypotheses, but not all of them. When we have a locally strati-
fied program we cannot really say there is any degree of freedom in assuming truth val-
ues for the atoms of the program’s DNLs. So, we realize that only the atoms of DNLs
involved in non-well-founded negation2 are eligible to be considered further assumable
hypotheses.

Both the Stable Models and the approach of [10], when taking the abductive per-
spective, adopt negative hypotheses only. This approach works fine for some instances
of non-well-founded negation such as loops (in particular, for even loops over negation
like this one), but not for odd loops over negation like, e.g. a← not a: assuming not a
would lead to the conclusion that a is true which contradicts the initial assumption.
To overcome this problem, we generalized the hypotheses assumption perspective to
allow the adoption, not only of negative hypotheses, but also of positive ones. Having
taken this generalization step we realized that positive hypotheses assumption alone is
sufficient to address all situations, i.e., there is no need for both positive and negative
hypotheses assumption. Indeed, because we minimize the positive hypotheses we are
with one stroke maximizing the negative ones, which has been the traditional way of
dealing with the CWA, and also with stable models because the latter’s requirement of
classical support minimizes models.

In example 1 we saw three solutions, each assuming as true one of the DNLs in
the loop. Adding a fourth stubborn friend insisting on going to the beach, as in ex-
ample 2, should still permit the two solutions {beach,mountain, not travel} and

2 By non-well-founded negation we mean Strongly Connected Components of rules with at least
one head of a rule appearing as a DNL in some body of a rule of the SCC (cf., e.g., Examples
1 and 2).

{travel, not mountain, beach}. The only way to permit both these solutions is by
resorting to the Layered Remainder, and not to the Remainder, as a means to identify
the set of assumable hypotheses.

Thus, all the literals of P that are not determined false in P̊ are candidates for the
role of hypotheses we may consider to assume as true. Merging this perspective with
the abductive perspective of [10] (where the DNLs are the abducibles) we come to the
following definition of the Hypotheses set of a program.

Definition 18. Hypotheses set of a program. Let P be an NLP. We write Hyps(P) to
denote the set of assumable hypotheses of P : the atoms that appear as default negated
literals in the bodies of rules of P̊ . Formally, Hyps(P) = {a : ∃r∈P̊not a ∈ body(r)}.

One can define a classical support compatible version of the Hypotheses set of a pro-
gram, only using to that effect the Remainder instead of the Layered Remainder. I.e.,

Definition 19. Classical Hypotheses set of a program. Let P be an NLP. We write
CHyps(P) to denote the set of assumable hypotheses of P consistent with the classical
notion of support: the atoms that appear as default negated literals in the bodies of rules
of P̂ . Formally, CHyps(P) = {a : ∃r∈P̂not a ∈ body(r)}.

Here we take the layered support compatible approach and, therefore, we will use the
Hypotheses set as in definition 18. Since CHyps(P) ⊆ Hyps(P) for every NLP
P , there is no generality loss in using Hyps(P) instead of CHyps(P), while using
Hyps(P) allows for some useful semantics properties examined in the sequel.

4.2 Definition

Intuitively, a Minimal Hypotheses model of a program is obtained from a minimal set
of hypotheses which is sufficiently large to determine the truth-value of all literals via
Remainder.

Definition 20. Minimal Hypotheses model. Let P be an NLP. Let Hyps(P) be the set
of assumable hypotheses of P (cf. definition 18), and H some subset of Hyps(P).

A 2-valued model M of P is a Minimal Hypotheses model of P iff

M+ = facts(P̂ ∪H) = heads(P̂ ∪H)

where H = ∅ or H is non-empty set-inclusion minimal (the set-inclusion minimality is
considered only for non-empty Hs). I.e., the hypotheses set H is minimal but sufficient
to determine (via Remainder) the truth-value of all literals in the program.

We already know that WFM+(P) = facts(P̂) and that WFM+u(P) = heads(P̂).
Thus, whenever facts(P̂) = heads(P̂) we have WFM+(P) = WFM+u(P) which
means WFMu(P) = ∅. Moreover, whenever WFMu(P) = ∅ we know, by Corollary
5.6 of [6], that the 2-valued model M such that M+ = facts(P̂) is the unique stable
model of P . Thus, we conclude that, as an alternative equivalent definition, M is a
Minimal Hypotheses model of P iffM is a stable model of P∪H whereH is empty or a
non-empty set-inclusion minimal subset ofHyps(P). Moreover, it follows immediately
that every SM of P is a Minimal Hypotheses model of P .

In example 2 we can thus see that we have the two models {beach,mountain,
not travel} and {travel, beach, not mountain}. This is the case because the addition
of the fourth stubborn friend does not change the set of Hyps(P) which is based upon
the Layered Remainder operator, and not on the Remainder one.

4.3 Properties

The minimality of H is not sufficient to ensure minimality of M+ = facts(P̂ ∪H)
making its checking explicitly necessary if that is so desired. Minimality of hypotheses
is indeed the common practice is science, not the minimality of their inevitable con-
sequences. To the contrary, the more of these the better because it signifies a greater
predictive power.

In Logic Programming model minimality is a consequence of definitions: the T op-
erator in definite programs is conducive to defining a least fixed point, a unique minimal
model semantics; in SM, though there may be more than one model, minimality turns
out to be a property because of the stability (and its attendant classical support) require-
ment; in the WFS, again the existence of a least fixed point operator affords a minimal
(information) model. In abduction too, minimality of consequences is not a caveat, but
rather minimality of hypotheses is, if that even. Hence our approach to LP semantics
via MHS is novel indeed, and insisting instead on positive hypotheses establishes an
improved and more general link to abduction and argumentation [14, 15].

Theorem 1. At least one Minimal Hypotheses model of P complies with the Well-
Founded Model. Let P be an NLP. Then, there is at least one Minimal Hypotheses
model M of P such that M+ ⊇WFM+(P) and M+ ⊆WFM+u(P).

Proof. If facts(P̂) = heads(P̂) or equivalently, WFMu(P) = ∅, then MH is a MH
model of P given that H = ∅ because M+

H = facts(P̂ ∪H) = heads(P̂ ∪H) =

facts(P̂ ∪ ∅) = heads(P̂ ∪ ∅) = facts(P̂) = heads(P̂). On the other hand,
if facts(P̂) 6= heads(P̂), then there is at least one non-empty set-inclusion mini-
mal set of hypotheses H ⊆ Hyps(P) such that H ⊇ facts(P). The correspond-
ing MH is, by definition, a MH model of P which is guaranteed to comply with
M+

H ⊇WFM+(P) = facts(P̂) and M−H ⊇ not WFM−(P) = not (HP \M+
H).

Theorem 2. Minimal Hypotheses semantics guarantees model existence. Let P be
an NLP. There is always, at least, one Minimal Hypotheses model of P .

Proof. It is trivial to see that one can always find a setH ⊆ Hyps(P) such thatM+
H′ =

facts(P̂ ∪H ′) = heads(P̂ ∪H ′) — in the extreme case,H ′ = Hyps(P). From such
H ′ one can always select a minimal subset H ⊂ H such that M+

H = facts(P̂ ∪H) =

heads(P̂ ∪H) still holds.

4.4 Relevance

Theorem 3. Minimal Hypotheses semantics enjoys Relevance. Let P be an NLP.
Then, by definition 5, it holds that

(∀M∈ModelsMH(P)a ∈M+)⇔ (∀Ma∈ModelsMH(RelP (a))a ∈M+
a)

Proof. ⇒: Assume ∀M∈ModelsMH(P)a ∈M+. Now we need to prove
∀Ma∈ModelsMH(RelP (a))a ∈ M+

a . Assume some Ma ∈ ModelsMH(RelP (a)); now
we show that assuming a /∈M+

a leads to an absurdity. SinceMa is a 2-valued complete
model of RelP (a) we know that |Ma| = HRelP (a) hence, if a /∈ Ma, then necessarily
not a ∈ M−a . Since P ⊇ RelP (a), by theorem 2 we know that there is some model
M ′ of P such that M ′ ⊇ Ma, and thus not a ∈ M ′− which contradicts the initial
assumption that ∀M∈ModelsMH(P)a ∈ M+. We conclude a /∈ Ma cannot hold, i.e.,
a ∈ Ma must hold. Since a ∈ M+ hold for every model M of P , then a ∈ Ma must
hold for every model Ma of RelP (a).
⇐: Assume ∀Ma∈ModelsMH(RelP (a))a ∈M+

a . Now we need to prove
∀M∈ModelsMH(P)a ∈ M+. Let us write P)a(as an abbreviation of P \ RelP (a). We
have therefore P = P)a(∪ RelP (a). Let us now take P)a(∪Ma. We know that every
NLP as an MH model, hence every MH model M of P)a(∪Ma is such that M ⊇Ma.

Let HMa denote the Hypotheses set of Ma — i.e., M+
a = facts(̂RelP (a) ∪HMa) =

heads(̂RelP (a) ∪HMa), with HMa = ∅ or non-empty set-inclusion minimal, as per
definition 20. If facts(̂P ∪HMa

) = heads(̂P ∪HMa
) thenM+ = facts(̂P ∪HM) =

heads(̂P ∪HM) is an MH model of P with HM = HMa and, necessarily, M ⊇Ma.
If facts(̂P ∪HMa

) 6= heads(̂P ∪HMa
) then, knowing that every program has a

MH model, we can always find an MH modelM of P)a(∪Ma, withH ′ ⊆ Hyps(P)a(∪
Ma), where M+ = facts(P̂ ∪H ′) = heads(P̂ ∪H ′). Such M is thus M+ =

facts(̂P ∪HM) = heads(̂P ∪HM) where HM = HMa
∪ H ′, which means M is

a MH model of P with M ⊇ Ma. Since every model Ma of RelP (a) is such that
a ∈M+

a , then every model M of P must also be such that a ∈M .

4.5 Cumulativity

MH semantics enjoys Cumulativity thus allowing for lemma storing techniques to be
used during computation of answers to queries.

Theorem 4. Minimal Hypotheses semantics enjoys Cumulativity. Let P be an NLP.
Then

∀a,b∈HP

(
(∀M∈ModelsMH(P)a ∈M+)⇒

(∀M∈ModelsMH(P)b ∈M+ ⇔ ∀Ma∈ModelsMH(P∪{a})b ∈M+
a)
)

Proof. Assume ∀ a∈HP
M∈ModelsMH(P)

a ∈M+.

⇒: Assume ∀M∈ModelsMH(P)b ∈ M+. Since every MH model M contains a it
follows that all such M are also MH models of P ∪ {a}. Since we assumed b ∈ M
as well, and we know that M is a MH model of P ∪ {a} we conclude b is also in
those MH models M of P ∪{a}. By adding a as a fact we have necessarily Hyps(P ∪
{a}) ⊆ Hyps(P) which means that there cannot be more MH models for P ∪ {a}
than for P . Since we already know that for every MH model M of P , M is also a
MH model of P ∪{a} we must conclude that ∀M∈ModelsMH(P)∃1

M ′∈ModelsMH(P∪{a})
such that M ′+ ⊇ M+. Since ∀M∈ModelsMH(P)b ∈ M+ we necessarily conclude
∀Ma∈ModelsMH(P∪{a})b ∈M+

a .

⇐: Assume ∀Ma∈ModelsMH(P∪{a})b ∈ M+
a . Since the MH semantics is relevant

(theorem 3) if b does not depend on a then adding a as a fact to P or not has no impact
on b’s truth-value, and if b ∈ M+

a then b ∈ M+ as well. If b does depend on a, which
is true in every MH model M of P , then either 1) b depends positively on a, and in this
case since a ∈M then b ∈M as well; or 2) b depends negatively on a, and in this case
the lack of a as a fact in P can only contribute, if at all, to make b true in M as well.
Then we conclude ∀M∈ModelsMH(P)b ∈M+.

4.6 Complexity

The complexity issues usually relate to a particular set of tasks, namely: 1) knowing if
the program has a model; 2) if it has any model entailing some set of ground literals (a
query); 3) if all models entail a set of literals. In the case of MH semantics, the answer
to the first question is an immediate “yes” because MH semantics guarantees model
existence for NLPs; the second and third questions correspond (respectively) to Brave
and Cautious Reasoning, which we now analyse.

Brave Reasoning The complexity of the Brave Reasoning task with MH semantics,
i.e., finding an MH model satisfying some particular set of literals is ΣP

2 -complete.

Theorem 5. Brave Reasoning with MH semantics isΣP
2 -complete. Let P be an NLP,

and Q a set of literals, or query. Finding an MH model such that M ⊇ Q is a ΣP
2 -

complete task.

Proof. To show that finding a MH model M ⊇ Q is ΣP
2 -complete, note that a nonde-

terministic Turing machine with access to an NP-complete oracle can solve the prob-
lem as follows: nondeterministically guess a set H of hypotheses (i.e., a subset of
Hyps(P)). It remains to check if H is empty or non-empty minimal such that M+ =

facts(P̂ ∪H) = heads(P̂ ∪H) andM ⊇ Q. Checking thatM+ = facts(P̂ ∪H) =

heads(P̂ ∪H) can be done in polynomial time (because computing P̂ ∪H can be done
in polynomial time [2] for whichever P ∪H), and checking H is empty or non-empty
minimal requires a nondeterministic guess of a strict subset H ′ of H and then a poly-
nomial check if facts(P̂ ∪H ′) = heads(P̂ ∪H ′).

Cautious Reasoning Conversely, the Cautious Reasoning, i.e., guaranteeing that every
MH model satisfies some particular set of literals, is ΠP

2 -complete.

Theorem 6. Cautious Reasoning with MH semantics is ΠP
2 -complete. Let P be an

NLP, and Q a set of literals, or query. Guaranteeing that all MH models are such that
M ⊇ Q is a ΠP

2 -complete task.

Proof. Cautious Reasoning is the complement of Brave Reasoning, and since the latter
is ΣP

2 -complete (theorem 5), the former must necessarily be ΠP
2 -complete.

The set of hypotheses Hyps(P) is obtained from P̊ which identifies rules that de-
pend on themselves. The hypotheses are the atoms of default negated literals of P̊ , i.e.,
the “atoms of nots in loop”. A Minimal Hypotheses model is then obtained from a min-
imal set of these hypotheses sufficient to determine the 2-valued truth-value of every
literal in the program. The MH semantics imposes no ordering or preference between
hypotheses — only their set-inclusion minimality. For this reason, we can think of the
choosing of a set of hypotheses yielding a MH model as finding a minimal solution to a
disjunction problem, where the disjuncts are the hypotheses. In this sense, it is therefore
understandable that the complexity of the reasoning tasks with MH semantics is in line
with that of, e.g., reasoning tasks with SM semantics with Disjunctive Logic Programs,
i.e, ΣP

2 -complete and ΠP
2 -complete.

4.7 Comparisons

As we have seen all stable models are MH models. Since MH models are always guar-
anteed to exist for every NLP (cf. theorem 2) and SMs are not, it follows immediately
that the Minimal Hypotheses semantics is a strict model conservative generalization of
the Stable Models semantics. The MH models that are stable models are exactly those in
which all rules are classically supported. With this criterion one can conclude whether
some program does not have any stable models. For Normal Logic Programs, the Stable
Models semantics coincides with the Answer-Set semantics (which is a generalization
of SMs to Extended Logic Programs), where the latter is known (cf. [8]) to correspond
to Reiter’s default logic. Hence, all Reiter’s default extensions have a corresponding
Minimal Hypotheses model. Also, since Moore’s expansions of an autoepistemic the-
ory [11] are known to have a one-to-one correspondence with the stable models of the
NLP version of the theory, we conclude that for every such expansion there is a match-
ing Minimal Hypotheses model for the same NLP.

As shown in theorem 1, at least one MH model of a program complies with its well-
founded model, although not necessarily all MH models do. E.g., the program in Ex. 2
has the two MH models {beach,mountain, not travel} and {beach,
not mountain, travel}, whereas the WFM(P) imposes WFM+(P) = {beach,
mountain}, WFMu(P) = ∅, and WFM−(P) = {travel}. This is due to the set of
Hypotheses Hyps(P) of P being taken from P̊ (based on the layered support notion)
instead of being taken from P̂ (based on the classical notion of support).

Not all Minimal Hypotheses models are Minimal Models of a program. The ratio-
nale behind MH semantics is minimality of hypotheses, but not necessarily minimality
of consequences, the latter being enforceable, if so desired, as an additional require-
ment, although at the expense of increased complexity.

The relation between logic programs and argumentation systems has been consid-
ered for a long time now ([5] amongst many others) and we have also taken steps to
understand and further that relationship [14–16]. Dung’s Preferred Extensions [5] are
maximal sets of negative hypotheses yielding consistent models. Preferred Extensions,
however, these are not guaranteed to always yield 2-valued complete models. Our previ-
ous approaches [14, 15] to argumentation have already addressed the issue of 2-valued
model existence guarantee, and the MH semantics also solves that problem by virtue of
positive, instead of negative, hypotheses assumption.

5 Conclusions and Future Work

Taking a positive hypotheses assumption approach we defined the 2-valued Minimal
Hypotheses semantics for NLPs that guarantees model existence, enjoys relevance and
cumulativity, and is also a model conservative generalization of the SM semantics. Also,
by adopting positive hypotheses, we not only generalized the argumentation based ap-
proach of [5], but the resulting MH semantics lends itself naturally to abductive rea-
soning, it being understood as hypothesizing plausible reasons sufficient for justifying
given observations or supporting desired goals. We also defined the layered support
notion which generalizes the classical one by recognizing the special role of loops.

For query answering, the MH semantics provides mainly three advantages over the
SMs: 1) by enjoying Relevance top-down query-solving is possible, thereby circum-
venting whole model computation (and grounding) which is unavoidable with SMs; 2)
by considering only the relevant sub-part of the program when answering a query it is
possible to enact grounding of only those rules, if grounding is really desired, whereas
with SM semantics whole program grounding is, once again, inevitable — grounding
is known to be a major source of computational time consumption; MH semantics, by
enjoying Relevance, permits curbing this task to the minimum sufficient to answer a
query; 3) by enjoying Cumulativity, as soon as the truth-value of a literal is determined
in a branch for the top query it can be stored in a table and its value used to speed up
the computations of other branches within the same top query.

Goal-driven abductive reasoning is elegantly modelled by top-down abductive-query-
solving. By taking a hypotheses assumption approach, enjoying Relevance, MH seman-
tics caters well for this convenient problem representation and reasoning category.

Many applications have been developed using the Stable Model/Answer-set seman-
tics as the underlying platform. These generally tend to be focused on solving problems
that require complete knowledge, such as search problems where all the knowledge rep-
resented is relevant to the solutions. However, as Knowledge Bases increase in size and
complexity, and as merging and updating of KBs becomes more and more common,
e.g. for Semantic Web applications, [9], partial knowledge problem solving importance
grows, as the need to ensure overall consistency of the merged/updated KBs.

The Minimal Hypotheses semantics is intended to, and can be used in all the appli-
cations where the Stable Models/Answer-Sets semantics are themselves used to model
KRR and search problems, plus all applications where query answering (both under a
credulous mode of reasoning and under a skeptical one) is intented, plus all applications
where abductive reasoning is needed. The MH semantics aims to be a sound theoretical
platform for 2-valued (possibly abductive) reasoning with logic programs.

Much work still remains to be done that can be rooted in this platform contribution.
The general topics of using non-normal logic programs (allowing for negation, default
and/or explicit, in the heads of rules) for Belief Revision, Updates, Preferences, etc., are
per se orthogonal to the semantics issue, and therefore, all these subjects can now be
addressed with Minimal Hypotheses semantics as the underlying platform. Importantly,
MH can guarantee the liveness of updated and self-updating LP programs such as those
of EVOLP [1] and related applications. The Minimal Hypotheses semantics still has to
be thoroughly compared with Revised Stable Models [13], PStable Models [12], and
other related semantics.

In summary, we have provided a fresh platform on which to re-examine ever present
issues in Logic Programming and its uses, which purports to provide a natural continu-
ation and improvement of LP development.

References

1. J.J. Alferes, A. Brogi, J. A. Leite, and L. M. Pereira. Evolving logic programs. In S. Flesca
et al., editor, Procs. JELIA’02, volume 2424 of LNCS, pages 50–61. Springer, 2002.

2. S. Brass, J. Dix, B. Freitag, and U. Zukowski. Transformation-based bottom-up computation
of the well-founded model. TPLP, 1(5):497–538, 2001.

3. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: II. Weak Proper-
ties. Fundamenta Informaticae, XXII(3):257–288, 1995.

4. J. Dix. A classification theory of semantics of normal logic programs: I. strong properties,
1995.

5. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. AI, 77(2):321–358, 1995.

6. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs. Journal of the ACM, 38(3):620–650, 1991.

7. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Procs.
ICLP’88, pages 1070–1080, 1988.

8. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. Warren et al.,
editor, ICLP, pages 579–597. MIT Press, 1990.

9. A. S. Gomes, J. J. Alferes, and T. Swift. Implementing query answering for hybrid mknf
knowledge bases. In M. Carro et al., editor, Procs. PADL’10, volume 5937 of LNCS, pages
25–39. Springer, 2010.

10. A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. J. Log. Comput.,
2(6):719–770, 1992.

11. R. C. Moore. Semantical considerations on nonmonotonic logic. Artif. Intell., 25(1):75–94,
1985.

12. M. Osorio and J. C. Nieves. Pstable semantics for possibilistic logic programs. In Mexican
Intl. Conf. on AI, MICAI’07, volume 4827 of LNCS, pages 294–304. Springer, 2007.

13. L. M. Pereira and A. M. Pinto. Revised stable models - a semantics for logic programs. In
C. Bento et al., editor, Procs. EPIA’05, volume 3808 of LNAI, pages 29–42. Springer, 2005.

14. L. M. Pereira and A. M. Pinto. Approved models for normal logic programs. In N. Der-
showitz and A. Voronkov, editors, Procs. LPAR’07, volume 4790 of LNAI. Springer, 2007.

15. L. M. Pereira and A. M. Pinto. Reductio ad absurdum argumentation in normal logic pro-
grams. In G. Simari et al., editor, Procs. Workshop on Argumentation and Non-Monotonic
Reasoning (ArgNMR’07), at Conf. Logic Programming and Non-Monotonic Reasoning (LP-
NMR’07), pages 96–113. Springer, 2007.

16. L. M. Pereira and A. M. Pinto. Oppositional Concepts in Computational Intelligence, chapter
Collaborative vs. Conflicting Learning, Evolution and Argumentation. Studies in Computa-
tional Intelligence 155. Springer, 2008.

17. A. M. Pinto. Every normal logic program has a 2-valued semantics: theory, extensions, ap-
plications, implementations. PhD thesis, Faculdade de Ciências e Tecnologia - Universidade
Nova de Lisboa, 2011.

18. R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972.

