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This work proposes the application of preferences over abductive logic programs as an
appealing declarative formalism to model choice situations. In particular, both a pri-
ori and a posteriori handling of preferences between abductive extensions of a theory
are addressed as complementary and essential mechanisms in a broader framework for
abductive reasoning. Furthermore, both of these choice mechanisms are combined with
other formalisms for decision making, like economic decision theory, resulting in theories
containing the best advantages from both qualitative and quantitative formalisms. Sev-
eral examples are presented throughout to illustrate the enounced methodologies. These
have been tested in our implementation, which we explain in detail.

10.1. Introduction

Much work in logic program semantics and procedures has focused on preferences
between rules of a theory1 and among theory literals,2, 3 with or without updates.
However, the exploration of the application of preferences to abductive extensions
of a theory has still much to progress. In our perspective, handling preferences
over abductive logic programs has several advantages, and allows for easier and
more concise translation into normal logic programs (NLP) than those prescribed
by more general and complex rule preference frameworks.

We argue that preferring among abductive extensions is really a much more
appealing formalism than that of hard or soft constraints on program literals, since
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the latter represent formal conclusions to the program, which are often not defea-
sible. An abductive extension is, by definition, a defeasible construct, and allows
greater flexibility in enforcing preference relations. In,4 a preliminary theory of
revisable preferences between abducible literals was presented, along with a formal
semantics based on the definition of abductive stable models. In this work we extend
the theoretical framework thence proposed, addressing many problems and limita-
tions that remained to be solved.

We also propose to broaden the framework to account for more flexible and
powerful means to express preferences between abducibles, besides a priori relevancy
rules embedded in a program’s theory. In fact, we intend to show that there are many
advantages as well to prefer a posteriori, i.e. to enact preferences on the computed
models, after the consequences of opting for one or another abducible are known.
Furthermore, we combine both of these choice mechanisms with other formalisms
for decision making, like economic decision theory, resulting in theories containing
the best advantages from both qualitative and quantitative formalisms.

10.2. Abductive Framework

10.2.1. Basic Abductive Language

5Let L be a first order propositional language defined as follows. Assume given
an alphabet (set) of propositional atoms containing the reserved atom ⊥ to denote
falsity. A literal in L is an atom A or its default negation notA, the latter expressing
that the atom is false by default (CWA).

Definition 10.1. A rule in L takes the form A← L1, . . . , Lt where A is an atom
and L1, . . . , Lt (t ≥ 0) are literals.

We follow the standard convention and call A the head of the rule, and the conjunc-
tion L1, . . . , Lt its body. When t = 0 we write the rule simply as A, that is without
‘←’. An integrity constraint is a rule whose head is ⊥.

Definition 10.2. A goal or query in L takes the form ?−L1, . . . , Lt, where
L1, . . . , Lt (t ≥ 1) are literals.

A (logic) program P over L is a finite (countable) set of rules.

Notation 10.1. We adopt the convention of using ‘;’ to separate rules, thus we
write a program P as {rule1; . . . ; rulen}.
Every program P is associated with a set of abducibles A consisting of literals which
(without loss of generality) do not appear in any rule head of P . Abducibles may
be thought of as hypotheses that can be used to extend the current theory in order
to provide hypothetical solutions or possible explanations for given queries.

Given an abductive solution, to test whether a certain abducible has been
abduced, L contains the reserved abducible abduced(a), for every abducible a �=
abduced(.) in L. Thus, abduced(a) acts as a constraint that is satisfied in the solution
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if the abducible a is indeed assumed. It can be construed as meta-abduction in the
form of abducing to check (or passively verify) that a certain abduction is adopted.

Example 10.1. Let P = {p ← abduced(a), a; q ← abduced(b)} with set
of abducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has four intended
models: M = {}, M2 = {p, a, abduced(a)}, M3 = {q, b, abduced(b)}, and M4 =
{p, q, a, b, abduced(a), abduced(b)}. The set {q, abduced(b)} is not an intended model
since the assumption of abduced(b) requires the assumption of b.

Given a set of abducibles A, we write A∗ to indicate the subset of A consisting
of all the abducibles in A distinct from abduced(.), that is:

A∗ = {a :a �= abduced(.) and a ∈ A}.

10.2.1.1. Hypotheses Generation

The production of alternative explanations for a query is a central problem in abduc-
tion, because of the combinatorial explosion of possible explanations. Thus, it is
important to generate only those abductive explanations which are relevant for the
problem at hand. Several approaches have thus far been proposed, often based on
some global criteria, which has the drawback of generally being domain independent
and computationally expensive. An alternative to global criteria for competing alter-
native assumptions is to allow the theory to contain rules encoding domain specific
information about which particular assumptions are to be considered in a particular
situation.

In our approach, preferences among abducibles can be expressed in order to
discard unwanted assumptions. Technically, preferences over alternative abducibles
will be coded as constraints over even cycles of default negation, under Stable Model
semantics,6 and triggering one of the preference rules will break the cycle in favor
of one abducible or another. The notion of expectation is employed to express
preconditions for enabling the assumption of an abducible. An abducible can be
assumed only if there is an expectation for it, and there is not an expectation to the
contrary. In this case, we say that the abducible is considered. These expectations
are expressed by the following rules, for any given abducible a ∈ A∗:

expect(a)← L1, . . . , Lt

expect not(a)← L1, . . . , Lt

Note that L does not contain atoms of the form expect(abduced(.)) and expect
not(abduced(.)).

Example 10.2. Let P = {p ← a; q ← b; expect(a); expect(b); expect not(a) ← q}
with set of abducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has three
intended models: M = {expect(a), expect(b)}, M2 = {p, a, abduced(a), expect(a),
expect(b)} and M3 = {q, b, abduced(b), expect(a), expect(b)}. It is not possible to
assume both a and b because the assumption of b makes q true which in turn makes
expect not(a) true preventing a to be assumed.
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This notion of considered abducible allows us to divide the abductive process
into two distinct moments: the generation of hypotheses and the pruning of the
unpreferred ones. Computation of preferences between models is problematic when
both the generation and comparison get mixed up, as already mentioned in,3 but in
our case we introduce a middle-man condition instead of two distinct computations.

10.2.1.2. Enforced Abduction

To express that the assumption of an abducible enforces the assumption of another
abducible, L contains reserved atoms of the form a ≺ b, for any abducibles a, b ∈ A∗.
The atom a ≺ b states that the assumption of b enforces the assumption of a, active
abduction behavior. That is, if b is assumed, then a ≺ b forces a to be assumed
provided that a can be considered. Note that the abducibles a, b are both required
to be different from abduced(.) since they belong to A∗. Removing this requirement
would not add to the expressive power of L.

Example 10.3. Let P = {p ← a; a ≺ b; b ≺ a; expect(a); expect(b)} with set
of abducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has two intended
models: M = {a ≺ b, b ≺ a, expect(a), expect(b)} and M2 = {a ≺ b, b ≺
a, a, b, p, expect(a), expect(b), abduced(a), abduced(b)}. This is due to the active
abduction behavior of a ≺ b and b ≺ a that prevents intended models contain-
ing either a or b.

10.2.1.3. Conditional Abduction

The assumption of an abducible a can be conditional on the assumption of another
abducible b. The reserved atom a � b in L, for any abducible a, b ∈ A∗, states that
a can be assumed only if b is (without assuming it for the purpose of having a),
passive abduction behavior. That is, a � b acts as a check passively constraining
the assumption of a to the assumption of b (passive abduction behavior). Note
that the abducibles a, b are required to be different from abduced(.). Removing this
requirement would not add to the expressive power of L.

Example 10.4. Let P = {p ← a; q ← b; a � b; expect(a)} with set of abducibles
AP = {a, b, abduced(a), abduced(b)}. Then, there exists only one intended model of
P : M = {a � b, expect(a)}. Note that M2 = {a � b, b, q, expect(a), abduced(b)} and
M3 = {a � b, a, p, expect(a), abduced(a)} are not intended models. In fact, M2 is not
a model since b cannot be assumed (there is no expectation for it). This fact also
prevents the assumption of a (due to a � b) and consequently M3 is not a model.

Example 10.5. Let P = {p ← a; q ← b; a � b; expect(a); expect(b)} with
abducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has three intended mod-
els: M = {a � b, expect(a), expect(b)}, M2 = {a � b, b, q, expect(a), expect(b),
abduced(b)} and M3 = {a � b, a, b, p, q, expect(a), expect(b), abduced(a), abduced(b)}.
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Mark that the global a � b ← cond can be avoided altogether by replacing every
occurrence of the abducible a with cond , a, abduced(b). In fact, when one desires
some occurrences of a to be subjected to conditional abduction and others not,
then only some occurrences need be replaced as above.

10.2.1.4. Cardinality Constrained Abduction

To constrain the number of assumed abducibles, L contains reserved atoms of the
form L {l1, . . . , ln} U where n ≥ 1, every li is an abducible in A, and L and U

are natural numbers representing, respectively, the lower and upper bounds on the
cardinality of abducibles. L {l1, . . . , ln} U states that at least L and at most U

abducibles in {l1, . . . , ln} must be assumed (active abduction behavior). Since the
abducibles li belong to A, they can also take the form abduced(.).

10.2.2. Declarative Semantics

The declarative semantics of programs over L is given in terms of abductive stable
models. Before introducing them, we need few definitions. In the following we let P

be a program and AP the abducibles in P .
A 2-valued interpretation M of L is any set of literals from L that satisfies

the condition that, for any atom A, precisely one of the literals A or not A belongs
to M . We say that an interpretation M satisfies a conjunction of literals L1, . . . , Lt,
if every literal Li in the conjunction belongs to M . We also need to introduce the
notion of default assumptions of P with respect to an interpretation M , where a
default literal not A is considered an atom, and not not A ≡ A.

Default(P, M)

= {not A : there exists no rule A← L1, . . . , Lt in P such that M � L1, . . . , Lt}

Abducibles are false by default since we made the assumption that abducibles are
not defined by any rule in P . An interpretation M is a stable model of P iff:

(1) M � ⊥
(2) M = least(P ∪Default(P, M)), where least indicates the least model

Let C be L {l1, . . . , ln}U . Then, we let W (C, M) be the number of abducibles in
{l1, . . . , ln} satisfied by an interpretation M :

W (C, M) = | {l : l ∈ {l1, . . . , ln} and M � l} |

Given a set of abducibles ∆, we write ∆∗ to indicate:

∆∗ = {a : a �= abduced(.) and a ∈ ∆}
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Definition 10.3. Let ∆ ⊆ AP be a set of abducibles. M is an abductive stable
model with hypotheses ∆ of P iff:

(1) M � ⊥
(2) M = least(Q ∪Default(Q, M)), where Q = P ∪∆
(3) M � expect(a) and M � expect not(a), for every a ∈ ∆∗

(4) for every a ∈ ∆∗, if M � a then M � abduced(a)
(5) for every atom a ≺ b, if M � a ≺ b, M � expect(a), M � expect not(a) and

M � b, then M � a

(6) for every atom C of the form L {l1, . . . , ln}U , if M |= C then L ≤W (C, M) ≤ U

(7) for every a ∈ ∆∗, if M � abduced(a) then M � a

(8) for every atom a � b, if M � a � b and M � a, then M � b

Example 10.6. Let P = {p← abduced(a); expect(a)} and AP = {a, abduced(a)}.
Then, M = {p, a, abduced(a), expect(a)} is an abductive stable model with hypothe-
ses ∆ = {a, abduced(a)}, while M2 = {p, abduced(a), expect(a)} is not since condi-
tion (7) of Def. 10.3 is not fulfilled.

Definition 10.4. Let G be a goal. Then, ∆ is an abductive explanation for G

in P iff:

(1) M is an abductive stable model with hypotheses ∆ of P , and
(2) M � G

Definition 10.5. Let G be a goal. Then, ∆ is a strict abductive explanation for
G in P iff

(1) ∆ is a minimal set for which:

• M � G

• M � ⊥
• M = least(Q ∪Default(Q, M)), where Q = P ∪∆
• M � expect(a) and M � expect not(a), for every a ∈ ∆∗

• for every a ∈ ∆∗, if M � a then M � abduced(a)
• for every atom a ≺ b, if M � a ≺ b, M � expect(a), M � expect not(a) and

M � b, then M � a

• for every atom C of the form L {l1, . . . , ln}U , if M |= C then L ≤ W

(C, M) ≤ U

(2) for every a ∈ ∆∗, if M � abduced(a) then M � a

(3) for every atom a � b, if M � a � b and M � a, then M � b

Note that in Def. 10.5 condition (2) is not subject to minimization. The reason for
this is clarified by the next example.

Example 10.7. Reconsider the program P of Example 10.6. Suppose that the
goal G is ?−p. It holds that ∆ = {a, abduced(a)} is an abductive explanation for
G in P , but it is not strict since ∆ is not a minimal set satisfying condition (1)
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of Def. 10.5. Indeed, the minimal set is ∆2 = {abduced(a)}. Hence, there exists no
strict abductive explanation for G in P .

The following result relates abductive explanations and strict abductive explana-
tions.

Proposition 10.1. Let G be a goal and ∆ a strict abductive explanation for G

in P . Then, ∆ is an abductive explanation for G in P .

Proof. It follows immediately from Definitions 10.4 and 10.5. �

It is easy to see that the converse of Prop 10.1 does not hold since abductive
explanations are not subject to the minimality requirement.

10.3. Pragmatics

10.3.1. Constraining Abduction

Quite often in domain problems it happens that the assumption of abducibles is
subject to the fulfillment of certain conditions, including other assumptions, which
must be satisfied. This requirement can be expressed in our framework by exploiting
constrained abduction, a � b. It states that the assumption of the abducible a is
subject to the assumption of b with the property that b cannot be assumed in order
to assume a.

Example 10.8. Consider a scenario where there is a pub that is open or closed. If
the light is on in the pub then it is open or being cleaned. In case it is late night, one
can assume that the pub is open if there are people inside. The pub being located
in an entertainment district, there is noise around if there is people in the pub or a
party nearby. This scenario can be described by the following program P with AP =
{open , cleaning , party , people, abduced(open), abduced(cleaning), abduced(party),
abduced(people)}.

light ← open ,not cleaning
light ← cleaning ,not open ,not abduced(people)
open � people ← late night
noise ← party
noise ← people

Thus, in case it is night (but not late night) and one does observe lights in the
pub, then one has two equally plausible explanations for it: {open} or {cleaning}.
Otherwise (it is late night), then there is only one explanation for the lights being
turned on: {cleaning}. If instead it is late night and one hears noise also (that
is, the query is ?−light ,noise), then one will now have three abductive explana-
tions: {open , people}, {cleaning, party} and {open, party , people}. The last explana-
tion reflects the fact that the pub may be open with late customers simultaneously
with a party nearby, both events producing noise.



July 13, 2012 16:51 9.75in x 6.5in Handbook on Reasoning-Based Intelligent Systems b1323-ch10 FA

250 L. M. Pereira et al.

10.3.2. Preferring Abducibles

In this section we illustrate how to express preferences between considered
abducibles. To do so, we employ the construct L 〈l1, . . . , ln〉U to constrain the num-
ber of abducibles assumed (without having to assume it). Such a construct has a
passive abduction behavior and is defined as:

L 〈l1, . . . , ln〉U ≡ L {abduce(l1), . . . , abduce(ln)}U

for any abducible l1, . . . , ln in A∗. The following two examples illustrate the differ-
ence between L 〈l1, . . . , ln〉U and L {l1, . . . , ln}U .

Example 10.9. Let P = {p ← abduced(a); 1 {a, b} 1; expect(a); expect(b)} with
set of abducibles AP = {a, b, abduced(a), abduced(b)}. Then, P has two abduc-
tive stable models: M = {p, a, 1 {a, b} 1, abduced(a), expect(a), expect(b)} and M2 =
{b, 1 {a, b} 1, abduced(b), expect(a), expect(b)}. It holds that ∆ = {a, abduced(a)} is
a strict abductive explanation for ?−p in P .

Example 10.10. Let Q = {p ← abduced(a); 1 〈a, b〉 1; expect(a); expect(b)} with
set of abducibles AQ = {a, b, abduced(a), abduced(b)}. Then, Q has two abduc-
tive stable models: M = {p, a, 1 〈a, b〉 1, abduced(a), expect(a), expect(b)} and M2 =
{b, 1 〈a, b〉 1, abduced(b), expect(a), expect(b)}. In contrast to the program P of Exam-
ple 10.9, there exists no strict abductive explanation for ?−p in Q.

Consider for example a situation where there are three alternative abducibles a, b

and c can explain an observation p. Suppose that a and c are preferred to b. This
situation can be axiomatized by the following program P with abducibles AP =
{a, b, c, abduced(a), abduced(b), abduced(c)}:a

P = {p← a; p← b; p← c; a ≺ b; c ≺ b; 0 〈a, b, c〉 1; expect(a); expect(b); expect(c)}
P has three abductive stable models:

M = {a ≺ b, c ≺ b, 0 〈a, b, c〉 1, expect(a), expect(b), expect(c)}
∆ = {}

M2 = {a ≺ b, c ≺ b, 0 〈a, b, c〉 1, a, p, expect(a), expect(b), expect(c), abduced(a)}
∆2 = {a, abduced(a)}
M3 = {a ≺ b, c ≺ b, 0 〈a, b, c〉 1, c, p, expect(a), expect(b), expect(c), abduced(c)}
∆3 = {c, abduced(c)}

The strict abductive explanations for ?−p in P are ∆2 and ∆3. It is worth noting
that the abducible b cannot be part of any abductive explanation. In fact, if it were
the case, the rules a ≺ b and c ≺ b in P would enforce the abduction of a and c

(respectively) violating therefore the cardinality constraint 0 〈a, b, c〉 1.

aNote that if the preference relation is a strict partial order, then it must be axiomatized explicitly.
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Example 10.11. Consider a situationb where Claire drinks either tea or coffee
(but not both). Suppose that Claire prefers coffee over tea when sleepy, and doesn’t
drink coffee when she has high blood pressure. This situation can be represented
by a program P over L with set of abducibles AP = {tea, coffee, abduced(tea),
abduced(coffee)}:

drink ← tea
drink ← coffee

expect(tea)
expect(coffee)
expect not(coffee)← blood pressure high

0 〈tea, coffee〉 1
coffee ≺ tea ← sleepy

Following the abductive stable model semantics, the program above has two models,
one with tea and the other with coffee. Also, by adding the literal sleepy , the enforced
abduction comes into play, defeating the abductive stable model where only tea is
present (due to the impossibility of simultaneously abducing coffee). However, if
later on we add blood pressure high to the program, coffee is no longer expected,
and as such, the transformed preference rule no longer defeats the abduction of
tea which then becomes the single abductive stable model, despite the presence of
sleepy .

10.3.3. Abducible Sets

In many situations it is desirable not only to include rules about the expectations for
single abducibles, but also to express contextual information constraining the power-
set of abducibles. For instance, in the previous example we expressed that abducing
tea or coffee was mutually exclusive (i.e. only one of them could be abduced), but it
is easy to imagine similar choice situations where it would be possible, indeed even
desirable, to abduce both, or neither. The behaviour of abducibles over different
sets is highly context-dependent, and as such, should also be embedded over rules
in the theory.

Overall, the problem is analogous to the ones addressed by cardinality and
weight constraint rules for the Stable Model semantics,8 and below we present how
one can nicely import these results to work with abduction of sets, and also hierar-
chies of sets.

Example 10.12. Consider a situation where Claire is deciding what to have for
a meal from a limited buffet. The menu has appetizers (which Claire doesn’t mind
skipping, unless she’s very hungry), three main dishes, from which one can select

bThe following example is taken from.7
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a maximum of two, and drinks, from which she will have a single one. The situation,
with all possible choices, can be modelled by the following program P over L with
set of abducibles AP = {bread , salad , cheese,fish,meat , veggie,wine, juice,water ,

abduced(bread), abduced(salad), abduced(cheese), abduced(fish), abduced(meat),
abduced(veggie), abduced(wine), abduced(juice), abduced(water)}:

0 {bread , salad , cheese} 3← appetizers
1 {fish,meat , veggie} 2← main dishesv
1 {wine, juice,water} 1← drinks

2 {appetizers ,main dishes , drinks} 3

main dishes ≺ appetizers
drinks ≺ appetizers
appetizers ← very hungry

In this situation we model appetizers as being the least preferred set from those
available for the meal. This shows how we can condition sets of abducibles based on
the generation of literals from other cardinality constraints along with preferences
among such literals.

10.3.4. Modeling Inspection Points

When finding an abductive solution for a query, one may want to check whether
some other literals become true or false strictly within the abductive solution found,
but without performing additional abductions, and without having to produce a
complete model to do so. Pereira and Pinto9 argue that this type of reasoning requires
a new mechanism. To achieve it, they introduce the concept of inspection point,
and show how one can employ it to investigate side-effects of interest. Procedurally,
inspection points can be construed as utilizing a form of meta-abduction, by “meta-
abducing” the specific abduction of actually checking (i.e. passively verify) that a
certain and corresponding concrete abduction is indeed adopted. That is, one abduces
the checking of some abducible A, and the check consists in confirming that A is part
of the abductive solution by matching it with the object of the abduced check.

In general, one may want to find one possible set of conditions (literals of the
program assumed true) sufficient to entail the query. However, sometimes one may
also want to know which are (some of) the consequences (side-effects) of such condi-
tions. That is, one wants to know the truth value of some other literals, not part of
the query, whose truth-value may be determined by the abductive conditions found
as a solution of the query. In some cases, the focus can be in some specific side-effects
of abductions performed. In their approach the side-effects of interest are explic-
itly indicated by the user by wrapping the corresponding goals within a reserved
construct inspect/1. Procedurally, inspect goals must be solved without abducing
regular abducibles, only “meta-abducibles” of the form abduced/1. An example will
make this concept clear.
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Example 10.13. Consider the following program taken from,9 where tear gas ,
fire, and water cannon are abducibles.

⊥ ← police , riot ,notcontain
contain ← tear gas contain ← water cannon
smoke ← fire smoke ← inspect(tear gas)
police riot

Notice the two rules for smoke. The first states that one explanation for smoke is
fire, when assuming the hypothesis fire. The second states tear gas is also a possible
explanation for smoke. However, the presence of tear gas is a much more unlikely
situation than the presence of fire; after all, tear gas is only used by police to contain
riots and that is truly an exceptional situation. Fires are much more common and
spontaneous than riots. For this reason, fire is a much more plausible explanation
for smoke and, therefore, in order to let the explanation for smoke be tear gas , there
must be a plausible reason — imposed by some other likely phenomenon. This is
represented by inspect(tear gas) instead of simply tear gas . The inspect construct
disallows regular abduction — only meta-abduction — to be performed whilst try-
ing to solve tear gas . I.e., if we take tear gas as an abductive solution for fire, this
rule imposes that the step where we abduce tear gas is performed elsewhere, not
under the derivation tree for smoke. Thus, tear gas is an inspection point.

The integrity constraint, since there is police and a riot , forces contain to be
true, and hence, tear gas or water cannon or both, must be abduced. smoke is only
explained if, at the end of the day, tear gas is abduced to enact containment.

Abductive solutions should be plausible. smoke is plausibly explained by
tear gas if there is a reason, a best explanation, that makes the presence of tear gas
plausible; in this case the riot and the police. Plausibility is an important concept
in science which lends credibility to hypotheses.

Example 10.14. A gourmet’s proper meal goes along with red wine if the main
dish is meat, and with white wine if the main dish is fish. Specific wine abduction can
be done before main dish abduction, without committing to the kind of main dish.
If incompatible, an alternative abduction for the wine can be produced. Consider
the following program, with abducibles AP = {meat ,fish,merlot , chardonnay}:

⊥ ← not proper meal main dish ← meat
proper meal ← wine,main dish main dish ← fish

wine ← red wine, inspect(meat) red wine ← merlot
wine ← white wine, inspect(fish) white wine ← chardonnay

0 〈meat ,fish〉 1
0 〈merlot , chardonnay〉 1

The alternative combinations for the gourmet’s proper meal are thus: {fish,

chardonnay} and {meat ,merlot}. The main dish is not determined by the wine, even
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if the latter is pre-selected first. This example also illustrates the use of inspection
points to express a preference whereby one can only have wine with a main dish.

Inspection points can occur within the proof tree of another inspection point,
as the next example shows.

Example 10.15. Consider the following program, where the abducibles are
a, b, c, d:

x← a, inspect(y), b, c,not d y ← inspect(not a)
z ← d y ← b, inspect(not z), c

Let the query be ?−x. According to the intended semantics of inspection points,
the set ∆ = {a, b, c} is an abductive explanation for the query.

The following simple transformation maps programs with inspection points into
programs over L. Mark that the abductive stable models of the transformed program
clearly correspond to the intended procedural meanings ascribed to the inspection
points of the original program.

Definition 10.6. (Transforming Inspection Points) Let P a program containing
rules whose body possibly contains inspection points. The program Π(P ) over L
consists of:

(1) all the rules obtained by the rules in P by replacing:

inspect(a) or inspect(abduced(a)) with abduced(a)

if a is an abducible, and keeping inspect(L) otherwise
(2) inspect(not L) with not inspect(L)
(3) for every abducible a, the rule: expect(a)
(4) for every rule A← L1, . . . , Lt in P , the additional rule: inspect(A)← L

′
1, . . . , L

′
t

where for every 1 ≤ i ≤ t

L
′
i =




abduced(Li) if Li is an abducible
inspect(X) if Li is inspect(X)
inspect(Li) otherwise

Example 10.16. Let P be the program of Example 10.15. Then, Π(P ) is:

x← a, inspect(y), b, c,not d

inspect(x)← abduced(a), inspect(y), abduced(b), abduced(c), abduced(not d)

y ← abduced(not a)
inspect(y)← abduced(not a)

y ← b, inspect(not z), c
inspect(y)← abduced(b), inspect(not z), abduced(c)
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z ← d

inspect(z)← abduced(d)

expect(a).
expect(b).
expect(c).
expect(d).

The abductive stable model of Π(P ) respecting the inspection points is:

{x, a, b, c, abduced(a), abduced(b), abduced(c), expect(a), expect(b), expect(c),

expect(d)}.
Note that for each abduced(a) the corresponding A is in the model.

10.4. Procedural Semantics

10.4.1. Framework

In this section, we consider a first-order propositional language L# containing rules
as defined in Def. 10.1. Programs over L# are constrained to satisfy certain given
properties.

Definition 10.7. Let Γ and Σ be sets of rules over L#. Then (Γ, Σ) is a restricted
program.

The basic idea is that Γ contains the rules formalizing the application domain
while Σ formalizes the properties that Γ must satisfy. Every restricted program is
associated with a set of abducibles A(Γ,Σ).

Remark 10.1. Note that the definition of restricted program can be generalized
to have Σ be any set of wffs.

In the following let ∆ ⊆ A(Γ,Σ) be a set of abducibles.

Definition 10.8. M is a valid stable model with hypotheses ∆ of (Γ, Σ) iff:

(1) M � ⊥
(2) M = least(Γ+ ∪Default(Γ+, M)), where Γ+ = Γ ∪∆
(3) M � Σ

A valid stable model is an abductive stable model (conditions (1) and (2)) satisfying
the wffs in Σ (condition (3)). (explain why not to have strict valid stable models)

Example 10.17. Let (Γ, Σ) be a restricted program where: Γ = {p← a; expect(a)}
and Σ = {q ← a} with A(Γ,Σ) = {a, abduced(a)}. Then, its unique valid sta-
ble model is M = {expect(a)}. In fact, the only other model could be M2 =
{p, a, abduced(a), expect(a), expect(b)} but it is not valid being Σ not satisfied.
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Example 10.18. Let (Γ, Σ) be ({p ← a; expect(a); expect(b)}, {⊥ ← a,not b})
with A(Γ,Σ) = {a, b, abduced(a), abduced(b)}. This program has two valid stable
models: M = {expect(a), expect(b)} and M2 = {p, a, b, abduced(a), abduced(b),
expect(a), expect(b)}.
Definition 10.9. Let G be a goal. Then, ∆ is a valid explanation for G in
(Γ, Σ) iff:

(1) M is a valid stable model with hypotheses ∆ of (Γ, Σ), and
(2) M � G

Definition 10.10. Let G be a goal. Then, ∆ is a strict valid explanation for G in
(Γ, Σ) iff

(1) ∆ is a minimal set for which:

• M � ⊥
• M = least(Γ+ ∪Default(Γ+, M)), where Γ+ = Γ ∪∆
• M � G

(2) M � Σ

Proposition 10.2. Let G be a goal and ∆ a strict valid explanation for G in
(Γ, Σ). Then, ∆ is an valid explanation for G in (Γ, Σ).

Proof. It follows immediately from Definitions 10.9 and 10.10. �

It is easy to see that the converse of Prop 10.2 does not hold. Consider the following
example.

Example 10.19. Let Γ = {p← a} and Σ = {⊥ ← not b}, where A(Γ,Σ) = {a, b}.
Then, M = {p, a, b} is a valid stable model of (Γ, Σ). Suppose the goal G is ?−p.
Then, ∆ = {a, b} is a valid explanation for G in P . However, there exists no strict
valid explanation for G.

10.4.2. Program Transformation

We define a transformation γ mapping programs over L into restricted programs
over L#.

Definition 10.11. Let P be a program over L with set of abducibles AP . The
restricted program γ(P ) = (Γ, Σ) over L# with set of abducibles A(Γ,Σ) = AP is
defined as follows.
Γ consists of:

(1) all the rules in P

(2) ⊥ ← a,not expect(a)
⊥ ← a, expect not(a)
for every abducible a ∈ A∗

P



July 13, 2012 16:51 9.75in x 6.5in Handbook on Reasoning-Based Intelligent Systems b1323-ch10 FA

Inspecting and Preferring Abductive Models 257

(3) ⊥ ← a,not abduced(a)
for every abducible a ∈ A∗

P

(4) ⊥ ← a ≺ b, expect(a),not expect not(a), b,not a

for every rule a ≺ b← L1, . . . , Lt in P

(5) ⊥ ← L {l1, . . . , ln}U, count([l1, . . . , ln], N), N ≤ L

⊥ ← L {l1, . . . , ln}U, count([l1, . . . , ln], N), N ≥ U

for every rule L {l1, . . . , ln}U ← L1, . . . Lt in P

Σ consists of:

(6) ⊥ ← abduced(a), not a

for every abducible a ∈ A∗
P

(7) ⊥ ← a � b, a,not b

for every rule a � b← L1, . . . , Lt in P

Remark 10.2. We assume given the atom count([l1, . . . , ln], m) that holds if m

is the number of abducibles belonging to [l1, . . . , ln] that are assumed. That is,
if C is the atom L {l1, . . . , ln}U , then we have that M � count([l1, . . . , ln], m) iff
W (C, M) = m, for any interpretation M .

Remark 10.3. If P contains inspection points, then apply the transformation γ to
Π(P ) (cf. Definition 10.6) instead of P directly.

Example 10.20. Consider again the program P of Example 10.11. The trans-
formed program γ(P ) = (Γ, Σ) over L# with abducibles A(Γ,Σ) = {tea, coffee,

abduced(tea), abduced(coffee)} is:
Γ consists of:

drink ← tea
drink ← coffee

expect(tea)
expect(coffee)
expect not(coffee)← blood pressure high

0 {abduce(tea), abduce(coffee)} 1
coffee ≺ tea ← sleepy

⊥ ← tea,not expect(tea)
⊥ ← coffee,not expect(coffee)
⊥ ← tea,not expect not(tea)
⊥ ← coffee,not expect not(coffee)

⊥ ← tea,not abduced(tea)
⊥ ← coffee,not abduced(coffee)

⊥ ← coffee ≺ tea ← expect(coffee),not expect not(coffee), tea,not coffee

⊥ ← 0 {abduce(tea), abduce(coffee)} 1, count([abduce(tea), abduce(coffee)], N),
N ≤ 0
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⊥ ← 0 {abduce(tea), abduce(coffee)} 1, count([abduce(tea), abduce(coffee)], N),
N ≥ 1

Σ consists of:

⊥ ← abduced(tea),not tea
⊥ ← abduced(coffee),not coffee

10.4.3. Properties

The correctness of the transformation γ is guaranteed by the following two
properties.

Theorem 10.1. Let P be a program over L with set of abducibles AP . M is an
abductive stable model with hypotheses ∆ ⊆ AP of P iff M is a valid stable model
with hypotheses ∆ of γ(P ).

Proof.

(⇒)
Let M be an abductive stable model with hypotheses ∆ ⊆ AP of P . Then, we need
to show that M is a valid stable model with hypotheses ∆ of γ(P ) = (Γ, Σ). This
is established by proving the three conditions below.

(1) M � ⊥
Immediate by condition (1) of Definition 10.3.

(2) M = least(Γ+ ∪Default(Γ+, M)), where Γ+ = Γ ∪∆
Note first that by Definition 10.11 it holds that ∆ ⊆ AP = A(Γ,Σ). By condition (2)
of Definition 10.3 we have that:

M = least(Q ∪Default(Q, M)), where Q = P ∪∆.

Let Q2 be the program obtained by extending Q with the rules:

⊥ ← a,not expect(a)

⊥ ← a, expect not(a)

for every abducible a ∈ A∗
P . Then, M is an abductive stable model of Q2 since if

a ∈ ∆ then the claim follows by condition (3) of Definition 10.3, otherwise (a �∈ ∆)
the claim is immediate by noting that the body of the rule is false.

Let Q3 be the program obtained by extending Q2 with the rules:

⊥ ← a,not abduced(a)

for every abducible a ∈ A∗
P . By condition (4) of Definition 10.3, it follows immedi-

ately that M is an abductive stable model of Q3.
Let Q4 be the program obtained by extending Q3 with the rules:

⊥ ← a ≺ b, expect(a),not expect not(a), b,not a
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for every rule a ≺ b ← L1, . . . , Lt in P . To establish that M is an abductive
stable model of Q4 consider the following two cases. If it holds that M � (a ≺ b,

expect(a),not expect not(a), b) then the claim is immediate. Otherwise, the claim
follows by condition (5) of Definition 10.3 stating that M � a.

Let Q5 be the program obtained by extending Q4 with the rules:

⊥ ← L {l1, . . . , ln}U, count([l1, . . . , ln], N), N ≤ L

⊥ ← L {l1, . . . , ln}U, count([l1, . . . , ln], N), N ≥ U

for every rule L {l1, . . . , ln}U ← L1, . . . Lt in P . M is an abductive stable model
of Q5 by condition (6) of Definition 10.3 under the assumption that M � count
([l1, . . . , ln], m) iff W (C, M) = m with C = L {l1, . . . , ln}U .

By noting that Q6 = Γ+, claim (2) follows.

(3) M � Σ
Note first that by Definition 10.11 the program Σ consists of two kinds of rules:

⊥ ← abduced(a), not a

for every abducible a ∈ A∗
P , and

⊥ ← a � b, a,not b

for every rule a � b ← L1, . . . , Lt in P . Conditions (7) and (8) of Definition 10.3
ensure that the bodies of the rules above is false. Hence, the claim follows.

(⇐)
Let M be a valid stable model with hypotheses ∆ of γ(P ) = (Γ, Σ). We need to
show that M is an abductive stable model with hypotheses ∆ ⊆ AP of P . The
proof of this claim is omitted being quite similar to the proof of the previous case
(⇒). �

Lemma 10.1. Let P be a program over L and G a goal. Let ∆2 ⊆ AP and M2 be a
set of abducibles and an interpretation that satisfy condition (1) of Definition 10.10
for G in γ(P ). Then, ∆2 and M2 satisfy condition (1) of Definition 10.5 for G

in P .

Proof. To prove that ∆2 and M2 satisfy condition (1) of Definition 10.5 we have
to prove the following conditions:

• M2 � G and M2 � ⊥ since M2 satisfies condition (1) of Definition 10.10
• M2 = least(Q ∪ Default(Q, M2)), where Q = P ∪ ∆2 by construction of γ, Γ

exactly contains all the rules in P plus rules of the form ⊥ ← body . This claim
follows from the facts that:

− Default(Q, M2) = Default(Γ+, M2), and
− M2 = least(Γ+ ∪Default(Γ+, M2))

where Γ+ = Γ ∪∆2



July 13, 2012 16:51 9.75in x 6.5in Handbook on Reasoning-Based Intelligent Systems b1323-ch10 FA

260 L. M. Pereira et al.

• M � expect(a) and M � expect not(a), for every a ∈ ∆∗
2 immediate from case (2)

of Definition 10.11 and M2 � ⊥
• for every a ∈ ∆∗

2, if M2 � a then M2 � abduced(a) immediate from case (3) of
Definition 10.11 and M2 � ⊥
• for every atom a ≺ b, if M2 � a ≺ b, M2 � expect(a), M2 � expect not(a) and

M2 � b, then M2 � a immediate from case (4) of Definition 10.11 and M2 � ⊥
• for every atom C = L {l1, . . . , ln}U , if M2 |= C then L ≤ W (C, M2) ≤ U

immediate from case (5) of Definition 10.11 and M2 � ⊥
�

Theorem 10.2. Let P be a program over L and G a goal. ∆ ⊆ AP is a strict
abductive explanation for G in P iff ∆ is a strict valid explanation for G in γ(P ).

Proof.
Let γ(P ) = (Σ, Γ).
(⇒)
Let ∆ ⊆ AP be a strict abductive explanation for G in P . Then, we need to show
that ∆ is a strict valid explanation for G in γ(P ).

The proof is by contradiction. Suppose that ∆ is not a strict valid explanation
for G in γ(P ). That is, there is no interpretation M for which conditions (1) and
(2) of Definition 10.10 hold. Let M be an abductive stable model with hypotheses
∆ of P . By Theorem 10.1, M is a valid stable model with hypotheses ∆ of (Γ, Σ),
and therefore ∆ is a valid explanation for G in (Γ, Σ).

Since ∆ is not a strict valid explanation, the two conditions (1) and (2) of
Definition 10.10 do not hold for M . Consider condition (2). Since M is a valid
stable model of (Γ, Σ), then we have that M � Σ. Thus, it is condition (1) that
makes ∆ not strict. Hence, there must exist a set of abducibles ∆2 ⊂ ∆ and an
interpretation M2 that satisfy condition (1) of Definition 10.10:c

(1) ∆2 is a minimal set for which:

• M2 � ⊥
• M2 = least(Γ+ ∪Default(Γ+, M2)), where Γ+ = Γ ∪∆2

• M2 � G

The hypotheses ∆2 satisfy condition (1) of Definition 10.5 by Lemma 10.1, and
therefore ∆ cannot be a strict abductive explanation for G in P (because ∆ would
not be a minimal set to satisfy condition (1)).

(⇐)
Let ∆ ⊆ AP be a strict valid explanation for G in γ(P ). We need to show that ∆
is a strict abductive explanation for G in P .

The proof of this claim is omitted being quite similar to the proof of the previous
case. �

cNote that M2 might not satisfy Σ.
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10.5. A Posteriori Preferences

While we can indeed place a priori constraints on which abducibles are relevant
given contextual knowledge in the situation, more often than not we are only able to
enact certain choices after looking at the consequences of adopting one or another
abducible. The consequences of each abductive stable model can, and often are,
unique to that model, and we cannot model preferences across these consequences
during model generation itself. Only after the relevant models are computed can we
reason about which consequences, or other features of the models, are determinant
for the final choice, i.e. the quality of the model.

One possibility is to consider a quantitative classification of the obtained
models, for instance by associating some measure of utility to each choice scenario,
like in decision theory. This allows us to consider and integrate many techniques and
results from more quantitative decision making frameworks into our own theories,
accounting for more elaborate choice models.

When considering abductive logic programs as specifications of choice models
of agents, other possibilities come up derived from the capability of the agent to
act upon and sense the environment. Namely, if it is the case that the currently
available knowledge of the situation is insufficient to commit to any single preferred
abductive model, it may be possible for the agent to gather additional information
by performing experiments, or consulting an oracle in order to confirm or discon-
firm some of the remaining hypotheses. This process may even be nested, so that
the available experiments are themselves considered as hypotheses with associated
qualitative and quantitative preferences, allowing to express arbitrarily complex
context-dependent choices.

We explore these novel approaches in the sequel, along with some telling exam-
ples which intend to show the need for, and illustrate, the proposed reasoning
schemes.

10.5.1. The consequences of abduction

A desirable result of encoding abduction semantics over models of a program (where
each abducible literal may be assumed or not) is that we immediately obtain the con-
sequences of committing to any one hypotheses set. Rules which contain abducibles
in their bodies can account for the side-effect derivation of certain positive literals in
some models, but not others, possibly triggering integrity constraints or indirectly
deriving interesting consequences simply as a result of accepting a hypothesis.

Sometimes these computed consequences are relevant to the process of prefer-
ence handling itself, as we prefer certain consequences to others. However, more
often than not it is not possible to simply condition preferences between abducibles
based on these consequences, as it may lead to unexpected circular inconsisten-
cies. Also it may be difficult to express more general preferences over what are the
preferred literals in a more complete model.
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Example 10.21. Consider the simple abductive logic program presented below,
with A = {a, b}:

c← a 1 {a, b} 1
expect(a)
expect(b)

This program has two abductive stable models:

M1 = {expect(a), expect(b), a, c}
M2 = {expect(a), expect(b), b}.

Now let us suppose that we want to prefer models where the literal c is not present.
We could model this, for this particular program, by stating b ≺ a← c. However, if
we introduced another abducible that directly or indirectly resulted in the derivation
of c then we would have to shortcut another preference rule for this abducible. Also,
if the derivation of c resulted from the combination of more than one abduction, one
would have to extensively encode preferences over these sets to all other possible
combinations of literals which didn’t derive c.

In the long run, the complexity of writing program rules to account for all
possible combinations for c would quickly become unsurmountable. Also, if other
interesting literals also suggested other types of preferences over the models, and
particularly if these other preferences contradicted the previous ones, inconsistencies
could easily arise which would destroy entire models of the program. Also, how could
we model more general meta-preferences like the one: ‘prefer models which have a
greater number of abduced literals’.

In these cases, a posteriori reasoning is much more general and powerful to
express these kinds of constraints and preference rules which operate on the conse-
quences of the models themselves.

10.5.2. Utility Theory

Economic decision theory has been well recognized as a comprehensive and well-
founded model for describing ideal rational agents, and much work in the field
of AI has been undertaken in order to synthesize models of bounded rationality in
computational systems. The logic programming field is no exception, with a number
of results being imported into logic models of belief, choice and decision making.10

A particularly interesting field of study regards modeling agents capable of planning
ahead their future choices and actions.

Abduction can also be seen as a mechanism to enable the generation of the
possible futures of an agent, with each abductive stable model representing a possi-
bly reachable scenario of interest. Preferring over abducibles in this case is enacting
preferences over the imagined future of the agent. In this particular domain, it is
unavoidable to deal with uncertainty, a problem that decision theory is ready to
address using probability theory coupled with utility functions.
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We intend to show that combining the qualitative reasoning addressed in pre-
vious sections with the quantitative decision making mechanisms of decision theory
is a natural extension to both mechanisms for handling preferences, and neatly
accounts for some interesting properties presented by agents in the real world.

In fact, it is possible to associate a quantitative measure of utility to each
abductive scenario, by conditioning utility literals on consequences of abducibles.
By combining utilities with information regarding the probability of the occurrence
of uncertain literals, we end up with an interesting mixture of qualitative and quan-
titative reasoning, where possible abducibles, constrained by the expectation and
preference rules, generate all possible relevant future scenarios which are then asso-
ciated with a degree of belief to be coupled with the importance that the model be
adopted.

Example 10.22. Suppose that agent Claire is spending a day at the beach and
she is deciding what means of transportation to adopt. She knows that usually it is
faster and more comfortable to go by car, but she also knows that, because it is hot,
there is a possibility that there will be a traffic jam. There is also the possibility
of using public transportation (by train), but it will take a lot of time, although it
meets her wishes of being more environmentally friendly.

This situation can be modeled by the following abductive logic program:

go to(beach)← car
go to(beach)← train

expect(car )
expect(train)
1 {car , train} 1

probability(traffic jam , 0.7)← hot
probability(not traffic jam , 0.3)← hot

utility(stuck in traffic,−8)
utility(wasting time,−4)
utility(comfort , 10)
utility(environment friendly , 3)

hot

By assuming each of the abductive hypotheses, the general utility of going to
the beach can be computed for each particular scenario:

Assume car
Probability of being stuck in traffic =0.7
Probability of a comfortable ride =0.3
Expected utility = 10 ∗ 0.3 + 0.7 ∗ −8 = −2.6

Assume train
Expected utility =−4 + 3 = −1



July 13, 2012 16:51 9.75in x 6.5in Handbook on Reasoning-Based Intelligent Systems b1323-ch10 FA

264 L. M. Pereira et al.

It is important to clarify that it wouldn’t be possible to condition any kind of
comparison or preference between abducibles based on the value of the computed
utilities during model computation itself. This results from the fact that the final
utilities depend on literals particular to each model, and are not available a priori.
It should be clear that enacting preferential reasoning over the utilities computed
for each model has thus to be performed after the scenarios are available, with an
a posteriori meta-reasoning over the models and their respective utilities.

10.5.3. Oracles

Performing an experiment can be a critical element in the process of making
informed choices. For medical practitioners, for instance, it is a natural extension
of abductive reasoning. Preliminary diagnosis (or hypotheses generation) points to
expected symptoms and consequences of assuming a certain diagnosis. From these
expected symptoms, experiments can be extracted to confirm or disconfirm these
consequences. Experiments themselves are abducible choices, and preferences are
often applied to specify which experiment should be performed first given the con-
text of a particular patient. Some of them may be more expensive, or more stressing
to the patient, or less reliable under certain situations.

New information obtained from performed experiments is incorporated into
the original knowledge base in order to refine the preliminary diagnosis. In addi-
tion to trimming down on some of the available hypotheses, information from the
experiments can actually bring about additional hypotheses for diagnosis that the
practitioner was not able to conjecture prematurely. This cycle of refining a diagno-
sis with additional inquiry is an example of iterated abduction where the dynamics
of sensing and acting upon the environment are critical to the very process of opt-
ing for the best possible set of hypotheses, and the following diagnosis example
illustrates well how it relates to the non-static nature of human preferences.

Example 10.23. A patient shows up at the dentist with signs of pain upon teeth
percussion. The expected causes for the observed signs are:

• Periapical lesion
• Horizontal Fracture of the root and/or crown
• Vertical Fracture of the root and/or crown

This setting can be modelled by the following abductive logic program D, rep-
resenting a partial medical knowledge base of the practitioner:

percussion pain← periapical lesion

percussion pain← fracture

radiolucency ← periapical lesion

fracture← horizontal fracture

elliptic fracture trace← horizontal fracture

tooth mobility← horizontal fracture
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fracture← vertical fracture

decompression pain← vertical fracture

0 {periapical lesion, horizontal fracture, vertical fracture} 1

expect(periapical lesion)
expect(horizontal fracture)
expect(vertical fracture)

⊥ ← not percussion pain

The integrity constraint indicates that the practitioner must conclude
percussion pain since that is the symptom of the patient that requires explanation.
There are three preferred abductive stable models for D corresponding to each of
the available hypotheses ∆1 = {periapical lesion}, ∆2 = {horizontal fracture}
and ∆3 = {vertical fracture}. Excluding the expectation domain literals, which
are contained in all models, we have:

M1 = {percussion pain, periapical lesion, radiolucency}
with hypotheses ∆1

M2 = {percussion pain, horizontal fracture, fracture,

tooth mobility, elliptic fracture trace} with hypotheses ∆2

M3 = {percussion pain, vertical fracture, fracture,

decompression pain} with hypotheses ∆3

Notice that in the collection of abductive stable models we have not only each
of the possible diagnosis, but also all the expected symptoms of assuming each of
the diagnosis.

Following the computation of possible diagnosis scenarios, it is necessary to
generate and choose an experiment which can lead to confirmation or disconfirma-
tion of the hypotheses. Let us suppose that the medical practitioner has available
an additional knowledge base of possible experiments and rules stating when each
experiment is indicated. Consider the following abductive logic program E:

1 {
xray, percussion test,

mobility test, decompression test

} 1

expect(percussion test)← possible(percussion pain)
expect(xray)← possible(radiolucency)
expect(xray)← possible(elliptic fracture trace)
expect not(xray)← radiotherapy patient

expect(mobility test)← possible(tooth mobility)
expect(decompression test)←

possible(decompression pain)
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mobility test � xray

decompression test � xray

mobility test � decompression test← trauma

The literal possible/1 indicates that a given symptom is an expected possibility
that should be confirmed by an experiment, if one is available. The less invasive
experiments are preferred to those which are more invasive (e.g. xray). We also
impose the constraint that only one experiment may be executed at any one time.

Let us now take all of the consequences which were extracted from the models
of D and were not original symptoms of the patient, and assert them in program
E enclosed in distinct possible/1 literals. The following rules are then added to E,
forming the new abductive logic program E1:

possible(radiolucency)
possible(elliptic fracture trace)
possible(tooth mobility)
possible(decompression pain)

Computing the models of E1 yields two preferred abductive hypotheses
for conducting a test on the patient: ∆1 = {mobility test} and ∆2 =
{decompression test}. Both of these hypotheses stand on equal grounds, so it is
possible to non-deterministically pick one for execution. Let us assume that ∆1 is
ultimately chosen. Conducting the mobility test on the patient’s tooth shows that
no significant mobility is present. The new information can now be asserted onto the
original diagnosis knowledge base described by D, in the form of the new integrity
constraint:

⊥ ← tooth mobility

meaning that we have disproven tooth mobility so it would be contradictory to
conclude it as a consequence of diagnosis.

By recomputing the models for the new abductive logic program D1, we verify
that the previous hypotheses set ∆2 = {horizontal fracture} has been defeated,
and now only diagnosis of periapical lesion and vertical fracture remain as pos-
sible candidates.

An additional iteration over the abductive logic program E ∪ Ps, where Ps is
the set of possible/1 literals derived from the consequences of D1, reveals that the
next experiment to be performed is the non-invasive decompression test. Depend-
ing on the result of this experiment, the practitioner will be able to conclude the
final diagnosis on a last iteration of the augmented medical knowledge base. This
particular example is oversimplified however, since medical knowledge is already
structured so as to provide only crucial literals. A literal is crucial with respect to
two theories if only one of the two theories supports the derivation of that literal.
Computing such crucial literals is a non-trivial, but well-known problem, originally
addressed in.11 Its implementation is, nevertheless, outside the scope of this work.
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10.6. Sophie’s Choice

One of the most discussed cases where the same moral precept gives rise to con-
flicting obligations is taken from William Styron’s Sophie’s Choice.12 Sophie and
her two children are at a Nazi concentration camp. A guard confronts Sophie and
tells her that one of her children will be allowed to live and one will be killed.
But it is Sophie who must decide which child will be killed. Sophie can prevent
the death of either of her children, but only by condemning the other to be killed.
The guard makes the situation even more excruciating by informing Sophie that if
she chooses neither, then both will be killed. With this added factor, Sophie has a
morally compelling reason to choose one of her children. But for each child, Sophie
has an apparently equally strong reason to save him or her. Thus the same moral
precept gives rise to conflicting obligations.

The described scenario can be formalized with the following program P over L
with set of abducibles:

AP = {letting both die , kill(child 1 ), kill(child 2 ),flip a coin}

(1) expect(kill(child 1 ))
expect(kill(child 2 ))
expect(flip a coin)
expect(letting both die)

(2) on observe(decide)← sophie choice
(3) decide ← letting both die

decide ← kill(child 1 )
decide ← kill(child 2 )
decide ← flip a coin

(4) 1 〈letting both die, kill(child 1 ), kill(child 2 ),flip a coin〉 1
(5) expect not(kill(C))← special reason(C)
(6) expect not(flip a coin)← special reason(child 1 ),not special reason(child 2 )

expect not(flip a coin)← special reason(child 2 ),not special reason(child 1 )
(7) die(2)← abduced(letting both die)

die(1)← abduced(kill(child 1 ))
die(1)← abduced(kill(child 2 ))
die(1)← abduced(flip a coin)

(8) pr(feel guity, 1)← abduced(kill(child 1 ))
pr(feel guity, 1)← abduced(kill(child 2 ))
pr(feel guity, 0.5)← abduced(flip a coin)

(9) Ai� Aj ← member(die(N), Ai),member(die(K), Aj), N < K

(10) Ai� Aj ← member(pr (feel guity , P i), Ai),member(pr (feel guity, P j), Aj),
P i < Pj

Line 1 says that there is always expectation for every abducible declared in AP . In
addition, if Sophie has no special reason for any child, there is no expectation to the
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contrary of those abducibles (lines 5–6). Thus, the strict abductive explanations for
the goal? — decide are:

∆1 = {letting both die,not kill (child 1 ),not kill (child 2 ),not flip a coin}
∆2 = {kill(child 1 ),not kill (child 2 ),not flip a coin}
∆3 = {kill(child 2 ),not kill (child 1 ),not flip a coin}
∆4 = {flip a coin}

e.g. it is possible for Sophie to decide to let both of her children die, choose one
on her own decision, or flip a coin to decide. Then, in the next stage, a posteriori
preferences are taken into account to filter out the less preferred abductive solutions.
Considering the “a posteriori” preference encoded in line 9, solution that includes
letting both die is ruled out since it leads to the consequence of two children dying,
which is less preferred than any of the (equally) preferred remaining solutions (all
with the consequence of just one child dying) (line 7). From the three remaining
solutions, the ones that kill some child are ruled out since their consequences are
the greater probability of Sophie to feel guilty than the one of {flip a coin} (line 8),
having taken into account “a posteriori preference” in line 10 where member (G, A) is
the standard system predicate meaning in this context to check whether G belongs to
the set of literals representing the abductive stable model A. In short, Sophie’s final
decision is to flip a coin since, according to this, only one child will die and she will
feel less guilty about her decision. Next consider the case when some special reason
for a single child, e.g. child 1 , is entered. Then the expectation to the contrary
of killing child 1 (line 5) and of flipping a coin (line 6) are held. Therefore, only
two strict abductive explanations, one including letting both die and one including
kill(child 2 ) are available for Sophie to choose. Then, as above, by applying the “a
posteriori” preference in line 9, the first one is ruled out. In other words, Sophie’s
final decision is to kill the child 2 .

10.7. Implementation

10.7.1. XSB-XASP Interface

The Prolog language has been for quite some time one of the most accepted means to
codify and execute logic programs, and as such has become a useful tool for research
and application development in logic programming. Several stable implementations
have been developed and refined over the years, with plenty of working solutions
to pragmatic issues ranging from efficiency and portability to explorations of lan-
guage extensions. The XSB Prolog systemd is one of the most sophisticated, power-
ful, efficient and versatile among these implementations, with a focus on execution

dBoth the XSB Logic Programming system and Smodels are freely available at: http://xsb.

sourceforge.net and http://www.tcs.hut.fi/Software/smodels
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efficiency and interaction with external systems, implementing program evaluation
following the Well-Founded Semantics (WFS) for normal logic programs.

The semantics of Stable Models has become the cornerstone for the definition
of some of the most important results in logic programming of the past decade,
providing an increase in logic program declarativity and a new paradigm for program
evaluation. However, the lack of some important properties of previous language
semantics, like relevancy and cumulativity, somewhat reduces its applicability in
practice, namely regarding abduction.

The XASP interface13, 16 (standing for XSB Answer Set Programming), is
included in XSB Prolog as a practical programming interface to Smodels,14 one
of the most successful and efficient implementations of the Stable Models semantics
over generalized logic programs. The XASP system allows one not only to compute
the models of a given NLP, but also to effectively combine 3-valued with 2-valued
reasoning. The latter is achieved by using Smodels to compute the stable models of
the so-called residual program, the one that results from a query evaluated in XSB
using tabling.15 This residual program is represented by delay lists, that is, the set
of undefined literals for which the program could not find a complete proof, due to
mutual dependencies or loops over default negation for that set of literals, detected
by the XSB tabling mechanism. This method allows us to obtain any two-valued
semantics in completion to the three-valued semantics the XSB system produces.

This kind of integration allows one to maintain the relevance property for
queries over our programs, something that the Stable Model semantics does not orig-
inally enjoy. In Stable Models, by the very definition of the semantics, it is necessary
to compute all the models for the whole program. In our implementation framework,
we sidestep this issue, by using XASP to compute the query relevant residual pro-
gram on demand, usually after some degree of transformation. Only the resulting
program is then sent to Smodels for computation of abductive stable models.

This is one of the main problems which abduction over stable models has been
facing, in that it always has to consider all the abducibles in a program and then
progressively defeat all those that are irrelevant for the problem at hand. This is not
so in our system framework, since we can usually begin evaluation by a top-down
derivation of a query, which immediately constrains the set of abducibles that are
relevant to the satisfaction and proof of that particular query.

An important consideration of computing consequences, like suggested in Sec-
tion 10.5.1, is that we could end up having to compute the models of the whole
program in order to obtain just a particular relevant subset which will be used to
enact a posteriori preferences. This can be easily avoided by performing prelimi-
nary computation of the relevant residual program, given the consequences that we
expect to observe. This means that the consequences believed significant for model
preference can be computed on the XSB side, and their additional residual program
sent to Smodels as well. In this phase, we do not allow for additional abduction of
literals, but merely enforce that rules for consequences are consumers of considered
abducibles which have already been produced.
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In this way, we combine a declarative methodology to describe the abductive
process, with an efficient and viable implementation of reasoning by complementing
a 3-valued well-founded derivation with the computation of the stable models of the
residual program, in a natural way to obtain all the possible 2-valued models from
the well-founded one.

10.7.2. Top-Down Proof Procedure

In our implementation we aim for query-driven evaluation of abductive stable mod-
els, so that only the relevant part of the program is considered for computation, as
mentioned previously. Computation of such models is performed in two stages.

In the first stage, XSB computes the Well-Founded Model (WFM) of the pro-
gram w.r.t. the given query, supporting goal derivation on any expected abducibles
that are considered by not otherwise being defeated, as detailed in Section 10.2.1.1.
Satisfaction of integrity constraints is also enforced at this stage, by always querying
for not ⊥ in conjunction with any specified goal.

In this way, we aim to dynamically collect only those abducibles which are
necessary to prove the query. However, we cannot assume them either true or false
at this stage, so they must come up undefined in the derivation tree. This is achieved
by codifying considered abducibles in the following manner:

consider(A) ← expect(A), not expect not(A), abduce(A).
abduce(A)← not abduce not(A).

abduce not(A) ← not abduce(A).

The latter two clauses are defined for every abducible, encoding abductive lit-
erals as even-loops over default negation, which guarantees that any considered
abducibles come up undefined in the WFM of the program, and hence are con-
tained in the residual program computed by the XSB Prolog-based meta-interpreter
as explained in Section 10.7.1.

10.7.3. Computation of Abductive Stable Models

In the second stage, Smodels will be used to compute abductive stable models
from the residual program obtained from top-down goal derivation. Determination
of relevant abducibles is performed by examining the residual program for ground
literals which are argument to consider/1 clauses. Relevant preference rules are pre-
evaluated at this stage as well, by querying for any such rules envolving any pair of
the relevant abducible set.

Currently we need to assume ground literals since we will be producing a
program transformation over the residual program based on the set of confirmed
abducibles, which will be sent directly to Smodels. Smodels needs all literals to
be instantiated, or to have an associated domain for instantiation. This limitation
is present in many other state-of-the-art logic programming systems and its solu-
tion is not the main point of this work. Nevertheless, it is worth considering that
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XSB’s unification algorithm can ground some of the variables during the top-down
derivation.

The XASP package16 allows the programmer to collect rules in an XSB clause
store. When the programmer has determined that enough clauses have been added
to the store to form a semantically complete sub-program, the program is then
committed. This means that information in the clauses is copied to Smodels, cod-
ified using Smodels data structures so that stable models of those clauses can be
computed and examined.

When both the relevant abducibles and preference rules are determined, a vari-
ation of transformation Γ is applied, with every encoded clause being sent to the
XASP store, reset beforehand in preparation for the stable models computation.
Once the residual program, transformed to enact preferences, is actually committed
to Smodels, we obtain through XASP the set of abductive stable models, and iden-
tify each one by their abducible choices (i.e. those consider/1 literals which were
collected beforehand in the residual program).

10.7.4. Inspection Points

Given the availability of a top-down proof procedure for abduction, implementing
inspection points becomes simply a matter of adapting the evaluation of derivation
subtrees falling under inspect/1 literals, by following Definition 10.6 at a meta-
interpreter level.

Basically, considered abducibles evaluated under inspect/1 subtrees are codified
in the following manner:

consider(A) ← abduced(A).
abduced(A)← not abduced not(A).

abduced not(A) ← not abduced(A).

All the abduced/1 predicates are thus collected during computation of the resid-
ual program and are later checked against the abductive stable models themselves.
Every abduced(a) predicate must have a corresponding abducible a for the model
to be accepted, as defined by transformation Γ.

10.7.5. A Posteriori Choice Mechanisms

If only a single model emerges from computation of the abductive stable models,
goal evaluation can successfully terminate. However, in situations where multiple
models still remain, there is an opportunity to introduce a posteriori choice mech-
anisms, which can actually be domain-specific for any given program. We account
for this specificity by providing an implementation hook which the user can adopt
for introducing the specific code for this final selection process.

We have currently implemented a fully working set of a posteriori choice mech-
anisms, more specifically those detailed in Section 10.5, but additional preference
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mechanisms can be exploited in the future to choose between abductive stable
models.

These are the bases of the ACORDA system,17, 18 a logic programming frame-
work specifically designed to accomodate for abduction in evolving scenarios, using
the perspectives previously outlined. In addition, we have also implemented our
framework in Neg-Abdual19 an implemented XSB-Prolog system combining con-
structive negation and the abduction over the well-founded semantics of Abdual.20

All our examples have been tested with success in these systems.

10.8. Conclusions

We have shown that a priori preferences over abductive logic programs are an
important tool for knowledge representation in modeling different kinds of choice
situations where an agent needs to make a decision while considering its present
and future context. Some limitations which had already been identified in4 were
addressed, namely how to express preferences between abducible sets. We have
shown how previous results of extensions to the Stable Model semantics, using car-
dinality constraints and inspection points, can be used to govern and constrain
abduction of abductive literals in the context of our framework. The incorporation
of these results has also led to a simpler transformation of abductive logic programs
into normal logic programs extended with cardinality constraints.

The broadening of our research direction to incorporate a posteriori preferences
has also been presented here as a major topic of interest for research into prospective
agents, which can not only consider their immediate context, but can also present
a modicum of lookahead and meta-reasoning over available scenarios, using both
qualitative and quantitative dimensions for decision making. We have also shown
the importance of using selected computed consequences to constrain and condition
preference handling itself, and how model computation can be complemented by
performing experiments with the purpose of acquiring new information with which
to enact more informed choices.

In,5 the authors detect a problem with the IFF abductive proof procedure21

of Kung and Kowalski, in what concerns the treatment of negated abducibles in
integrity constraints (e.g. in their examples 2 and 3). They then specialize IFF to
avoid such problems and prove correctness of the new procedure. The problems
detected refer to the active use an IC of some not A, where A is an abducible,
whereas the intended use should be a passive one, simply checking whether A is
proved in the abductive solution found. To that effect they replace such occurrences
of not A by not provable(A), in order to ensure that no new abductions are allowed
during the checking.

Our work on Inspection Points generalizes the scope of the problem they solved
and solves the problems involved in this wider scope. For one we allow for passive
checking not just of negated abducibles but also of positive ones, as well as passive
checking of any literal, whether or not abducible, and allow also to single out which
occurrences are passive or active. Thus, we can cater for both passive and active



July 13, 2012 16:51 9.75in x 6.5in Handbook on Reasoning-Based Intelligent Systems b1323-ch10 FA

Inspecting and Preferring Abductive Models 273

ICs, depending on the use desired. Our solution uses abduction itself to solve the
problem, making it general for use in other abductive frameworks and procedures.
The declarative semantics of our approach is supplied by a straight forward, meaning
preserving, program transformation whose correctness is apparent.

Finally, we have shown the advantages of implementing our framework as a
hybrid Prolog-Smodels system via the XASP package, in order to efficiently com-
bine backwards- and forwards-chaining reasoning, respectively for constraining the
abducibles to only those which are relevant for a given goal, and then to compute
the consequences of assuming them in each possible scenario.

Although in this work we insisted on a partial order for preferences, in4 we
have already shown that this need not necessarily be so, namely by specifying dif-
ferent conditions for revising contradictory preferences.22 The possible alternative
revisions, required to satisfy the conditions, impart a non-monotonic or defeasible
reading of the preferences given initially. Such a generalization permits us to go
beyond a simply foundational view of preferences, and allows us to admit a coher-
ent view as well, inasmuch several alternative consistent stable models may obtain
for our preferences, as a result of each revision.

In,23 arguments are given as to how epistemic entrenchment can be explic-
itly expressed as preferential reasoning. And, moreover, how preferences can be
employed to determine believe revisions, or, conversely, how belief contractions can
lead to the explicit expression of preferences.24 provides a stimulating survey of
opportunities and problems in the use of preferences, reliant on AI techniques.
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