
Internet-Based Self-Services: from Analysis and
Design to Deployment

Jorge Cardoso
Dept. Engenharia Informatica/CISUC

University of Coimbra
Coimbra, Portugal

Email: jcardoso@dei.uc.pt

John A. Miller
Computer Science Department

University of Georgia
Athens, GA, USA

Email: jam@cs.uga.edu

Abstract—Many worldwide economies have moved away from
manufacturing and became service-oriented. As a consequence,
research on Internet-based Self-Services (ISS) will foster the
uptake of service exports and trading since they can replace
many face-to-face interactions and make service transactions
more accurate, convenient and faster. Currently, ISS are poorly
supported since they are created using generic software tech-
niques and development methods. Systematic methods are needed
and must go beyond service design, a well established research
area, to account also for service analysis, implementation, and
deployment. In this paper, we explore a systematic development
approach, called SEASIDE, based on four scientific advances: en-
terprise architectures (EA), model-driven developments (MDD),
model-view-controller pattern (MVC), and platform as a service
(PaaS). By selecting the Incident Management service from
the Information Technology Infrastructure Library, we have
evaluated our approach. Our research indicates that the proposed
method enables to focus on the business and design side of
services, and reduce development time and costs.

Keywords-service engineering; service design; self-services; ser-
vice architecture; EA; MDD; MVC; PaaS;

I. INTRODUCTION

The research done so far in the field of services has taken
three main and distinct paths. On the one hand, and from the
computer science community, services have been seen from
a software and IT perspective. This has originated extensive
research around the concepts of Web services and software-
oriented architecture (SOA) [1], [2]. On the other hand, a
stream originating from business and marketing has targeted
the development of service management approaches and the
economical analysis of services from a sales, communications
and business models perspective [3], [4]. Models for under-
standing and modeling service processes, models for under-
standing customer satisfaction and tools for measuring service
quality have been some of the results. And a stream originating
from service design has taken the design perspective [5], [6].
It has targeted the ’deep dive’ into the world of actors within
service systems, aiming at the development and prototyping
of scenarios for service improvements and innovations.

Our claim is that research on services should now focus
on bridging the results already obtained, i.e. from software-
based services, business models, and service design, to provide
systematic approaches to develop Internet-based Self-Services
(ISS) [7] which enable a faster time to market and involve

lower costs. ISS are a subtype of services driven by self-
service technologies [8] which provide technological interfaces
allowing customers to use services independently of the in-
volvement of direct service employee. Self-ticket purchasing
and self-check-in for a flight using the Internet are examples
of Internet-based self-services.

Indeed, the Internet and W3C/OASIS standards have a
significant role for software-driven services but they are not
sufficient to support self-services. The challenge here is how to
“industrialize the manufacturing” of services for international
trading. The formalization, conceptualization and integration
of this service triangle (technology, business, and design)
will enable, among other things, to increase the exports
of services, reduce time-to-market from service analysis to
service deployment, and provision services to consumers with
lower operation costs [9]. ISS can replace many face-to-
face service interactions to make service transactions more
accurate, convenient and faster by using the Internet as a
delivery medium and a Web browser as an interaction tool.

The purpose and objective of this paper is to understand
how the systematic analysis, design, implementation and de-
ployment of Internet-based self-services can benefit and be
achieved from the intersection of four main research streams:
a) enterprise architectures (EA), b) model-driven developments
(MDD), c) model-view-controller architecture (MVC), and
d) platforms as a service (PaaS). The combination of these
four approaches resulted in a development methodology called
SEASIDE1.

Our approach was applied to the Incident Management
Service description from the Information Technology Infras-
tructure Library (ITIL [3]) which was used as a use case.
We followed an end-to-end systematic engineering which was
finalized with its deployment using a platform as a service
and explored the difficulties, advantages and challenges of
the approach. We hypothesize that the combination of these
four research streams can support a systematic engineering
methodology which enables to reduce the complexity, reuse
common patterns and structures, automatize implementation,
and simplify the deployment of ISS. Enterprise architectures
enable to reduce the complexity of designing services by

1SEASIDE = SystEmAtic ServIce DEvelopment

jcardoso
Typewritten Text
Cardoso, J. and Miller, J. A Internet-Based Self-Services: from Analysis and Design to Deployment. In The 2012 IEEE International Conference on Services Economics (SE 2012), IEEE Computer Society, Hawaii, USA, 2012.

using abstraction and divide-and-conquer mechanisms. Model-
driven development initiatives foster the automatized genera-
tion of code and reduce ISS’ implementation costs. Model-
view-controller patterns reduce code organization complexity.
And, platform as a service cloud-based infrastructures enable
to simplify the deployment of services and reduce operation
costs.

The findings of our research indicate that the proposed
SEASIDE methodology enabled to reduce service analysis
complexity by using weak semantics and taxonomies. The
use of automatic code generation techniques enabled the
consistency and traceability between ISS models and service
implementation. It has also enabled to support a more efficient
implementation phase. The use of an adaptation of the original
MVC pattern enabled a higher and consistent quality of the
generated code and instructions with respect to errors, main-
tainability and readability. By using a PaaS for ISS operation,
the time and complexity of deployment was reduced.

This paper is structured as follows. Section I, the in-
troduction, provides the background to our work, identifies
limitations of current and requirements for future research,
and gives an overview of our approach. Section II describes
the main related research in this area. In section III we describe
our systematic methodology and depict a use case from ITIL
to illustrate its applicability in practice. Sections IV, V, VI,
and VII describe the contribution of EA, MDD, MVC, and
PaaS, respectively, to our approach. Section VIII presents our
achievements and the lessons we have learned. Finally, section
IX presents our conclusions.

II. RELATED WORK

We have previously developed the ISE (Inter-enterprise
Service Engineering) methodology and workbench [10], [11],
one of the first attempts to devise a Service Engineering
procedure for designing business services [12]. ISE has some
similarities with the method presented in this paper since it
was also inspired by the Zachman framework (see [12]) and
relies on model-driven development concepts. Nonetheless, the
differences are important and reflect the experience we have
gained with the development of ISE. On the one hand, ISE was
conceived to analyze and model services and did not foresee
the implementation and deployment phases of the service
engineering lifecycle. The exploration of these two additional
phases makes the proposal described in this paper a complete,
end-to-end solution. ISE adopted the first five perspectives (i.e.
abstractions) of the Zachman framework. We have learned that
the granularity of these perspectives was too fine to provide a
useful modeling solution. As a result, in our new proposal for
ISS engineering, we do not consider the conceptual and phys-
ical perspectives. This decision made the approach simpler to
use and more appealing to stakeholders. On the other hand,
the focus of ISE was on the horizontal/vertical integration,
synchronization, and transformation of models using model
transformation languages and toolkits such as MOF QVT or
ATL (see [10], [12], [11]). This approach revealed to be too
complex since management tools for model transformation

were not mature for multi-model scenarios. In this paper,
model-driven developments are used in a much simpler way
to generate software code and instructions.

Several researchers have investigated how models, such
as UML diagrams, could be used to automatically generate
semantic Web services descriptions [13], [14], [15], [16]. In
[13], the authors proposed an approach to produce MVC-
based skeletons for Web applications from UML and OWL-
S descriptions. In [14] and [15] the authors use UML class
diagrams to represent data models and UML activity diagrams
to represent business processes. The approach is used with
semantic Web services specified with OWL-S by applying
XSLT transformations to UML diagrams. Timm and Gannod
[16] also present an automated software tool that uses model-
driven developments to generate OWL-S descriptions from
UML diagrams. Compared to our work, we seek to understand
how various models (e.g. data models, service blueprinting,
network graphs, user interfaces, USDL, etc.) can co-exist and
be transformed into software components that implement an
ISS. Handling several models provide a more real service
development environment. We rely on model-driven develop-
ments to also generate software code. But in our work, code is
organized according to a modified version of the MVC pattern
structured to implement and deploy ISS services. We believe
that the MVC pattern needs to be specialized to reflect domain
knowledge of services.

The telecommunication industry is realizing the value of
exposing WSDL/SOAP Web services to consumers using
governance systems and best practices. For example, SAPO,
a subsidiary of Portugal Telecom (the largest telecommuni-
cations service provider in Portugal), developed a Service
Delivery Broker [17] to design and deploy Web services. The
system enables the creation of Web services UI front-ends to
enable consumers to easily access and buy functionalities (e.g.
SMS packages and GPS points of interests). Our work differs
in two fundamental aspects. On the one hand, we target the
study of Internet-based self-services and do not restrict our
approach to WSDL/SOAP services. On the other hand, we
seek to demonstrate that it is possible to develop automated
end-to-end approaches to implement and deploy services in the
’cloud’. Overlapping objectives include understanding how a
PaaS can reduce the cost of service management and delivery.

III. SYSTEMATIC SERVICE DEVELOPMENT

One of the cornerstones of our SEASIDE methodology
is the adoption and adaptation of an enterprise architecture
framework to provide a service architecture to organize ser-
vices’ developments and verify their completeness. The term
“completeness” refers to the verification that a service has all
the models, interfaces, linkings and flows needed so it can be
analyzed, modeled, implemented and deployed.

A. Service architecture

The enterprise architecture adopted to provide a service ar-
chitecture was the Zachman framework for four main reasons:
(1) our previous research on using this framework for the

Fig. 1. Service architecture for the systematic development of ISS

engineering of services was positive (see [10]); (2) there is
a clear mapping between the framework and the components
of the approach proposed in this paper. For instance, MDD
maps to the logical perspective of the Zachman framework
and MVC maps to the ’as build’ perspective; (3) it provides
simple cognitive models, such as mindmaps and nested bullet
lists, which help stakeholders dealing with abstraction and
supports the complexity of services using a divide-and-conquer
approach; and (4) it addresses the separation of concerns
paradigm raised by [18] by dividing and structuring services’
important aspects into six dimensions relevant for ISS: data,
processes, networks, people, time, and motivation.

Based on our previous research, we have realized that the
original framework structure, while adequate to model enter-
prise architectures, had too many abstractions which made
it difficult to use. As a result, we decided to “discard” two
abstractions since their original contribution did not fit exactly
our services’ needs. The conceptual and physical abstractions
were left out in our service architecture. On the other hand,
one abstraction was added when looking at our previous work
on the ISE framework. The functioning abstraction was added
to capture the commercial PaaS which can be used to operate
ISS. The resulting service architecture is illustrated in Figure
1 and is composed of the following abstractions:

• Service analysis corresponds to the contextual abstraction
and contains mindmaps and nested bullet lists.

• Service design corresponds to the logical abstraction and
contains models, such as processes and user abstract
interfaces, managed using MDD.

• Service implementation corresponds to the ’as build’
abstraction and contains a specialization of the MVC
pattern.

• Service deployment corresponds to the functioning ab-
straction and contains Internet-based self-services run-
ning on a PaaS.

The service architecture is a blueprint which drives the
systematic development process of ISS from service analysis,
service design, service implementation to service deployment.

Fig. 2. The process of developing ISS using our systematic approach

B. Service development method

The following paragraphs describe the workflow which gen-
erates MVC-based ISS applications from a service architecture
(see Figure 2). In the first and second step, stakeholders con-
struct service models based on the weak semantics captured
in the analysis phase. These steps are manual and involve
an intensive discussion of the objectives of an ISS to be
developed. In a third and fourth step, models are serialized to
XML and code and instructions are automatically generated
from models by applying XSLT transformations and cus-
tomized transformation engines using XPath. E-R models gen-
erate SQL instructions, service blueprints generate controllers
(which are coded using, for example, Ruby, Java or PHP)
and inject control-flow instructions into views (e.g. HTML
instructions), the low fidelity prototypes representing the UI
of services’ tasks front-ends are used to generate Web pages
(see Figure 4), and USDL generates information instructions to
the views (e.g. quality of service information) and controllers
(e.g. if-then-else conditions that specify the operating schedule
for our ITIL IMS use case). The injection of code was made
using specific <TOKEN> tags placed in the receiving code
which was replaced by the code being injected. In the fifth
step, the code and instructions generated are integrated and
organized according to an MVC-based structure customized
to services and named MVC for Services. Information on
the deployment is extracted from the network graph and
packed into a service archive along with the MVC for Service
structure. The networked graph contained information on the
parameterization of the commercial PaaS and the instructions
needed for deployment. In the last step, the service archive
is automatically deployed into a commercial PaaS platform.
After this last step, the ISS is available for use by end users
which can interact with it using a Web browser.

C. ITIL service use case

As a use case, we decided to apply our SEASIDE end-
to-end development approach to analyze, design, implement
and deploy the Incident Management Service (IMS) specified

Fig. 3. ITIL Incident Management Service blueprint

in the Information Technology Infrastructure Library (ITIL).
The primary objective of the IMS is to resolve incidents (e.g.
application bugs, disks-usage thresholds exceeded, or printers
not working) causing an interruption of processing in the
quickest and most effective possible way. Figure 3 provides a
simple representation of the process model behind the IMS.
The decision to use this service in our research was made since
ITIL provides detailed descriptions of well known services
enabling other researchers to replicate our experiments and
findings.

While nowadays software solutions which provide ITIL
services already exist (e.g. ServiceDesk Plus and Aegis Help
Desk), our objective is not to develop similar solutions or
provide a more or less functional alternative. Our goal is
to demonstrate how architectures, model-driven developments,
service patterns and cloud-based infrastructures are important
building blocks for the systematic engineering of ISS.

IV. SERVICE ANALYSIS WITH WEAK SEMANTICS

The service analysis phase is prescribed according to the
Zachman framework’s contextual abstraction. In this phase, a
description of the most important elements associated with the
service and its parameterization is created using mindmaps and
nested bullet lists to identify the main concepts as a taxonomy
(this approach was also used by the Untangle project [19]).

A taxonomy provides weak semantics for the domain of
ISS. The term weak semantics [20] (or lite semantics) refers
to semantics that can be identified based on simple structural
and syntactic formalisms and contain simple information in
small ”chunks” (deep semantics deals with the issues of
human cognition, perception, or interpretation). The taxonomy
adopted classifies service information entities in the form
of a hierarchy, according to relationships of the real world
entities which they represent. In our work, the meaning (or
semantics) of the relationships varies and depends on the
service architecture dimension under study. For example, for
the ’what’ dimension, relations represent ’is-part-of’, and for

the ’how’ dimension, a relationship indicates an activity or a
sub-process. Therefore, a long and profound study with service
stakeholders is required to model its most important aspects.
As a brief example, we used nested bullet lists to represent a
taxonomy for the ITIL IMS service of our case study. The
taxonomy for the ’what’ dimension was composed by the
concepts: Incident, Solution, Customer, etc.

1) Incident. Unplanned interruption of an IT service.
a) Priority. How quickly the service desk should

address the incident.
i) Impact. The effect on the business.

ii) Urgency. The need for a fast resolution.
b) Supervisor. The responsible actor.

2) Solution. Steps to solve the incident.
3) Customer. The actor which submitted the incident.
4)

For example, the Incident concept has nested concepts and
contains all the information needed to manage incidents such
as incident Priority composed of the concepts Impact and
Urgency.

For the ’how’ dimension, several concept functions, on the
provider and customer side, were identified. On the provider
side, the following nested concepts exist: Categorization, Pri-
oritization, Investigation, and Closure. The concepts also form
a taxonomy of the most important functions of the ITIL IMS:

1) Categorization. Classify incidents according to a cate-
gory and subcategory.

2) Prioritization. Use of metrics to determine priority.
3)
4) Investigation. A largely human process to identify the

sources of the incident.
5) Closure. Closed incidents remain in the system for

reference purposes.
a) Survey. Carry out a user satisfaction survey.
b) Documentation. Ensure that the incident record is

fully documented.
c) Recurrence. Determine whether it is likely that the

incident could recur.
d) Formal closure. Formally close the incident.

The creation of mindmaps and nested bullet lists is carried
out for all the dimensions of our service architecture, i.e. for
the ’what’, ’how’, ’where’, etc. dimensions.

The reader is referred to our previous work on service
analysis with the ISE methodology (see [10], [21], [12]).

V. SERVICE DESIGN USING MDD
The service design abstraction aggregates several models

designed according to our service architecture framework (see
Figure 1). While the selection of models may vary, we have
conducted our experiment to model the ITIL IMS using an E-
R model (ER) for modeling data (’what’), service blueprinting
(SB) [5] to model functions (’how’)(see Figure 3), a network
graph (NG) to model locations, a low fidelity prototype to
model user interfaces (UI) with people (’who’)(see Figure 4),

Fig. 4. Low fidelity prototype to design the UI for the ITIL IMS
categorization and prioritization activities

and USDL [22] to model timings and motivations (’when’ and
’why’).

The software implementation of the various ISS models is
not trivial since developers need to posses skills to under-
stand various languages. Given the substantial learning curve
of these languages, researchers have proposed that software
artifacts (WSDL, EJB, CORBA Objects, etc.) can be generated
automatically from models (such as UML diagrams and ER
models). If it was also possible to generate ISS software
implementations directly from ISS models using MDD then
it would be possible to generate complete ISS applications
directly from widely understood representations. This would
reduce implementation costs, increase homogeneity, and re-
duce programming errors.

For Internet-based self-services to realize the full benefits of
MDD, it is important to find ways of formalizing and organiz-
ing architectural artifacts according to a service architecture
to afterwards allow an automatic code generation [23]. As
such, we rely on MDD to abstract models of ISS and system-
atically transform these models to concrete implementations
[24] organized according to an adapted version of the MVC
pattern (called MVC for Services) to be later deployed in
a PaaS. The transformation of ISS’ models builds upon our
previous work [25] in which we use of XSLT and XPath-based
instructions to transform the models exchanged in business-
to-business transactions. The system developed made use of
XSLT instructions to transform transactions for global trading
(represented with ebXML, xCBL, etc.) into a company’s
private and internal domain data model (represented with an
ontology expressed with OWL serialized with XML).

MDD’s defining characteristic is that self-service develop-
ments primary focus on services models rather than computer
programs. This is because the complexity of service systems
that software typically deals with is often very far from state-
ments of data, functions, interfaces, and rules that constitute
programming languages. Since ISS are a very specific type of
applications, we rely on domain-specific modeling languages,
such as service blueprinting and USDL, to formalize with
a high precision the structure, behavior, and requirements

of self-services. The use of specific languages addresses the
inability of generic languages to alleviate the complexity of
services and express domain concepts effectively. Since most
of the models we have used are well-known, we will only
describe two of them which required extensions and/or adap-
tations: (1) service blueprinting with BPMN and (2) business
description with USDL.

A. Service blueprinting

Service blueprinting [5] provides a visual solution to ex-
press the intentions and goals of ISS while linking them to
customer’s needs as the service back-end process progresses.
Typically, service blueprintings are created using “paper and
pencil” or office tools (e.g. Visio).

Since service blueprinting tools with an XML serialization
are not common, we have used the BPMN notation to design
the crucial aspects of services’ processes involving actors
and customers. The mapping between the two representation
languages was done in the following way. Service blueprinting
segment processes were mapped into BPMN’s swimlanes.
Four swimlanes were created to capture customer actions, on-
stage employees’ actions, back-stage employees’ actions, and
support processes. The separations of swimlanes corresponds
to the line of interaction, line of visibility and line of internal
actions. Physical evidence was specified with a special swim-
lane. Once this mapping was done, we have modeled the ITIL
IMS process illustrated in Figure 3.

Afterwards, we have experimented two distinct tools to
transform the service blueprint modeled with BPMN, and
serialized with XML, into an MVC-based pattern: (1) Sparx
Systems’ Enterprise Architect and (2) Bonita BPMN workflow
editor.

Using Enterprise Architect, the XML serialization of BPMN
was highly complex since there were a considerable number of
references to components’ IDs, such as ’EAID 7A41FEBE -
D787 4514 AE57 386CECB19C89’. The parsing of XML
was not sequential. For example, to retrieve tasks flow there
was the need to navigate by “SequenceFlows” and retrieve
input and output IDs, then obtain source and destination IDs,
store them into a temporary variable, retrieve the respective
node and retrieve the corresponding name. This process was
extremely complex using XSLT. Mostly because XSLT pro-
ceeds only forward. When there is the need to move from
one node to another, it is difficult to develop a clean code.
As a result of this complexity, we decided to create our own
XML transformation engine based on XPath instead of using
XSLT. The custom made transformation engine is very flexible
since it is implemented with a general-purpose language (e.g.
Ruby) and relies on an XPath library to query and select nodes
from XML documents. For applications which require only a
small set of transformations which do not change frequently
over time or are not reused, it is an appropriate solution.
Therefore, we decided to make a specific parser to extract
the various BPMN elements. As a second experiment, we
carried out the same actions but this time using Bonita BPMN
workflow editor. The results were significantly different. The

XML specification generated to model the ITIL IMS was
simple and easy to understand. As a result, a transformation
engine based on XSLT was rapidly developed. This was the
most efficient and effective approach.

Both approaches extracted BPMN elements from the XML
serialization, i.e. roles, transitions, tasks, etc. which drove the
generation of code and instructions that were stored into our
MVC for Services structure. For example, roles were important
to create automatically an access control list (ACL) and login
views for the various actors involved during the provisioning
of the IMS. Transitions were used to set the control-flow
of the IMS application into the MVC controllers. Control-
flow information and event-based information was generated
and took the form of control constructs such as If-Then-
Else and Repeat-While of the BPMN process model. Each
task part of the blueprint is associated with a view designed
with a low fidelity prototype. For example, the task ’Incident
Prioritization’ from Figure 3 is associated with the UI sketched
in Figure 4. Low fidelity prototype are created manually
(we have relied on the application Balsamiq Mockups). The
association is made by matching the task name with the
filename of the XML file describing the UI.

Independently of the approach followed (i.e. XPath or
XSLT), the generated code was never final. We estimate that
approximately 25% of the skeleton and basic structure of an
ISS was automatically generated (and 75% must be manually
coded). There are always adjustments that need to be made in
order to make the code runnable. Those adjustments included
refining software programs, HTML user interfaces, database
connections, etc.

Nonetheless, to increase the degree of automation, several
extensions can be made to our approach. One the one hand,
if an organization uses a consistent UI layout for all their
Web applications they can create a UI template and add it the
view structure of MVC. This will enable to produce, with a
high degree of automation, UI which are close to their final
visual aspect. The UI code will be injected directly into those
templates. On the other hand, the process notation provided
by BPMN to model blueprints can be explored to a greater
extend. For example, events can be used to represent messages
(e.g. e-mails) send by the user and notifications received the
application that must be shown to the user. Once events are
used in blueprints, they can also trigger the generation of code.
Furthermore, BPMN2 provides data objects of type input and
output which can be used to automatically build database
queries to retrieve data from the MVC’s model. As a last
improvement, the BPMN annotation element can be use to
encode domain specific information which can be used when
generating the MVC component.

B. Service description using USDL

The Unified Service Description Language (USDL2) [22]
was developed to describe various types of services ranging
from professional to electronic services. The specification is

2http://www.w3.org/2005/Incubator/usdl/

being driven by important players in the field of business
and IT services such as SAP AG and Siemens. We have
used it to enhance the description of the ITIL IMS with a
special emphasis on business and operational aspects such as
quality of service, pricing and legal aspects among others.
To transform the USDL specification, we developed a set of
XSLT instructions responsible for its transformation into Web
page code (i.e. HTML) which was afterwards injected into the
views of the MVC for Services structure. USDL was used to
provide additional information on the IMS to end users, such
as the legal rights and obligations, and the quality of service
rendered to end users. Operation schedules were extracted and
transformed into software code in the form of business rules.
These rules were injected into MVC controllers to specify the
periods (i.e. days/hours) when the IMS was available to end
users.

Instead of using QVT- or ATL-based approaches, and to
simplify the transformation process, MDD relied on the use of
XSLT and XPath to transform models into code. The preferred
way to generate code was to use XSLT. Nonetheless, the XML
representation of some models was extremely complex. In
such a case, XSLT did not enabled to construct simple and
straightforward instructions and we relied on a more expensive
solution with XPath to manually identify XML tags, under-
stand their semantics, and manually encode transformations
using a generic programming language.

VI. SERVICE IMPLEMENTATION USING MVC FOR
SERVICES

The model-view-controller architectural pattern, originally
deployed in Smalltalk, is widely used in the construction of
Web applications. As such, we believed it would also be suit-
able for ISS. We propose an adapted version of MVC to create
MVC-based skeletons for Internet-based self-services. The
generated software code, database instructions, user interfaces,
etc. were structured according to an adapted and compliant
version of the MVC pattern which we call MVC for Services.
This pattern was tailored to account for the specificities of
ISS. The adapted MVC followed the following principals:

• The model stores the code of the data models of the
service architecture (i.e. ’what’ dimension).

• The view stores the instructions of the UI models of the
architecture (i.e. ’who’ dimension).

• The controller stores the code of the blueprint and USDL
models of the service architecture (i.e. ’how’, ’why’ and
’when’ dimensions).

The MVC was structured according to the service
blueprint’s segments. In our running example, the MVC for
Service has been structured with customer actions, on-stage
employees’ actions, back-stage employees’ actions, and sup-
port processes. This MVC for Services skeleton construct
enabled to streamline the automated process of code genera-
tion since many PaaS providers accept to upload MVC-based
applications to their platforms.

Internet-based self-service implementations, organized
according to MVC, are automatically generated using

MDD and stored in a service archive which contain PaaS
dependent deployment information. The MVC’s model is
obtained from the ER model developed during the service
design phase. In this phase, a SQL physical model is
created. We have explored the applicability of Enterprise
Architect 9.1 and MySQL Workbench 5.2 to design and
export the ER model to XML. Afterwards, XSLT was
used to extract tables and attributes names from the XML
document. Names where passed to Heroku and using
the scaffold command, the tables with attributes were
created automatically in the database. For example, rails
generate scaffold Incident name:string
priority:string description:text was used to
create a table named ’Incident’ with three attributes: ’name’,
’priority’ and ’description’. Other existing Heroku commands
include ’belongs to’ and ’has many’ to model relationships
and association between tables.

The views (coded in HTML) are generated from the infor-
mation obtained from the service blueprint (each human task
originates a view and roles to determine access privileges to
views), from low fidelity prototypes of user interface (for each
view a UI model is created), and from the USDL specification
(information on QoS and legal constraints is obtained). The
ISS developer can afterwards modify the generated views or
create other views using a ’green field’ approach. In the last
step, our approach generates software code (e.g. Ruby or PHP)
which constitute the MVC’s controller. The controller is the
middle component between the models and the views. As a
simple example, the following method encodes the decision
point identified with label 9 in the blueprint from Figure 3:

def c r e a t e
@ in c i de n t = I n c i d e n t . new (@params [’ p r i o r i t y ’])
@ in c i de n t . d a t e = Date . t o d a y
i f @ in c id e n t . p r i o r i t y == ‘ ‘1 ’ ’

r e d i r e c t t o : a c t i o n => ’ N o t i f y S e n i o r S t a f f ’
e l s e

r e d i r e c t t o : a c t i o n => ’ I n i t i a l D i a g n o s i s ’
end

end

This method first creates a new Incident object and ini-
tializes it from the parameters posted by the activity ’In-
cident Prioritization’. If the priority of the incident is 1, it
redirects the control-flow to the next activity specified in
the IMS blueprint, i.e. ’Notify Senior Staff’, otherwise, it
redirects the flow to the activity ’Initial Diagnosis’.

VII. SERVICE DEPLOYMENT USING PAAS

To deploy the service archive created, our approach relied on
the use of a platform as a service. A PaaS provides an Internet-
based software delivery platform for multi-tenant, web-based
applications that will be hosted on the provider’s infrastructure
thus reducing costs and increasing scalability.

The service archive, containing our MVC for Services and
deployment information extracted from the network graph
of the service architecture, was deployed to the PaaS. PaaS
provides access to an abstract middleware infrastructure where
the generated ISS code is uploaded by the PaaS provider

and presented on the Web. With PaaS, an ISS can be build
without installing any tools and deployed without requiring
any specialized system administration skills. Heroku, Google
AppEngine, Force.com, Bungee Connect, LongJump, Wave-
Maker are all instances of PaaS.

In our experiment to deploy our ITIL ISS we selected the
Heroku platform3 – a provider that emphasizes ease of use,
automation, and reliability for Web applications – since it
supported Ruby on Rails, a popular programming framework
with a focus on simplicity and productivity. This language
has shown to greatly reduce both the number of lines of
code and the development time of our ISS when compared
with other languages such as Java. Therefore, it is well
suited for our initial goal of reducing development costs. The
following commands were retrieved from the network graph
and executed automatically to deploy the ISS:

1) $ heroku create <imservice> –stack cedar
2) $ git init # Initialize the code repository
3) $ git commit ... # Several commits were made
4) $ git push heroku master
Ruby software applications using Rails follow the model-

view-controller design pattern. This means that the selected
PaaS knows exactly where all the necessary directories, mod-
els, views and controllers of our ISS are located and how they
are structured.

VIII. ACHIEVEMENTS AND LESSON LEARNED

Our initial goal was to analyze, design, convert into code
and deploy the ITIL IMS from our use case to a PaaS.
All models’ transformations and deployment needed to be
achieved with a minimal effort and as close as possible to a
“double click” paradigm. This goal was accomplished since
only manual “cosmetic instructions” needed to be done to
MVC’s views and some “hard-wiring” was needed to the
controllers and models.

The use case followed gave us several insights on how
the future development of Internet-based self-services will
look like. The main lesson learned is that by using the
proposed SEASIDE systematic methodology we can observe
a faster, simpler and more structured approach to services’
developments. While many other lessons were learned, we
decided to only refer the six more significant:

1) Using only one modeling dimension was not sufficient
to develop an ISS. Therefore, an EA was used to provide
five dimensions (i.e. data, function, locations, time, and
motivation) which were important to consider.

2) The Zachman framework enabled to specify services’
models with domain specific languages thereby enabling
the use of very specific, small languages which were
easy to manage.

3) Since ISS have a strong business orientation, MDD
provided formal, high-level models which were readable
by service domain experts and business owners which
did not needed to face IT and technology.

3http://www.heroku.com

4) The externalization of service blueprinting to model the
behavior of ISS, instead of hard-wiring processes into
code, increased stakeholders’ understandability.

5) MDD and MVC enabled to check and enforce compli-
ance since ISS applications had to comply with a service
architecture.

6) While the methodology was used to create an Internet-
based self-service of the IMS, we believe that the
approach can be applied to other types of services as
well (e.g.).

Based on our current achievements, future directions of
research include the development of an integrated workbench
for ISS development and the execution of comparative bench-
marks to test the developments costs using various strategies
(e.g. using different PaaS, different models, and different
programming languages).

IX. CONCLUSION

This research resulted in a systematic service development
methodology, called SEASIDE, to create Internet-based self-
services. Results indicate that the approach is suitable for
the ’massification’ of services’ since it reduces development
complexity and costs, and time to market. The insights gained
demonstrated the applicability of integrating EA, MDD, MVC,
and PaaS to support a systematic and step-by-step guidance
for ISS development. The use of an enterprise architecture
required its adaptation to a simpler model which revealed to
be intuitive and powerful for ISS’ stakeholders. The separation
of ISS models from the code using MDD enabled stakeholders
with no programming skills to participate in the ISS develop-
ment process. Nonetheless, manual adjustments to the code
were always necessary but had a small impact to development
time. The creation of the MVC for Service pattern resulted
in a lower cognitive load for developers when adjusting code
since it was organized according to a structure that closely
resembled the elements of a service blueprint. The use of a
PaaS approach to deploy ISS was surprisingly fast and simple
since our MVC for Services was deployed in the ’cloud’ using
a small set of instructions and enabled a transparent scalability.

REFERENCES

[1] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weer-
awarana, “Unraveling the Web services web: an introduction to SOAP,
WSDL, and UDDI,” IEEE Internet Computing, vol. 6, no. 2, pp. 86–93,
Mar/Apr 2002.

[2] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Upper Saddle River, NJ, USA: Prentice Hall, 2005.

[3] A. Hochstein, R. Zarnekow, and W. Brenner, “ITIL as common practice
reference model for IT service management: formal assessment and
implications for practice,” in Proceedings of the 2005 IEEE International
Conference on e-Technology, e-Commerce and e-Service, 2005, pp. 704–
710.

[4] V. A. Zeithaml, M. J. Bitner, and D. D. Gremler, Services Marketing:
Integrating Customer Focus Across the Firm. McGraw-Hill, 2008.

[5] S. Fließ and M. Kleinaltenkamp, “Blueprinting the service company:
Managing service processes efficiently,” Journal of Business Research,
vol. 57, no. 4, pp. 392 – 404, 2004.

[6] S. Nenonen, H. Rasila, J. Matti, and S. Karna, “Customer journey: a
method to investigate user experience,” in Proceedings of the Euro FM
Conference Manchester, 2008, pp. 54–63.

[7] J. O. Thomas, Y. A. Rankin, and N. Boyette, “Self service technologies:
eliminating pain points of traditional call centers,” in Proceedings of
the Symposium on Computer Human Interaction for the Management
of Information Technology. New York, NY, USA: ACM, 2009, pp.
9:60–9:63.

[8] M. L. Meuter, A. L. Ostrom, R. I. Roundtree, and M. J. Bitner,
“Self-Service Technologies: Understanding Customer Satisfaction with
Technology-Based Service Encounters.” Journal of Marketing, vol. 64,
no. 3, pp. 50–64, Jul. 2000.

[9] J. Cardoso, M. Winkler, and K. Voigt, “A Service Description Language
for the Internet of Services,” in First International Symposium on
Services Science (ISSS’09), Leipzig, Germany, 2009.

[10] V. Bicer, S. Borgert, M. Winkler, G. Scheithauer, K. Voigt, and
J. Cardoso, “Modeling services using ise framework: Foundations and
extensions,” in Modern Software Engineering Concepts and Practices:
Advanced Approaches, A. H. Dogru and V. Bicer, Eds. Information
Science Pub, 2011, pp. 126–150.

[11] H. Kett, K. Voigt, G. Scheithauer, and J. Cardoso, “Service engineering
in business ecosystems,” in Proceedings of the XVIII International
RESER Conference. Stuttgart, Germany: Fraunhofer IRB, 2008, pp.
1–22.

[12] J. Cardoso, K. Voigt, and M. Winkler, “Service Engineering for The
Internet of Services,” in Enterprise Information Systems X, vol. 19.
Springer, 2008, pp. 17–25.

[13] C. V. S. Prazeres, C. A. C. Teixeira, E. V. Munson, and M. da Graça
C. Pimentel, “Semantic Web Services: from OWL-S via UML to MVC
applications,” in Proceedings of the 2009 ACM symposium on Applied
Computing. New York, USA: ACM, 2009, pp. 675–680.

[14] I.-W. Kim and K.-H. Lee, “Describing Semantic Web Services: from
UML to OWL-S,” in Proceedings of the 2007 IEEE International
Conference on Web Service, july 2007, pp. 529 –536.

[15] J. H. Yang and I. J. Chung, “Automatic generation of service ontology
from UML diagrams for semantic web services.” in Proceedings of the
1st Asian Semantic Web Conference, 2006, pp. 523–529.

[16] J. Timm and G. Gannod, “A model-driven approach for specifying
semantic web services,” in Proceedings of the 2005 IEEE International
Conference on Web Service, vol. 1, July 2005, pp. 313–320.

[17] Microsoft, “SAPO Portugal Telecom subsidiary helps ensure revenue
opportunities in the cloud,” 2011.

[18] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules.” NY, USA: Springer, 2002, pp. 411–427.

[19] I. Horrocks, D. L. McGuinness, and C. A. Welty, “The description logic
handbook,” F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and
P. F. Patel-Schneider, Eds. New York, NY, USA: Cambridge University
Press, 2003, pp. 427–449.

[20] A. P. Sheth, “Panel: Data semantics: what, where and how?” in Proceed-
ings of the Sixth IFIP TC-2 Working Conference on Data Semantics:
Database Applications Semantics. London, UK: Chapman & Hall,
Ltd., 1996, pp. 601–610.

[21] J. Cardoso, M. Winkler, K. Voigt, and H. Berthold, IoS-Based Services,
Platform Services, SLA and Models for the Internet of Services, ser.
Communications in Computer and Information Science. Springer Berlin
Heidelberg, 2011, vol. 50, pp. 3–17.

[22] J. Cardoso, A. Barros, N. May, and U. Kylau, “Towards a unified
service description language for the Internet of Services: Requirements
and first developments,” in IEEE International Conference on Services
Computing. Florida, USA: IEEE Computer Society Press, 2010.

[23] K. Balasubramanian, A. Gokhale, G. Karsai, J. Sztipanovits, and
S. Neema, “Developing applications using model-driven design envi-
ronments,” Computer, vol. 39, no. 2, pp. 33 – 40, Feb. 2006.

[24] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Proceedings of the 2007 Future of
Software Engineering. Washington, DC, USA: IEEE Computer Society,
2007, pp. 37–54.

[25] J. Cardoso and C. Bussler, “Mapping between heterogeneous XML
and OWL transaction representations in B2B integration,” Data &
Knowledge Engineering, vol. 70, no. 12, pp. 1046–1069, 2011.

