
Speeding up Genetic Programming

Penousal Machadoa, Amílcar Cardosob

aInstituto Superior de Engenharia de Coimbra

E-mail: machado@dei.uc.pt
a,bCentro de Informática e Sistemas da Universidade de Coimbra

Polo II da Universidade de Coimbra, Departamento de Engenharia Informática

3030 Coimbra, Portugal

E-mail: amilcar@dei.uc.pt

One of the major drawbacks of Evolutionary Computation is the need for great computational power. The set of
problems that can be solved, in practice, by evolutionary approaches is highly connected with the efficiency of the
algorithm. In most Genetic Programming applications the majority of time is spent on the evaluation of the
individuals. Accordingly, it is desirable to optimise this step of the process. In this paper we present two approaches
through which significant speed improvements can be achieved. The first approach, T-functions, is effective in tasks,
such as symbolic regression, that require repeated evaluation of the individuals. The second approach, caching,
resorts to the storage of the execution results of individuals’ sub-trees, thus avoiding the recalculation of these
sub-programs. Caching finds its application when the function set includes complex, time-consuming functions.

Keywords: Genetic Programming, Implementation Issues, Symbolic Regression.

1. Introduction

Genetic Programming (GP) is an Evolutionary
Computation (EC) technique; i.e. it uses the mechanisms
behind natural selection to evolve computer programs. In
theory, like other EC approaches, GP is specially suited
to domains with weak theories or when the human
resources are insufficient to allow human programming
[3][5]. GP is a computationally demanding task.
Accordingly, the set of practically solvable problems is
deeply connected to the efficiency of the algorithm and of
the implementation [5]. It is vital to minimize the
overhead involved in the evaluation of the individuals,
since in a large number of applications the majority of
time is spent on evaluation [1][5][6].

In most GP approaches the individuals are programs
written in a problem specific-language, and assume the
form of a tree. The evaluation of the individuals involves
their execution by an interpreter. Thus, they are decoded
at runtime by a virtual machine [5], this involves
transversing the tree and calling, for each node, the
appropriate function. Usually, most nodes could be
evaluated by a single machine-code instruction.
Therefore, the majority of time is spent in the overhead
caused by “unnecessary” pushing and popping and

function calling [1][5][6]. To cope with this problem two
approaches where proposed:

• Evolving, directly, machine-code programs [5][6].

• Online compilation of the individuals [1].

The advantages of the first approach are obvious: the
individuals are machine-code programs that can be
directly executed. The advantages of the second are less
apparent. To compile the individuals we need to
transverse the tree. Furthermore, compilation requires
performing some “extra” operations. However, in tasks
such as symbolic regression, the evaluation of an
individual involves executing it several times. Thus, if we
use a standard approach each individual will be
repeatedly interpreted. If we use online compilation, the
individual is compiled once and the resulting
machine-code executed several times.

The speed enhancements achieved by these approaches
are very high, up to 100 times faster than a standard C
implementation [1][5][6]. Yet, they have some
limitations: lack of portability and high development
time. Furthermore, they don’t deal with overheads caused
by the existence of complex, time-consuming functions in
the function set.

In this paper, we propose two approaches through
which significant speed improvements can be achieved.

The first, T-functions, deals with the problem of repeated
execution. The second, Caching, deals with overheads
caused by the existence of complex functions. These
approaches maintain portability and are of easy
implementation. Although these algorithms are still under
development, the preliminary results are promising,
showing speed enhancements of up to 20 times over a
standard C implementation.

The paper as the following structure: In Section 2 we
present the T-functions approach. Next, in Section 3, we
present two caching algorithms. The first one was
designed for a specific application, with slow program
execution and big memory requirements. The second one
is simpler and of wider applicability. Section 4 comprises
the experimental results and its analysis. Finally, in
Section 5, we draw some conclusions and suggest
directions for future work.

2. The T-functions Approach

In symbolic regression, the goal is approximating a
target function, ftarget. As a result, each individual,
implicitly, defines a function, find. To evaluate an
individual we compare ftarget with find for a given number of
points, fitness cases, {x1, x2,…, xn}. The fitness is, usually,
the error between ftarget and find according to some metric.
Considering that ftarget depends on a single variable and the
root mean square error as fitness we will have:

∑
=

−=
n

i
iettiind xfxffitness

1

2
arg))()((

To calculate it the individual must be execute n times.
Thus, the individual’s tree will be transversed n times.
Furthermore, each node’s corresponding function will be
called n times. This process is, of course, extremely
ineffective.

Our approach consists in considering that the functions
of the function set operate on tuples, instead of single
arguments. E.g. instead of using:

add(a, b)

we use a T-function

add([a1, a2, …, an],[b1, b2, …, bn]), that adds a1 to b1, a2

to b2, etc.

By doing this, we only have to execute the individual
once. The number of operations (e.g. additions) remains
the same, however the tree will only be transversed once
and there is only one function call per node.

It would be time consuming to pass the tuples as
arguments. This can be avoided through the
implementation of a stack machine. To achieve this we
resort to a global variable, ReturnPos, and to a
bi-dimensional global array, ReturnTuple[Tsize][n]. The
results of the T-functions are written in the ReturnTuple.
ReturnPos indicates the number of results stored in the

ReturnTuple, and thus, the first free position. A small
example may prove useful:

Consider the individual: add(x, sub(y, z))

The first node to be evaluated is x, its result will be
written in:

ReturnTuple[0][0…n]

Next, the node y is evaluated and the result stored in:

ReturnTuple[1][0…n]

The result of z in is stored:

ReturnTuple[2][0…n]

The node sub(y, z) is calculated, using ReturnTuple[1]
and ReturnTuple[2], and the result is written in:

ReturnTuple[1][0…n]

Finally add(x, sub(y, z)) is calculated and the result
stored in:

ReturnTuple[0][0….n]

The variable ReturnPos controls the position in which
the results are stored. It is incremented when a result is
stored and, decreased when a result is used (and hence no
longer needed).

As usual there is a tradeoff between speed and space,
fortunately the memory requirements are not too severe.
Considering MaxDepth as the maximum depth of the
individuals and MaxArity as the maximum number of
arguments of the functions, MaxDepth*(MaxArity-1)
gives an upper bound for TSize.

3. The Caching Approach

In a GP algorithm each population is generated from
the previous one. This means that a large amount of the
current population’s genetic code was already present in
the previous population. In other words, most of the
sub-programs (sub-trees) present in the current
population were already executed. Nearly all GP
packages store the fitness of individuals, to avoiding
recalculation when they pass, unchanged, to the next
generation. Our algorithm can be viewed as a
generalization of this method. In addition to storing the
fitness of the individuals, we also store the results of the
execution of individuals’ sub-trees.

As in any caching algorithm the major difficulties to
handle are, deciding which results should be stored, and
how to retrieve them in an efficient way.

We are going to present two different approaches. The
first was designed for a specific application, the
evolutionary art tool NEvAr [4]. This application evolves
large sized images (from 128*128 pixels to 512*512). In
this task, program execution is slow and memory
requirements are big. We used a small cache and
concentrated in deciding which sub-programs’ results
should be stored. Due to its specificity the applicability of

this algorithm to tasks with different characteristics may
be small. Furthermore, its implementation is quite
complex. Considering this, we developed an alternative
algorithm with wider applicability and of simple
implementation. We will start by describing NEvAr’s
caching algorithm and then we will describe the simpler
one.

3.1. Caching in NEvAr

Caching, in NEvAr, involves changes to the
representation of the individuals. In standard GP each
individual is represented by an independent tree [3] and
the populations are lists of individuals (Figure 1).

+

Yxor

YX

X mod

X +

X Y

+

X Y

Figure 1. Four individuals represented by trees.

In our case, individuals are also trees. However, they
are no longer independent, they are merged together in a
way that no sub-tree is repeated; the population is a list of
pointers to the roots of each individual (Figure 2).

xor

+

X

Ind.nº3Ind.nº2Ind.nº1

+

Y

Ind.nº4

mod

Figure 2. The four individuals of Figure 1, represented in the
new format.

To each node we add two fields: result – to store the
result of the corresponding sub-program; time_est - to
store the time (or time estimate) of the sub-program’s
execution.

We also use two lists of pointers to sub-programs:
l_by_name - sorted by name; l_by_time - sorted by time
gain, time_est multiplied by n_times: the number of
times that the sub-program must be executed when the
result is already present and n_times-1if it hasn’t yet been
calculated. In our application the execution results are
images, and thus use lots of memory. This implies that
we have to consider a limited cache size. When we don’t
have this constraint, l_by_time isn’t necessary and the
algorithm is simplified.

The algorithm, with limited cache size, has the
following steps:

1. Generate an initial random population of computer
programs.

2. For each node of the population:
a) Add a pointer to the node to l_by_name.
b) Actualise time_est.
c) Add a pointer to the node to l_by_time.

l_by_name Time_es
t

n_times Order in
l_by time

(+ X Y) 3 2 1st

(+ (xor X Y) Y) 5 1 4th

(mod X (+ X Y)) 5 1 5th

(xor X Y) 3 1 6th

X 1 4 2nd

Y 1 3 3rd

Table 1. l_by_name and l_by_time for the population of Figure
2 after step 2, considering that all functions take the same
amount of time.

3. Repeat the following substeps until the termination
criteria has been satisfied:
d) Program execution and fitness assignment:

• For each individual:
– Transverse the tree:

• If result is present, return result
else
– calculate result.
– time_est = time taken.

• move the corresponding l_by_name to its
new position using time_est * n_times.
• n_times=n_times-1
• If position < cache size, store1 the result
else delete1 the result.

e) Generate a new population:
• Repeat until population size is met

– Select two individuals A and B
– For all crossover points a’ and b’ and
mutation points c’

• Copy the ancestors of a’ and b’ or c’ to a
new independent location, and swap a’ and
b’ or mutate c’

– To all the ancestors of the a’, b’ and c’
points:

• If the corresponding sub-program already
exists in l_by_name:

– Redirect the pointer to node to the
position indicated in l_by_name. Delete
the node and corresponding sub-tree.

• else perform the steps a) ,b),c)
• Delete the individuals of the previous
population, including unnecessary l_by_name
and l_by_time entries.
• Sort l_by_time.

1 Of course that we only store the result if it isn’t already
present and we only delete it if it exists.

4. The best computer program is the result of the GP
algorithm.

This algorithm may seem a little complex, but it is
certainly worth while. Using a conventional GP
algorithm, the execution step for the presented initial
population would require 14*(xsize)*(ysize) operations.
This number is reduced to 6*(xsize)*(ysize) with a cache
of size 3.

3.2. Caching

NEvAr’s caching algorithm poses several drawbacks,
its complex implementation and the extra work required
for the maintenance of the ordered lists. Considering this,
we developed a simpler algorithm.

In this approach we give preference to storing the
results of small sub-programs. The idea is that small
sub-programs are more likely to appear often.

Each terminal returns a value, identifying it and the
position of its result in the cache. All terminal-variables,
e.g. x are stored; terminal-constants aren’t actually stored,
instead they return a negative number and its constant
value. When a sub-tree’s result is not present in the
cache, it is calculated, and stored in the cache or in the
Return-Tuple, depending on the availability of space. The
sub-tree returns the position of its result (in the Cache or
in the Return-Tuple) and a value that both, identifies it,
and shows if it is cached.

To avoid search, we must be able to determine the
position of a sub-tree’s result in the cache-array, from its
root node and the identifying numbers returned by its
descendents. The need of identifying a sub-tree, by a
single number, poses limits to the depth of the cached
sub-programs. This problem becomes bigger as the
number of variable-terminals and functions increases.

To cope with this limitation we propose the following
heuristics:

• Don’t cache sub-trees unless all its arguments are non-
constant.

• If the function set functions have different
complexities, give preference to caching the most
complex ones.

• Give preference to the caching of commutative
functions.

• In general the bigger the sub-tree is, the less probable
it is to appear. Store sub-trees of depth N only when
you have “space” to store all sub-trees of depth N-1.

4. Experimental Results

To test our algorithms we used lil-gp 1.1 [8], a widely
used GP shell, which was also used by Fukunaga [1] to
implement its genome compiler (GC) approach. we

implemented the T-functions approach and the simple
caching mechanism were implemented. The caching
algorithm also uses the T-function approach. This
implementation process was conservative, we made as
little alterations to lil-gp as possible. In figure 3 we show
the evaluation times achieved by: a standard lil-gp
implementation, the T-functions approach, and the
T-functions plus caching. The selected task was the
symbolic regression of the function x^9. This function
was chosen because it was also used in [1][5] and thus
allows comparison of results. The parameters used were
the same as in [1]: population=500, generations=30, f-set
= {+,-,*,%} (% is the protected division operator [3]),
terminal-set={x}, tournament selection (size=5), 90%
crossover, 10% reproduction, no mutation, depth limit=5.

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000
Number of Fitness Cases

E
va

lu
at

io
n

 T
im

e

Standard T-functions Caching

Figure 3. Evaluation time vs. number of fitness cases. The
caching algorithm uses T-functions.

The function and terminal sets are very small, enabling
the caching algorithm to store bigger sub-trees than what
is generally possible. To cope with this “unfair”
advantage, we limit the depth of the cached sub-trees to
two, i.e., we only cache X, +(X,X), -(X,X), *(X,X),
%(X,X). We also decided to cache them as variables, i.e.,
don’t take advantage of the fact that -(X,X) and %(X,X),
are constants.

Number of Fitness Cases

1 2 5 8 10 20 100 250 500

GC 1.0 1.7 2.4 4.0 5.5 10.3 30.1 44.0 53.3

T-functions 0.7 1.4 2.3 2.9 3.2 4.1 5.3 5.5 5.3

Caching 0.4 1.0 2.3 3.3 4.1 6.7 14.0 16.1 17.2

Table 2. Speed enhancements when compared with standard
lil-gp, a value of 2 means two times faster. Results averaged
over series of 100 runs. The results of the genome compiler [1]
are approximations.

Table 2 shows the speed enhancements over a standard
lil-gp implementation. Even for a small number of fitness
cases, significant speed improvements can be achieved,
e.g., for 2 fitness cases the T-functions method is already
1.4 times faster. We only benefit from caching when the
number of fitness cases is greater than 5. This result was
expected, since the time needed to check if the sub-tree is
in the cache must be smaller than the time needed to its
calculation. It is interesting to notice that using an
approach as simple as T-functions, can yield a speed
enhancement of 5.5 over a standard implementation. The
combination of T-functions with caching further enhances
the results giving a 17.2 speed improvement for 500
fitness cases.

For comparison we also present the results achieved by
the Fukunaga’s genome compiler [1], this results were
performed in a different platform. Nevertheless it is only
fair to say that the GC approach clearly outperforms the
presented ones. The same would be true for approaches
like the ones presented in [5][6] that evolve, directly,
programs in machine-code. However, since they only
attack the overheads caused “unnecessary” function calls,
it is doubtful that these approaches can achieve
significant speed improvements, in situations where the
execution time is largely influenced by the existence of
complex function in the function set.

We have also applied our algorithms to programmatic
compression of images (size 16*16 and 32*32). In this
task, the terminal set includes X, Y and ephemeral
random constants [8], the function set is the one
described above. Combining our methods we got speed
improvements from 15 to 25, depending on the depth
limit of the individuals (9-20) and on the number of
generations. Since the terminal set includes random
constants, the caching algorithm was not artificially
limited. To cope with the appearance of new constants,
the cache is periodically restarted.

5. Conclusions and Further Work

We presented two approaches that proved to be
effective in speeding up the evaluation step of GP, in
tasks such as symbolic regression and programmatic
compression. These algorithms have some limitations:
the T-function method is only effective when the
evaluation of the programs involves repeated execution;
the caching algorithm requires that the functions have a
high degree of complexity. Fortunately, these are also the
cases in which speed enhancements are most needed.

Although systems like [1][5] outperform the ones
presented were, our approaches have the advantages of
straightforward implementation and maintenance of
portability. Furthermore, the caching method seems to be
the only way to get significant speed improvement when
overhead in evaluation is due to the use of complex
functions.

The caching algorithms are under development. In
NEvAr we use an algorithm that performs a lot of
calculations to decide which sub-trees should be stored.
Here we also presented a simpler approach that showed to
be effective.

 We want to merge these ideas and develop general
algorithm applicable to a wider number of tasks. The
combination of caching with a genome compiler or with a
Java byte-code system (to maintain portability) seems
very promising.

Acknowledgements

This work was partially funded by the Portuguese
Ministry of Science and Technology, under Program
PRAXIS XXI.

References

[1] Fukunaga, A. Stechert, A. Mutz, D. A Genome Compiler for
High Performance Genetic Programming, Genetic
Programming Conference, GP’98, 1998.

[2] Keith, M. Martin, M. Genetic programming in C++:
Implementation Issues. Advances in Genetic Programming,
1994.

[3] Koza, J. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. 1992.

[4] Machado, P.;Cardoso, A. Model Proposal for a Constructed
Artist, World Multiconference on Systemics, Cybernetics
and Informatics: SCI '97/ISAS '97, Caracas, Venezuela,
1997.

[5] Nordin, P. A compiling genetic programming system that
directly manipulates the machine-code. Advances in
Genetic Programming, 1994.

[6] Nordin, P., Banzhaf, W. Evolving Turing-complete
programs for a register machine with self-modifying code.
International Conference on Evolutionary Computation,
1995.

[7] Stoffel, K., Spector, L. High-performance parallel, stack-
based genetic programming, Genetic Programming
Conference, GP’96, 1996.

[8] Zongker, D. Punch, B. lil-gp1.01 User’s Manual, 1996.

