
Evaluating the Feasibility Issues of Data Confidentiality
Solutions from a Data Warehousing Perspective

Ricardo Jorge Santos1, Jorge Bernardino1,2 and Marco Vieira1
1 CISUC – Centre of Informatics and Systems of the University of Coimbra

University of Coimbra, 3030-290 Coimbra, Portugal
2 ISEC – Superior Institute of Engineering of Coimbra

Polytechnic Institute of Coimbra, 3030-190 Coimbra, Portugal
lionsoftware.ricardo@gmail.com, jorge@isec.pt, mvieira@dei.uc.pt

Abstract. Data Warehouses (DWs) are the core of enterprise sensitive data,
which makes protecting confidentiality in DWs a critical task. Published re-
search and best practice guides state that encryption is the best way to achieve
this and maintain high performance. However, although encryption algorithms
strongly fulfill their security purpose, we demonstrate that they introduce mas-
sive storage space and response time overheads, which mostly result in unac-
ceptable security-performance tradeoffs, compromising their feasibility in DW
environments. In this paper, we enumerate state-of-the-art data masking and en-
cryption solutions and discuss the issues involving their use from a data ware-
housing perspective. Experimental evaluations using the TPC-H decision sup-
port benchmark and a real-world sales DW support our remarks, implemented
in Oracle 11g and Microsoft SQL Server 2008. We conclude that the develop-
ment of alternate solutions specifically tailored for DWs that are able to balance
security with performance still remains a challenge and an open research issue.

Keywords: Data masking, Encryption, Data security, Confidentiality, Database
Performance, Data Warehousing.

1 INTRODUCTION

Data Warehouses (DWs) store the secrets of the business and are used to produce
business knowledge, which makes them a major target for attackers [4, 7, 20]. As the
number and complexity of attacks increase, efficiently securing the confidentiality of
DWs is critical [15, 18, 23]. To accomplish this, data masking and encryption solu-
tions are widely used. Although data masking routines are simpler than encryption
routines, they provide lower security strength. Moreover, data masking routines pro-
vided by most commercial tools typically change data in an irreversible manner, i.e.,
after masking data it not possible to subsequently retrieve the original true values,
making them useless for real live DW databases. This has made masking solutions the
main choice for protecting published data or production data, instead of real-live da-
tabases [5, 8, 11, 12, 16, 20, 21]. Published research and best practice guides have
stated that encryption is the best method to protect sensitive data at the database level
while maintaining high database performance [3, 7, 8, 11, 12, 13, 14, 18, 23].

Despite their security strength, encryption techniques introduce performance key
costs from a data warehousing point of view:

• Large processing time/resources for encrypting sensitive data, given routine or
hardware access in very large databases such as those in DWs;

• Extra storage space of encrypted data. Since DWs usually have many millions or
billions of rows, even a small modification of any column size to accommodate en-
crypted output introduces large storage space overheads;

• Overhead query response time and allocated resources for decrypting data to
process queries. Given the huge amount of data typically accessed by DW queries,
this is probably the most significant drawback in DWs [3].

The two main features that differentiate one confidentiality solution from the other
are its security strength and its execution speed and efficiency. Given the specificity
of DW environments, we believe there are specific performance issues to evaluate and
discuss, regarding the use of encryption solutions. This is the foundation of this re-
search work. We present the state-of-the-art solutions for protecting stored data confi-
dentiality and evaluate their feasibility from a data warehousing perspective. It is not
within the scope of this paper to discuss the scientific merit or soundness of the secu-
rity strength of each technique, but rather to evaluate their impact on database per-
formance and applicability in data warehousing environments.

Thus, in this paper we analyze and discuss the technical issues involving the im-
plementation of the available state-of-the-art data confidentiality solutions, and use
storage space and query response time as measures for evaluating performance in
both loading and querying DW data. To support our remarks and claims, we include
experimental evaluations using the TPC-H decision support benchmark [17] and a
real-world sales DW, implemented in two leading commercial DataBase Management
Systems (DBMS), such as Oracle 11g and Microsoft SQL Server 2008.

The main contributions of our work are as follows:

• We enumerate and describe the current state-of-the-art techniques for protecting
stored data and discuss their application from a data warehousing perspective;

• We present the results of several experimental evaluations using two leading com-
mercial DBMS and one leading open-source DBMS on a well-known benchmark
(TPC-H) and a real-world DW, analyzing the impact in database performance due
to using encryption techniques for protecting data confidentiality;

• The issues discussed and the results from our experimental evaluations allow us to
state that currently available encryption solutions are not suitable for most DWs.
Our work shows that the development solutions specifically tailored for DWs that
are able to present better tradeoffs in balancing security strength with database per-
formance remains a challenge and a relevant research issue.

The remainder of the paper is structured as follows. In section 2, we describe state-
of-the-art data masking and encryption solutions for databases and discuss their issues
from the DW perspective. Section 3 provides experimental evaluations of those solu-
tions using the well-known TPC-H decision support benchmark and a real-world sales
DW implemented in two leading commercial DBMS. In section 4 we point out re-
search challenges and opportunities regarding specific confidentiality solutions for
DWs, from the lessons learned. Finally, section 5 presents our conclusions.

2 STATE-OF-THE-ART DATA CONFIDENTIALITY

2.1 Data Masking Solutions

An extensive survey on data masking is given in [16]. Many organizations have
strived to solve confidentiality issues with hand-crafted solutions within the enterprise
to solve the problem of sharing sensitive information. The most common solution is
probably to use scripts with triggers in order to mask and unmask each value, or to
embed the masking/unmasking logic within the user applications themselves.

Many commercial data masking packages have also been developed, such as the
Oracle Data Masking (ODM) pack [11, 12], protecting data by replacing real values
with realist-looking data with the same type and characteristics as the original data.
Once applied, the ODM masking process is irreversible. Oracle states ODM is to be
used as a fast and easy way to generate production databases for supporting outsourc-
ing and software application development. It can also be used to mask Microsoft SQL
Server and DB2 databases for the same purpose. ODM requires new data to be loaded
into the database first, and only applies the masking procedures afterwards. It is not
possible to load previously masked data; masking in ODM is an a posteriori process.
Most commercial data masking solutions work in a similar fashion as ODM.

Recently, research has proposed non-deterministic methods for masking data, such
as perturbation techniques [4, 14, 19]. The work in [4] proposes a solution based on
data perturbation techniques and explains data reconstruction for responding to que-
ries, in a DW environment. Recent similar work proposed data anonymization solu-
tions relying on perturbation or differential techniques [14] and [19].

2.2 Data Encryption Algorithms

Typical encryption algorithms include executing bit shifting and exclusive Or (XOR)
operations within a predefined number of rounds. These operations rely on a key,
which influences the “data mix” output of each round. There are mainly two types of
encryption techniques: Block Ciphers and Stream Ciphers.

A block cipher is a type of symmetric-key encryption algorithm that transforms a
fixed-length block of plaintext (unencrypted text) data into a block of ciphertext (en-
crypted text) data of the same length, under the action of a user-provided secret key.
Decryption is performed by applying the reverse transformation to the ciphertext
block using the same secret key. Stream ciphers take a string (the encryption key) and
deterministically generate a set of random-seeming text (called keystream) from that
key. That keystream is then XORed against the message to encipher. To decipher the
text, the recipient hands the same key to the stream cipher to produce an identical
keystream and XORs it with the ciphertext, thus retrieving the original message.

The Data Encryption Standard (DES) became the first encryption standard [6].
DES is a 64 bit block cipher, which means that data is encrypted and decrypted in 64
bit chunks, and uses a 56 bit encryption key. As an enhancement of DES, the Triple
DES (3DES) standard was proposed [1]. The 3DES encryption algorithm is similar to
the original DES, but it is applied three times to increase the encryption level, using
three different 56 bit keys. Thus, the effective key length is 168 bits. Since the algo-
rithm increases the number of cryptographic operations it needs to execute, it is a well
known fact that the 3DES algorithm is one of the slowest block cipher methods.

The Advanced Encryption Standard (AES) is a symmetric block cipher algo-
rithm [2]. These algorithms are the latest generation of block ciphers, and have a sig-
nificant increase in the block size, 128 bits. AES provides three approved key lengths:
128, 192 and 256 bits. AES is considered fast and able to provide stronger encryption
than other well-known encryption algorithms such as DES [10, 25]. Brute force attack
(where the attacker tries all the possible key combinations to unlock the encryption) is
the only known effective attack known against it.

In [3] an Order Preserving Encryption Scheme (OPES) for numeric data is pro-
posed, flattening and transforming plaintext distributions onto target distributions
defined from value-based buckets. This solution allows any comparison operation to
be directly applied on encrypted data, such as equality and range queries, as well as
SUM, AVG, MAX, MIN and COUNT queries. A lightweight database encryption
scheme for column-oriented DBMS is proposed in [7].

The Blowfish encryption algorithm [24] is one of the most common public do-
main encryption algorithms. It is a 64 bit block cipher, allowing a variable key length.
Each round of the algorithm consists of a key-dependent permutation and a key-and-
data-dependent substitution. All operations are based on XORs and additions on 32-
bit words. The key has a variable length (maximum of 448 bits). Though it suffers
from weak keys problem, no attack is known to be successful against it [10].

More recently, the Snuffle 2005 encryption algorithm (also known as Salsa20) was
proposed [22]. It is a stream cipher based on a hash function with a long chain of
simple operations (32-bit additions, 32-bit XORs, and constant distance 32-bit rota-
tions), instead of a short chain of more complex operations (typical in standard en-
cryption algorithms). Salsa20 produces a 64-bit block given a key, nonce and block
counter. Salsa20 simply works by running the hash function in counter mode, generat-
ing the keystream by hashing the key with a message based nonce and sequential
integers (1, 2, 3, etc) appended. This solution is relatively simple when compared with
other standard encryption algorithms and has been recognized by the cryptology re-
search community as an interesting alternative in certain contexts.

Since we focus on discussing if current data encryption algorithms are too slow or
not for DWs, we are not interested in discussing the security details of each algorithm,
but rather in pointing out their generic guidelines and how their performance is af-
fected. In cryptography, an S-box (Substitution-box) is a basic component of symme-
tric key algorithms. They are typically used to obscure the relationship between the
keys and the generated ciphertext. In general, an S-box takes a number of input bits,
m, and transforms them into a number of output bits, n; an m×n S-box can be imple-
mented as a lookup table with 2m words of n bits each. In many cases, the S-boxes are
carefully chosen to resist cryptanalysis. Fixed tables are normally used, as in the Data
Encryption Standard (DES) [6], but in some ciphers the tables are generated dynami-
cally from the key; e.g. the Blowfish encryption algorithm [18].

The argument in favor of using complicated operations such as S-boxes is that a
single table lookup can mangle its input quite thoroughly – more thoroughly than a
chain of simple integer operations – in fewer rounds. This provides a large amount of
mixing at reasonable speed on many CPUs, reaching many desired security levels
more quickly than simple operations. The counterargument is that potential speedup is
fairly small and is accompanied by huge slowdowns on other CPUs. On the other
hand, simple operations such as bit additions and XORs are consistently fast, inde-
pendently from the CPU. It is also not obvious that a series of S-box lookups (even
with rather large S-boxes, as in AES, increasing L1 cache pressure on large CPUs and

forcing different implementation techniques for small CPUs) is generally faster than a
comparably complex series of simpler integer operations.

Table 1 shows the number of rounds for achieving minimum and recommended se-
curity strength, respectively, along with block size and encryption key lengths, for
Salsa20, 3DES and AES. The performance of Salsa20 in the ENCRYPT’s test
framework reports the speeds (in CPU cycles per encrypted byte) for encrypting a
576-byte packet (or a long stream) on several CPUs [25] and are shown in Table 2.
The values for the AES encryption algorithm are from [26].

Table 1. Encryption algorithm variables w/ performance impact
 Salsa20 3DES AES
Recommended nr. of rounds 20 16 14
Minimum nr. of rounds 8 12 10
Block size 512 bits 64 bits 128 bits
Encryption key length 128 or 256 bits 168 bits 128 or 256 bits

Table 2. Encryption algorithms CPU Cycles p/ Encrypted Byte
 CPU Cycles p/Encrypted Byte
CPU/Algorithm Salsa20 AES128
AMD64 3GHz Intel Xeon 5160 (6f6) 4.3 9.2
Intel Core 2Duo 2.1GHz (6f6) 4.3 9.2
AMD64 3GHz Intel Pentium D (f64) 11.7 16.2
Intel Pentium 4 3GHz (f41) 13.4 19.8

Other encryption solutions, such as [3], distribute data in well-defined groups to al-
low direct operations on encrypted data. However, the impact in performance pro-
duced by these solutions, in response time and storage space overhead, depends on the
skew in the target distributions, which can be a very serious problem in DWs. There is
no easy way around this. The proposal from [23] also suffers from the same problem.
The lightweight encryption in column-oriented DBMS proposed in [7] aims on pro-
viding low decryption overheads. However, their experiments show at least 50% of
response time overhead to retrieve the encrypted tuples, which is still extremely high
for many DW scenarios, such as long running queries.

Analyzing the features of the referred encryption solutions that influence perfor-
mance (and security tradeoff), we have found the following conclusions:

• Specific DW encryption solutions still show large performance overheads;
• The type and number of operations for producing the “data mix” output in each

round of the algorithm, the length of the used encryption keys, the size of the input
and output blocks, and the number of rounds to execute, are all variables that affect
both security and performance;

• Typically, a secure encryption algorithm will execute between 8 and 20 rounds
against 64, 128 bit (or more) sized blocks, using a 128 or 256 bit key;

• Encryption algorithms which make use of chains of simple operations such as bit
additions and XORs scale better and have reduced CPU dependency than solutions
that make use of more complex operations such as S-box lookups;

• Salsa20 seems to provide consistent speed in a wide variety of applications across
a wide variety of platforms. It is faster and simpler than other complex approaches
such as the standard algorithms 3DES and AES, while granting significant security

strength. However, most commercial vendors just include AES and 3DES routines.
The AES became a standard only after a five-year long standardization process that
included extensive benchmarking on a variety of platforms ranging from smart
cards to high end parallel machines. Thus, the adoption of encryption standards is
probably only due to legal impositions and public reliability issues.

2.3 Data Masking/Encryption Architectures

There are mainly two types of architecture for data masking and encryption at the
database level: 1) masking/unmasking and encryption/decryption is executed by the
DBMS server itself directly on the database; or 2) all masking/unmasking and encryp-
tion/decryption is executed by a third party, typically an application or service acting
as a middleware tier between user applications and the encrypted/masked database.
The first type of architecture is typically used with built-in packages provided by
DBMS vendors. These routines run in the DBMS kernel and are optimized to work
against their data structures and across a large diversity of platforms.

Major DBMS such as Microsoft SQL Server and Oracle provide standard encryp-
tion routines. Oracle has developed TDE (Transparent Data Encryption) [11, 13] in-
corporating both AES and 3DES, providing column and tablespace encryption. These
routines can be used transparently without requiring user application source code
modifications. As Oracle, Microsoft SQL Server also provides column and datafile
3DES and AES encryption routines.

When using Oracle TDE tablespace encryption, all data in the tablespace’s physi-
cal datafiles is encrypted and nearly no storage space overhead is generated. When
using column encryption, a storage space overhead between 1 and 52 bytes per en-
crypted value is added. The generation of independently encrypted values for each
column is done by using an optional feature (SALT) in the encryption, which implies
adding 16 bytes of the storage space per encrypted column to each row. If NO SALT
is used, those extra 16 bytes are saved, but all encrypted values in the column rely on
one key only in the encryption algorithm. Tablespace encryption uses only the data-
base master key and the tablespace’s encryption key, which makes its security level
lower than column encryption. Oracle recommends the use of tablespace encryption
when there is no way of determining which columns are sensitive and which are not,
or when the majority of the data in the tablespace is sensitive [8]. They state that col-
umn encryption should be preferred when a small number of well defined columns are
sensitive. This last scenario is typical in data warehousing environments, which
makes column encryption the recommended solution according to Oracle. However,
as referred before, when using TDE column encryption in DWs the storage overhead
will be very significant. On the other hand, since DWs store business secrets, we can
assume that most of its data is sensitive. In this sense, we may also state that TDE
tablespace encryption should also be highly considered.

In most enterprises, data used for analyzing business performance is mostly stored
in numerical attributes, called facts [9]. Fact tables typically take up 90% or more of
the DW’s total storage space [9]. Standard encryption algorithms were designed for
general-purpose data. Thus, they were designed for encrypting blocks of text, i.e., sets
of character-values by default. This has led DBMS to implement encryption routines
that just output textual or binary attributes. Since most DW columns store numerical
values, using encryption means they need to be converted to textual format. When the
values are decrypted for query processing, they need to be converted back into numer-
ical format in order to process sums, averages, etc. Since most decision support que-

ries process mathematical functions and calculus against numerical attributes, conver-
sion operations are a significant and potentially critical drawback, adding computa-
tional overheads with considerable performance impact.

Topologies involving middleware solutions such as [15] typically request the en-
crypted data from the database a priori and execute the decrypting actions themselves
locally. The proposal in [15] aims to ensure efficient query execution over encrypted
databases, by evaluating most queries at the application server and retrieving only the
necessary records from the database server. Only one query (Q6) of the TPC-H
benchmark is used in their experimental evaluation, against a very small data subset
(ranging from 10MB to 50MB, where query execution time rises up to 5 times for the
last). This is not a realistic dataset for DWs. In a DW environment, previously trans-
porting all the required data from the database to the middleware is unreasonable,
since the amount of data accessed for processing decision support queries is typically
much larger than a few tens of MB. This would strangle the network due to band-
width consumption of data roundtrips between middleware and database, jeopardizing
data throughput and consequently, response time. Thus, all encrypted data should be
processed at the DBMS itself, eliminating network overhead from the critical path.

In this sense, we have found the following conclusions:
• All major DBMS provide encryption to be used transparently by user applications;
• When using tablespace encryption, the requested data is decrypted loaded into

RAM memory (in the database cache) as clear text, while column encryption does
not and is thus more secure;

• Tablespace encryption does not create significant storage space overhead, while
column encryption does;

• Despite well-known pros and cons, the best choice between tablespace encryption
and column encryption isn’t obvious;

• Leading DBMS use standard encryption algorithms AES and 3DES, producing
alphanumeric or binary values as a result of the encryption process, even for nu-
merical-typed attributes;

• In DWs, transporting encrypted data to third party decrypting agents would create
unbearable communication bandwidth consumption and compromise throughput.

3 EXPERIMENTAL EVALUATION

We implemented the TPC-H decision support benchmark (TPC-H) [17] with 1GB and
10GB scale sizes, and a real-world sales DW with 2GB of storage size. The sales DW
has a star schema [9] with four dimension tables and one fact table (Sales). Its dimen-
sional features are shown in Table 3. Each DBMS was installed on separate machines,
Pentium 2.8GHz CPU with a 1.5TB SATA hard disk and 2GB RAM, with 512MB of
RAM devoted to the database memory cache (SGA). The Oracle machine ran Win-
dows XP Professional, SQL Server ran Microsoft Windows Server 2003. The TPC-H
database schema has one fact table (LineItem) and seven dimension tables, where four
columns of LineItem were chosen for encryption (L_Quantity, L_ExtendedPrice,
L_Tax and L_Discount), given they are the fact columns used in the benchmarks que-
ries to analyze the business. In Sales DW, five numerical fact columns were encrypted
(S_ShipToCost, S_Tax, S_Quantity, S_Profit, and S_SalesAmount), for the same rea-
sons. In our tests, we used the following encryption algorithms: AES with 128 bit and
256 bit keys, and 3DES168 (which uses triple DES with a 168 bit key), provided by

each DBMS, in both tablespace (Tab) and column (Col) encryption modes [8, 11, 13].
Salsa20 [22] and OPES [3] were implemented in C++ and also tested.

Table 3. Dimensional features of the Sales Data Warehouse

 Times Customers Products Promotions Sales
Number of Rows 8 760 250 000 50 000 89 812 31 536 000

Storage Size 0,12 MB 90 MB 7 MB 10 MB 1 927 MB

3.1 Fact Table Loading Time

Figure 1 shows the loading time overhead percentages concerning of the fact table in
the TPC-H 1GB and Sales DW for all the tested scenarios. The results in the TPC-H
10GB scenarios are similar to those of the TPC-H 1GB, with absolute values approx-
imately proportional (10 times bigger), and due to lack of space are not included.

Fig. 1. TPC-H 1GB and Sales DW loading time overheads per DBMS

It can be seen that loading time overheads range from 14,8% (more 46 seconds) to
191,6% (more 594 seconds) in Oracle 11g, from 16,5% (more 35 seconds) to 129,2%
(more 274 seconds) in SQL Server 2008, for loading the TPC-H 1GB LineItem fact
table (approximately 800MB of original data). The results show that most overheads
are indeed very considerable, although tablespace encryption present better results
than column encryption, as it would be expected. AES also has better results than
3DES, since it has been proven a faster algorithm. OPES shows overheads of 43,6%
and 48,7%, while Salsa20 of 70,4% and 73,3%. OPES and Salsa20 show better results
than column encryption, but worse than tablespace encryption.

Loading time overheads for the Sales DW fact table (approximately 1,9GB of data)
range from 13,3% (more 159 seconds) to 209,5% (more 2512 seconds) in Oracle 11g,
from 15,4% (more 192 seconds) to 171,1% (more 2139 seconds) in SQL Server 2008.
As in TPC-H 1GB, the results show that most overheads are indeed very considerable,
tablespace encryption presents the best results and column encryption the worst, AES
also has better results than 3DES, and OPES better than Salsa20.

3.2 Fact Table Storage Space

Figure 2 shows storage space overhead percentages concerning the fact table in the
TPC-H 1GB and Sales DW. As with loading time results, storage space results in the
TPC-H 10GB scenarios are similar those of TPC-H 1GB, with absolute values ap-
proximately proportional (10 times bigger), and due to lack of space are not included.

Since tablespace encryption affects the datafiles’ contents as a whole, it is known
that they do not increase storage space (this is because they use a sole key for encrypt-

ing data in the entire datafile as a single entity). OPES also minimally increases sto-
rage space, with almost no overhead (ranging from 1,9% to 3,7%), while Salsa20 has
a space storage overhead of 26,4% to 94,1%. For column encryption in the TPC-H
1GB fact table, storage space overhead is 153,9% (more 1188MB) and 103,6% (more
800MB) in Oracle 11g, 94,8% (more 1173MB) and 76,3% (more 994MB) in SQL
Server 2008. Column encryption storage space overhead for the Sales DW fact table
is 461,5% (more 7680MB) and 307,7% (more 5120MB) in Oracle 11g, 591,3% (more
11424MB) and 389,9% (more 7532MB) in SQL Server 2008. The results show that
storage space overheads for column encryption are very considerable. As expected,
3DES presents better results than AES because it outputs a smaller block size.

Fig. 2. TPC-H 1GB and Sales DW storage space overheads per DBMS

3.3 OLAP Query Execution

For TPC-H, the test workload was benchmark’s queries 1, 3, 6, 7, 8, 10, 12, 14, 15,
17, 19, and 20, all queries accessing the LineItem fact table. For the Sales DW, the
workload was a set of 29 queries, all processing facts in the Sales fact table,
representing typical decision support queries such as customer product and promotion
sales daily, monthly and annually values, including actions such as selection, joining,
aggregates, and ordering. All results shown in this section are the average response
time (in seconds) values obtained from six executions (with standard deviations be-
tween [0.52, 54.65] and [0.64, 70.10] for 1GB and 10GB TPC-H, respectively, and
[0.32, 33.11] for the Sales DW, for individual query response times).

Figure 3 shows total query workload response time overhead percentages in the
TPC-H 1GB and the Sales DW. The TPC-H 10GB results are similar to those of the
TPC-H 1GB, with absolute values approximately proportional (10 times bigger), and
due to lack of space are not included. It can be seen that for TPC-H 1GB the response
time overheads range from 28,3% (more 177 seconds) to 203,0% (more 1271
seconds) in Oracle 11g, from 35,2% (more 204 seconds) to 195,2% (more 1132
seconds) in SQL Server 2008. For the Sales DW, response time overheads range from
79,5% (more 497 seconds) to 810,5% (more 5069 seconds) in Oracle 11g, from
82,8% (more 518 seconds) to 758,9% (more 4746 seconds) in SQL Server 2008.

Fig. 3. TPC-H 1GB and Sales DW query workload response time overheads per DBMS

The results show most overheads are extremely high, and that tablespace encryp-

tion presents much better performance than column encryption and OPES and Sal-
sa20. AES also has better results than 3DES, since it is a faster algorithm.

3.4 Discussion and Conclusions

Regarding the TPC-H 1GB results, notice that for TPC-H 10GB (which is ten times
bigger), since all overheads are approximately proportional, absolute values of storage
space, loading and response time overheads are nearly ten times bigger. This means
that TPC-H 10GB has approximately 8GB to 12GB of increased storage space, for
column encryption scenarios; tablespace encryption does not introduce extra storage
space. In what concerns loading time, TPC-H 10GB can expect an extra 6 to 13 mi-
nutes to load the data in tablespace encryption, and 44 to 99 minutes for the column
encryption scenarios. In the TPC-H 10GB column encryption, OPES and Salsa20
setups, query workload response time rises up from 2 to 3 hours. Given that 10GB is
actually a small size for a DW database, it is easy to conjecture that the introduced
overheads due to encryption in DWs are extremely significant and may in fact be
unacceptable. Although Oracle argues that TDE will only increase response time an
average of 5% to 10% [13], this has shown not to be true. The results show that re-
sponse time overhead is, on average, many orders of magnitude higher. The same
occurs in SQL Server. Conclusively, the findings were the following:

• Using encryption does in fact introduce huge storage space, data loading time and
query response time overheads;

• Given that decision support environments typically execute long running queries
(i.e., queries that run for many minutes up to hours), those response time overheads
represent high absolute values that can easily make query responses overdue and
jeopardize the usefulness of the DW itself;

• Storage size and data loading time overheads are also very large, mainly in column
encryption, with implications in database availability and storage management;

• Although security best practice recommends using column encryption in DW envi-
ronments, tablespace encryption presents better performance results.

4 RESEARCH CHALLENGES & OPPORTUNITIES

In a traditional DW, data is static, i.e., there is no data loading when the databases are
available to its end users. In these environments, the main performance issue is not
encryption, but decryption overhead for querying. Since data loading occurs in well-
defined time windows in which the database is offline, there is no impact in user
query response time; it only affects DW maintenance time. Nevertheless, this static
data state paradigm has been changing, with the increasing implementation of real-
time DW solutions. Thus, given the size of DWs and the amount of data typically
processed by decision support queries, the overheads introduced by both encryption
and decryption need to be dealt with, for the sake of their feasibility. The develop-
ment of future solutions must consider the performance of both encryption/masking
and decryption/unmasking as critical.

To improve CPU performance and scalability, using long chains of simple opera-
tions instead of short chains of complex operations may allow developing faster solu-
tions while being able to maintain significant security strength, as argued in Salsa20.

The basic argument for increasing the block size of the standard 16 bytes to a higher
size of 256 bytes, for example, is that we do not need as many cipher rounds to
achieve the same security level. Using a larger block size should provide just as much
mixing as the first few cipher rounds and thus, saves time. The basic counterargument
is that a larger block size also loses time in CPU models. On most CPUs, the commu-
nication cost of sweeping through a 256-byte block is a bottleneck, because they have
been designed for computations that do not involve so much data. However, CPU
trends show that evolution will allow computing larger amounts of bits. Thus, future
algorithms should take advantage of this, increasing the currently typical 128 bit
block size. Parallel processing is also a performance booster in speed and scalability.

Some ciphers sacrifice security strength attempting to obtain higher speed. Nowa-
days, 256 bit keys are used and considered secure, since the computational efforts in
trying to break their security are considered nearly impracticable. However, the recent
multi-core CPU trends indicate this key length will be rapidly surpassed as hardware
processing power evolves. Thus, to avoid rapidly becoming useless, at least 256 bit or
higher key lengths should be used in the development of new solutions. Although
higher keys should, in principle, bring worse performance, in our opinion the problem
is not centered on the key length, but on the used block size and the algorithm itself.

There is always a tradeoff between performance and security; research will proba-
bly lead to solutions that are better in database performance, but have less security
strength. The main issue is to significantly decrease storage space, resource consump-
tion and response time, while maintaining substantial security strength. A possibility
is to develop variable-based dynamic algorithms that enable the user to choose be-
tween different key lengths and block sizes, the number of encryption/masking
rounds, and other parameters allowing DBAs and application developers to fine tune
the security-performance tradeoff’s balance according to the specific features and
requirements of each DW.

5 CONCLUSIONS

We have presented the available confidentiality solutions for databases and described
the performance issues concerning their use in DWs. Experimental evaluations in-
cluded in state-of-the-art standards and published research show that the storage space
and response time overheads introduced by encryption algorithms dramatically de-
grade database performance to a magnitude that jeopardizes their feasibility in data
warehousing environments. Our experiments have also confirmed this.

A data confidentiality solution may be useless if it assures a high level of protec-
tion, but is too slow to be considered acceptable in practice. Since database perfor-
mance is a critical issue in data warehousing scenarios, we conclude that current en-
cryption solutions are not suitable for DWs. DWs function in a well-determined spe-
cific environment with tight security, performance and scalability requirements and,
therefore, need specific solutions able to cope with these directives. Since there is
always a tradeoff between security strength and performance, developing specific data
confidentiality solutions for DWs must always balance security requirements with the
desire for high performance, i.e., ensuring a strong level of security while keeping
database performance acceptable. This is a critical issue and remains a challenge,
which makes ground for opportunities in this domain, given the lack of specific solu-
tions for data warehousing environments.

REFERENCES
1. 3DES. Triple DES. National Institute of Standards and Technology (NIST), Federal In-

formation Processing Standards (FIPS), Pub. 800-67, ISO/IEC 18033-3, 2005.
2. AES. Advanced Encryption Standard. NIST, FIPS-197, 2001.
3. Agrawal, R., Kiernan, J., Srikant, R. and Xu, Y. “Order-Preserving Encryption for Numer-

ic Data”. ACM SIG Int. Conference on Management Of Data (SIGMOD), 2004.
4. Agrawal, R., Srikant, R. and Thomas, D. “Privacy Preserving OLAP”. ACM Int. Confe-

rence of the Special Interest Group on Management Of Data (SIGMOD), 2005.
5. Bertino, E. and Sandhu, R. “Database Security – Concepts, Approaches, and Challenges”.

IEEE Transactions on Dependable and Secure Computing, Vol. 2, No. 1, 2005.
6. DES. Data Encryption Standard. National Inst. of Standards and Technology (NIST), FIPS

Pub. 46, 1977.
7. Ge, T. and Zdonik, S. “Fast, Secure Encryption for Indexing in a Column-Oriented

DBMS”. International Conference on Data Engineering (ICDE), 2007.
8. Huey, P. Oracle Database Security Guide 11g. Oracle Corporation, 2008.
9. Kimball, R. and Ross, M. The Data Warehouse Toolkit. 2nd Ed, Wiley & Sons, Inc., 2002.

10. Nadeem, A. and Javed, M. Y. “A Performance Comparison of Data Encryption Algo-
rithms”, Int. Conf. on Information and Communication Technologies (ICICT), 2005.

11. Natan, R. B. Implementing Database Security and Auditing. Digital Press, 2005.
12. Oracle Corporation. “Data Masking Best Practices”, Oracle White Paper, 2010.
13. Oracle Corporation. “Oracle Advanced Security Transparent Data Encryption Best Prac-

tices”, Oracle White Paper, 2010.
14. Procopiuc, C. M. and Srivastava, D. “Efficient Table Anonymization for Aggregate Query

Answering”. Int. Conf. on Data Engineering (ICDE), 2011.
15. Radha, V. and Kumar, N. H. “EISA – An Enterprise Application Security Solution for Da-

tabases”. Int. Conf. on Information Systems Security (ICISS), S. Jajodia and C. Mazumdar
(Eds), Springer LNCS 3803, 2005.

16. Ravikumar, G. K., Manjunath, T. N., Ravindra, S. H. and Umesh, I. M. “A Survey on Re-
cent Trends, Process and Development in Data Masking for Testing”. International Journal
of Computer Science Issues, Vol. 8, Issue 2, 2011.

17. TPC-H. The TPC Decision Support Benchmark H. http://www.tpc.org/tpch/default.asp
18. Vimercati, S. C., Foresti, S., Jajodia, S., Paraboschi and Samarati, P. “Over-encryption:

Management of Access Control Evolution and Outsourced Data”. International Conference
on Very Large DataBases (VLDB), 2007.

19. Xiao, X., Bender, G., Hay, M. and Gehrke, J. “iReduct: Differential Privacy with Reduced
Relative Errors”. ACM SIG Int. Conf. on Management Of Data (SIGMOD), 2009.

20. Yuhanna, N. “Your Enterprise Database Security Strategy 2010”, Forrester Research,2009.
21. Gartner Inc. “Selection Criteria for Data-Masking Technologies”. Research Report ID

G00165388, Feb 2009.
22. Bernstein, D. J. “The Salsa20 Family of Stream Ciphers”. New Stream Cipher Designs -

The eSTREAM Finalists 2008, Springer LNCS 4986, 2008.
23. Hacigumus, H., Iyer, B., and Mehrotra, S. “Efficient Execution of Aggregation Queries

over Encrypted Relational Databases”. Int. Conf. on Database Systems for Advanced Ap-
plications (DASFAA), 2004.

24. Schneier, B. The Blowfish Encryption Algorithm. http://www.schneier.com/blowfish.html.
25. Elminaam, D., Kader, H., and Hadhoud, M. “Evaluating the Performance of Symmetric

Encryption Algorithms”, Int. Journal of Network Security, Vol. 10, No. 3, 2010.
26. Bernstein, D. J., and Schwabe, P. “New AES Software Speed Records”, International Con-

ference on Cryptology in India (INDOCRYPT), 2010.

