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Abstract. Decision support for 24/7 enterprises requires 24/7 available Data 
Warehouses (DWs). In this context, web-based connections to DWs are used by 
business management applications demanding continuous availability. Given 
that DWs store highly sensitive business data, a web-based connection provides 
a door for outside attackers and thus, creates a main security issue. Database In-
trusion Detection Systems (DIDS) deal with intrusions in databases. However, 
given the distinct features of DW environments most DIDS either generate too 
many false alarms or too low intrusion detection rates. This paper proposes a 
real-time DIDS explicitly tailored for web-access DWs, functioning at the SQL 
command level as an extension of the DataBase Management System, using an 
SQL-like rule set and predefined checkups on well-defined DW features, which 
enable wide security coverage. We also propose a risk exposure method for 
ranking alerts which is much more effective than alert correlation techniques. 
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1 Introduction 
Many business models using web-based infrastructures require continuous access 

to decision support means such as Data Warehouses (DWs). To ensure this kind of 
access, DWs need to be available at any time from any location through communica-
tion infrastructures such as the Internet. This creates a main security issue, since it 
provides a mean for accessing their databases from outside the enterprise. 

Intrusion is as a set of actions that attempt to violate the integrity, confidentiality or 
availability of a system [8]. Automatic detection of intrusion actions in databases is 
the main goal of Database Intrusion Detection Systems (DIDS). Since DWs are the 
core of enterprise sensitive data, quickly detecting and responding to intrusions is 
critical. However, most DIDS applied to DWs typically spawn too low true intrusion 
detection rates (i.e. false negatives) or too high false alarm rates (i.e. false positives) 
[7, 8, 9]. In the first case, many intrusions pass undetected; in the second case, the 
number of generated alerts is frequently so large that it leads to wasting vast amounts 
of time and limited resources, or they are simply just too much to be checked [7, 8]. 
This jeopardizes the credibility and feasibility of the DIDS [5, 7, 8]. Given the well-
defined features intrinsic to DW environments, we argue they require specifically 
tailored DIDS. To the best of our knowledge, no such DIDS has been proposed. 

Although alert correlation techniques [7, 10] have been proposed to decrease false 
positive rates, we also argue they are not the best choice for alert management in DW 
environments. These techniques filter alerts to determine those which present a higher 
probability of referring a true intrusion, given a predefined threshold. Using a thre-
shold implies some alerts are discarded and thus, there is always the risk that a true 
intrusion may pass undetected. Given the value of DW data, this is not advisable. In 



our approach, we decide not to correlate/filter alerts, but measure their risk exposure 
(probability vs impact) to the enterprise. Instead of filtering alerts, our approach ranks 
all alerts by their potential cost to the enterprise, dealing with the most critical intru-
sions first instead of wasting time checking alerts with low impact for the enterprise.  

The main achievements and contributions of our work are: Our DIDS is the first 
tailored for web-acessible DWs, analyzing each user command both a priori and a 
posteriori of its execution; It is also the first to use risk exposure to increase alert 
management efficiency; We use a very easy to understand and use declarative SQL-
like form for defining rules at a fine-grain level for intrusion detection (ID) and re-
sponse. Their flexibility covers a very large spectrum of possibilities that enables 
detecting and responding to a wide range of intrusions; The DIDS works as an exten-
sion of any DBMS, adding real-time ID and response management to the native data-
base server; It can be easily implemented and used in any web-accessed DW, acting 
transparently at the application layer between DW user applications and the database. 

The remainder of this paper is structured as follows. In section 3, we present our 
proposal, describing its architecture and each of its components and explaining how 
intrusion detection and response is managed. In section 4 we describe how each form 
of attack is dealt with by our solution. Section 5 presents related work on DIDS. Fi-
nally, in section 6 we present our conclusions and future work. 

2 Data Warehouse Database Intrusion Detection System 
Figure 1 shows the typical user action flow in a web-accessible DW, while Figure 

2 shows the DIDS architecture, working as an extension of the DBMS.  

 
Fig. 1. Typical user action flow in a web-accessible Data Warehouse 

 
Fig. 2. The conceptual architecture of the DIDS for DWs 



The sequence of intrusion detection steps is labeled in the figure and described as: 
A user requests an action through a Web Application Server, arriving at the DBMS for 
execution (step 1). Before executing it, the Command Analyzer retrieves the command 
text, date/time, and user/IP identification (step 2), parses the command, splits it into 
the ID features and passes all information to the Intrusion Detector (step 3). This 
component then gets the statistical model values for all features from the DW-IDE 
Database (step 4) and applies the ID algorithms (explained in subsection 2.2) to de-
cide if the command is a potential intrusion. The detector then passes all information 
(features and respective intrusion detection results) to the Intrusion Response Manag-
er (IRM) (step 5). Given each feature’s result considering the user’s action as an intru-
sion, the IRM retrieves the probability and impact rules, evaluate its risk exposure and 
generates the resulting alert (step 6), stores the data concerning the alert and the fea-
ture(s) that generated it in the DW-IDE Database for future reference, takes the ap-
propriate actions to deal with the potential intrusion through the DBMS and notifies 
the DW Security Administrator (step 7). The IRM takes action by commiting the 
command’s execution in the DBMS (in case it has been considered a non-intrusion) or 
by suspending or killing its execution, or killing the user session, either automatically 
or on request of the DW Security Administrator (step 7). If the user action is not con-
sidered an intrusion the IRM will simply update the feature’s statistics in the DW-IDE 
Database (step 7) without notifying the DW Security Administrator. 

If the IRM concludes the user’s action is not an intrusion, it notifies the DBMS to 
normally execute it against the DW Database(s) (step 8). After the user command has 
been computed (step 9), its response is analyzed by the Response Analyzer before 
returning it to the interface which requested it (step 10), extracting the response fea-
tures and passing them to the Intrusion Detector (step 11), which will repeat step 4 to 
detect possible intrusion action for each response feature. The Intrusion Detector will 
then pass the information to the IRM, which will repeat steps 5, 6, 7 as steps 13, 14 
and 15. Finally, if the IRM concludes that the response is accepted or considered an 
intrusion, the computed results are respectively either sent back to the user interface 
which requested them or eliminated (step 16). 

2.1 Risk Exposure Assessment 

Given a user action, risk exposure is a function of both the probability it has of be-
ing an intrusion and the impact it may have, i.e., the potential magnitude of the cost 
for the enterprise related to the damage or disclosure of the sensitive data which the 
action affects. Risk analysis consists on ranking the alerts given their computed risk 
exposure, according to a matrix similar to Table 1. 

Table 1. The risk exposure matrix 
  Probability
  Very Low Low High Very High 

Im
pa

ct
 Very High High High Very High Critical 

High Low High High Very High 
Low Very Low Low High High 

Very Low Very Low Very Low Low High 

To define which responses should be taken given the risk exposure matrix, the DW 
Security Administrator may define rules as the following: 
 GIVEN RISK EXPOSURE AS Low|Medium|High|Critical 
 ON FEATURE {FeatureName1, FeatureName2, ...}, AllFeatures 
 TAKE ACTION {DoNothing,Alert,PauseCommand,TerminateCommand,KillSession} 



The definition of probability and impact rules that make up the assessment of risk 
exposure measures depend on the chosen intrusion detection features and sensitive 
data assessment by the DW Security Administrator, and will be explained in the next 
subsections. All risk exposure, probability and impact rules are stored in the DW-IDE 
Database and used by the Intrusion Response Manager (IRM), as explained formerly. 

2.2 Intrusion Detection and Response Management 

Intrusion Detection. Given the distinctive assumptions for typical web-accessible 
DWs [4], in Table 2 we define the relevant ID features from a usability perspective. 
As shown, several features group values per user/IPAddress, other features are re-
ferred to values per command given each user/IPAddress, and further features refer 
those that are grouped by each session of each user/IPAddress. This allows testing 
features in different grouping levels (per user / per user session / per SQL command) 
and thus, widens the detection scope. Our approach adjusts a probabilistic distribution 
for each feature {F1, …, F29} for each user, from observations (feature values) during 
an initial training stage. To obtain those observations, we suppose the existence of an 
“intrusion-free” database command log. Executing that log’s user commands we ex-
tract the values, i.e., observations for building each feature’s statistical distribution. 
Statistical adjustment tests are performed to obtain each population’s distribution.  

Table 2. Intrusion detection features 
Features per User/IPAddress

F# FeatureName Description
F1 #ConsFailedLoginAttempts The number of consecutive failed database login attempts by a UserID

or from an IPAddress (accumulated or in a given timespan) 
F2 #SimultSQLSessions The number of active simultaneous database connections 
F3 #UnauthorAccessAttempts The number of consecutive user requests to execute an unauthorized 

actions (e.g. request to modify data when the database is read-only, 
or requesting to query data to which does not have access privileges)  

 Features per User/IPAddress per Command
F4 CPUTime CPU time spent by the DBMS to process the command 
F5 ResponseSize Size (in bytes) of the result of the command’s execution 

F6, F7 #ResponseLines,  
#ResponseColumns 

Nr. of lines and columns in the result of the command’s execution 

F8, F9 #ProcessedRows,  
#ProcessedColumns 

Nr. of accessed rows and columns for processing the command 

F10 CommandLength Number of characters
F11 #GroupBy Number of GROUP BY columns
F12 #Union Number of UNION clauses

F13…F17 #Sum, #Max, #Min, #Avg,   
#Count 

Nr. of SUM, MAX, MIN, AVG and COUNT functions 

F18, F19 #And, #Or Nr. of AND and OR operators in the command’s WHERE clause(s) 
F20 #LiteralValues Nr. of literal values in the command’s WHERE clause(s) 

 Features per User/IPAddress per Session
F21 #GroupBy Number of GROUPBY columns in all SELECT statements, p/ session 
F22 #Union Number of UNION clauses in all SELECT statements, per session 

F23…F27 #Sum, #Max, #Min, #Avg,   
#Count 

Nr. of appearances of SUM, MAX, MIN, AVG and COUNT functions  
in all commands, per session 

F28 TimeBetwCommands Time period (in seconds) between exec. of commands, per session 
F29 #SimultaneousCommands Number of commands simultaneously executing, per session 

For each active user session, we gather each new value generated for each feature 
and build sample sets. To detect an intrusion, statistical tests are performed: given 
each feature’s original population, a new sample set is built joining that population 
with the user session sample set for that feature. New statistical tests are performed to 
adjust a new probability distribution to the former data collection. By testing if the 



new feature’s distribution matches its original one (Ho), using Chi-square, Kolmogo-
rov-Smirnov or Shapiro-Wilk tests, all performed at a level of 5% significance, for 
each test decision for a certain feature that results in rejecting the distribution’s 
equality (Ho), we consider the user action as a probable intrusion. 

Defining risk probability and impact. To determine each feature’s individual 
importance in the overall intrusion detection process (which will be directly related to 
its risk probability), we attribute a weight to it. To compute its weight, we assume a 
priori each feature has the same relevance and will be incrementally self-calibrated 
using their respective True Positives TP (i.e. alerts generated by the feature that were 
confirmed as true intrusions) and False Positives FP (i.e. confirmed false alarms). For 
each feature Fi, its weight Wi is given by:  

Wi = 0.5 + ((TPi  - FPi) / (TPi  + FPi)) / 2 (1) 
where TPi and FPi are the total number of TP and FP, respectively, of all alerts gener-
ated by feature Fi. Every time an intrusion alert is generated by a given feature Fi, 
after it is checked the feature will have its TP or FP rate updated if it respectively 
refers to a true intrusion or a false alarm and, consequently, its weight Wi is also ac-
cordingly updated (increased or decreased). Thus, the self-calibrating formula works 
smoothly, giving a higher importance to the features that are more accurate. 

To define the probability of each intrusion alert given the feature that generated it, 
our approach allows defining rules with the following syntax (list values with | are to 
be chosen from, while clauses in brackets are optional): 
   DEFINE PROBABILITY AS None|VeryLow|Low|High|VeryHigh 
   ON FEATURE {FeatureName1, FeatureName2, ...}, AllFeatures 
   [WHERE {List of filtering conditions}] 
   [WHEN {List of time-based conditions}] 

 Using this rule syntax, the intrusion probability of each feature Fi given its Wi as: 
DEFINE PROBABILITY AS VeryLow ON FEATURE Fi WHERE Weight(Fi)<=0.25 
DEFINE PROBABILITY AS Low  
    ON FEATURE Fi WHERE Weight(Fi)>0.25 AND Weight(Fi)<=0.50 
DEFINE PROBABILITY AS High  
    ON FEATURE Fi WHERE Weight(Fi)>0.50 AND Weight(Fi)<=0.75 
DEFINE PROBABILITY AS VeryHigh ON FEATURE Fi WHERE Weight(Fi)>0.75 

 The assessment of the impact caused by a user action is based on which, how 
much, and when sensitive data can be exposed or damaged by the user command, as 
well as who is the user. It is managed by using the following rules: 

DEFINE IMPACT AS VeryLow|Low|High|VeryHigh 
ON FEATURE {FeatureName1, FeatureName2, ...}, AllFeatures, 
[WITH COLUMNS {Column1,Column2,...},AllColumns] 
[WHERE {List of filtering conditions}] 
[WHEN {List of time-based conditions}] 
[JOINED WITH {Column1,Column2,...},AllColumns 

The clauses are used in a similar manner to those in the probability rules, plus the 
clause distinguishing which is the user command (ON COMMAND) and the clause defin-
ing the impact of two or more columns being processed or shown together (WITH 
COLUMNS). The WHERE clauses in the DIDS rules (as in standard SQL WHERE 
clauses) allow a wide range of definitions and due to lack of space are not included. 
We just wish to make clear that the IRM algorithms can be easily adapted to cope 
with a wide range of rule possibilities, providing a very wide ID scope. 



3 Experimental Evaluation 
We used the TPC-H benchmark [18] to build a 1GB DW using Oracle 11g DBMS on 
a Pentium 2.8GHz machine with 2GB SDRAM (with 512MB dedicated to the data-
base server), in a scenario with ten open web connections to the DW in which there 
are 2 “intruders” and 8 “true” DW users (non-intruders). For each “true” DW user’s 
workload, a set of randomly chosen TPC-H benchmark queries were selected, i.e., 
each user has different queries to execute, as well as a distinct number of queries. In 
each workload’s queries, several were randomly picked for randomly modifying their 
parameters, to obtain a larger scope of diverse user actions. Each workload also in-
cluded a random number of random queries (randomly picking a set of tables, col-
umns, functions to execute, grouping and sorting, and literal restrictions for columns 
included in the WHERE clauses). The TPC-H queries represent typical reporting 
behavior, while ad hoc queries were simulated by random queries, in smaller number.  

To build the statistical models for each feature of each “true” user, we executed 
each user’s workload 50 times. To build each “intruder” workload, we generated 200 
random intrusion queries of several types: SQL injection tautologies; Login/password 
guessing; inserting, changing or deleting a random number of rows; Selecting a ran-
dom amount of columns and a random amount of functions (MAX, SUM, etc.) from a 
random number of tables, with and without a random number of grouping columns, 
with and without range value restrictions; SQL union queries with a random amount 
of columns and a random amount of tables; Query flooding; Unauthorized actions 
(create, drop, etc). These intrusion queries represent a wide variety of attacks. 

The TPC-H benchmark has approximately seven years of business data. We con-
sider the data from the most recent year to have high impact due to intrusion actions, 
the data from the two previous years as high impact, the data from the two years be-
fore that as low impact and the remaining as having very low impact.  

Table 3 shows the ID results. Figure 3 shows the TP rate is considerably high 
(89%) while the FP rate is relatively low (5%), with an absolute number of 48 false 
alarms for a total of 225 generated alerts. Observing Table 4, the absolute number of 
false negatives is relatively low (23 in a total of 995 non-intrusions). The approach’s 
precision is considerable (79%) and its accuracy is high (94%). Observing Table 4, 
the most relevant alerts (very high and critical) represent approximately one third of 
all alerts; these should be the ones first deserving attention on behalf of the security 
staff, instead of wasting time checking the remaining alerts (two thirds of all alerts), 
given that they present smaller impact. Finally, we measured an average overhead of 
20% on user workload response time due to running the DIDS detection algorithms. 

Table 3. Experimental results for the generated alerts (absolute values) 
# True user actions # intruder actions #TP #FP #TN #FN 

1020 200 177 48 972 23 

Table 4. Number of generated alerts per risk exposure measure 
Very Low Low High Very High Critical Total Number of Alerts 

36 50 59 49 31 225 

 
Fig. 3. True positive and false positive rates, precision and accuracy 



4 Related Work 
In [1], database transactions are defined by directed graphs describing the SQL com-
mand types used for malicious data access detection. This approach cannot handle ad 
hoc queries and works at the coarse-grained transaction level as opposed to a fine-
grained query level. A Role Based Access Control mechanism for DIDS was pro-
posed by [3]. Data mining techniques are used, namely classification and clustering, 
against SQL instructions stored in database audit files to deduce role profiles of nor-
mal user behavior. A limitation of this approach is that it cannot extract correlation 
among queries in transactions. Moreover, since this solution is role-based, it works at 
a higher coarse-grained level than the user-based profiling in our approach. Detecting 
attacks by comparison, summarizing SQL statements into compact access patterns 
named as fingerprints, is the focus of [5]. Profiling the data accessed by users to try to 
determine their intent is an approach used in [6], using statistical learning algorithms. 
They argue that analyzing what the user is looking for (i.e., what data) instead of ana-
lyzing how s/he is looking for it (i.e., which SQL expressions), is more efficient for 
anomaly detection. In our paper, we integrate both these views. Data correlation using 
data mining or machine learning techniques is used in [2, 7, 8, 10]. 

5 Conclusions and Future Work 
We have pointed out issues involving ID in web-access DWs and proposed a specific 
DIDS for these environments. Our DIDS works transparently between user applica-
tions and the database server as an extension of the DBMS itself. The SQL-like rule-
base allows extending DBMS data access policies and covers an extremely wide 
range of intrusion attacks. Risk exposure assessment is used for ranking and prioritiz-
ing the generated intrusion alerts, presenting clear advantages when compared with 
correlation techniques. Experimental results show our approach achieves high effi-
ciency and accuracy for the tested setup. As future work, we intend to test our ap-
proach in real-world DWs, namely in cloud environments. 
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