
Securing Data Warehouses from Web-Based Intrusions

Ricardo Jorge Santos1, Jorge Bernardino2, Marco Vieira3 and Deolinda M. L. Rasteiro4
1,3 CISUC – DEI – FCTUC – University of Coimbra – Coimbra, Portugal

2 CISUC – DEIS – ISEC – Polytechnic Institute of Coimbra – Coimbra, Portugal
4 DFM – ISEC – Polytechnic Institute of Coimbra – Coimbra, Portugal

1 lionsoftware.ricardo@gmail.com, 2 jorge@isec.pt, 3 mveira@dei.uc.pt, 4 dml@isec.pt

Abstract. Decision support for 24/7 enterprises requires 24/7 available Data
Warehouses (DWs). In this context, web-based connections to DWs are used by
business management applications demanding continuous availability. Given
that DWs store highly sensitive business data, a web-based connection provides
a door for outside attackers and thus, creates a main security issue. Database In-
trusion Detection Systems (DIDS) deal with intrusions in databases. However,
given the distinct features of DW environments most DIDS either generate too
many false alarms or too low intrusion detection rates. This paper proposes a
real-time DIDS explicitly tailored for web-access DWs, functioning at the SQL
command level as an extension of the DataBase Management System, using an
SQL-like rule set and predefined checkups on well-defined DW features, which
enable wide security coverage. We also propose a risk exposure method for
ranking alerts which is much more effective than alert correlation techniques.

Keywords: Database security, Web security, Intrusion detection, Data warehouses.

1 Introduction
Many business models using web-based infrastructures require continuous access

to decision support means such as Data Warehouses (DWs). To ensure this kind of
access, DWs need to be available at any time from any location through communica-
tion infrastructures such as the Internet. This creates a main security issue, since it
provides a mean for accessing their databases from outside the enterprise.

Intrusion is as a set of actions that attempt to violate the integrity, confidentiality or
availability of a system [8]. Automatic detection of intrusion actions in databases is
the main goal of Database Intrusion Detection Systems (DIDS). Since DWs are the
core of enterprise sensitive data, quickly detecting and responding to intrusions is
critical. However, most DIDS applied to DWs typically spawn too low true intrusion
detection rates (i.e. false negatives) or too high false alarm rates (i.e. false positives)
[7, 8, 9]. In the first case, many intrusions pass undetected; in the second case, the
number of generated alerts is frequently so large that it leads to wasting vast amounts
of time and limited resources, or they are simply just too much to be checked [7, 8].
This jeopardizes the credibility and feasibility of the DIDS [5, 7, 8]. Given the well-
defined features intrinsic to DW environments, we argue they require specifically
tailored DIDS. To the best of our knowledge, no such DIDS has been proposed.

Although alert correlation techniques [7, 10] have been proposed to decrease false
positive rates, we also argue they are not the best choice for alert management in DW
environments. These techniques filter alerts to determine those which present a higher
probability of referring a true intrusion, given a predefined threshold. Using a thre-
shold implies some alerts are discarded and thus, there is always the risk that a true
intrusion may pass undetected. Given the value of DW data, this is not advisable. In

our approach, we decide not to correlate/filter alerts, but measure their risk exposure
(probability vs impact) to the enterprise. Instead of filtering alerts, our approach ranks
all alerts by their potential cost to the enterprise, dealing with the most critical intru-
sions first instead of wasting time checking alerts with low impact for the enterprise.

The main achievements and contributions of our work are: Our DIDS is the first
tailored for web-acessible DWs, analyzing each user command both a priori and a
posteriori of its execution; It is also the first to use risk exposure to increase alert
management efficiency; We use a very easy to understand and use declarative SQL-
like form for defining rules at a fine-grain level for intrusion detection (ID) and re-
sponse. Their flexibility covers a very large spectrum of possibilities that enables
detecting and responding to a wide range of intrusions; The DIDS works as an exten-
sion of any DBMS, adding real-time ID and response management to the native data-
base server; It can be easily implemented and used in any web-accessed DW, acting
transparently at the application layer between DW user applications and the database.

The remainder of this paper is structured as follows. In section 3, we present our
proposal, describing its architecture and each of its components and explaining how
intrusion detection and response is managed. In section 4 we describe how each form
of attack is dealt with by our solution. Section 5 presents related work on DIDS. Fi-
nally, in section 6 we present our conclusions and future work.

2 Data Warehouse Database Intrusion Detection System
Figure 1 shows the typical user action flow in a web-accessible DW, while Figure

2 shows the DIDS architecture, working as an extension of the DBMS.

Fig. 1. Typical user action flow in a web-accessible Data Warehouse

Fig. 2. The conceptual architecture of the DIDS for DWs

The sequence of intrusion detection steps is labeled in the figure and described as:
A user requests an action through a Web Application Server, arriving at the DBMS for
execution (step 1). Before executing it, the Command Analyzer retrieves the command
text, date/time, and user/IP identification (step 2), parses the command, splits it into
the ID features and passes all information to the Intrusion Detector (step 3). This
component then gets the statistical model values for all features from the DW-IDE
Database (step 4) and applies the ID algorithms (explained in subsection 2.2) to de-
cide if the command is a potential intrusion. The detector then passes all information
(features and respective intrusion detection results) to the Intrusion Response Manag-
er (IRM) (step 5). Given each feature’s result considering the user’s action as an intru-
sion, the IRM retrieves the probability and impact rules, evaluate its risk exposure and
generates the resulting alert (step 6), stores the data concerning the alert and the fea-
ture(s) that generated it in the DW-IDE Database for future reference, takes the ap-
propriate actions to deal with the potential intrusion through the DBMS and notifies
the DW Security Administrator (step 7). The IRM takes action by commiting the
command’s execution in the DBMS (in case it has been considered a non-intrusion) or
by suspending or killing its execution, or killing the user session, either automatically
or on request of the DW Security Administrator (step 7). If the user action is not con-
sidered an intrusion the IRM will simply update the feature’s statistics in the DW-IDE
Database (step 7) without notifying the DW Security Administrator.

If the IRM concludes the user’s action is not an intrusion, it notifies the DBMS to
normally execute it against the DW Database(s) (step 8). After the user command has
been computed (step 9), its response is analyzed by the Response Analyzer before
returning it to the interface which requested it (step 10), extracting the response fea-
tures and passing them to the Intrusion Detector (step 11), which will repeat step 4 to
detect possible intrusion action for each response feature. The Intrusion Detector will
then pass the information to the IRM, which will repeat steps 5, 6, 7 as steps 13, 14
and 15. Finally, if the IRM concludes that the response is accepted or considered an
intrusion, the computed results are respectively either sent back to the user interface
which requested them or eliminated (step 16).

2.1 Risk Exposure Assessment

Given a user action, risk exposure is a function of both the probability it has of be-
ing an intrusion and the impact it may have, i.e., the potential magnitude of the cost
for the enterprise related to the damage or disclosure of the sensitive data which the
action affects. Risk analysis consists on ranking the alerts given their computed risk
exposure, according to a matrix similar to Table 1.

Table 1. The risk exposure matrix
 Probability
 Very Low Low High Very High

Im
pa

ct
 Very High High High Very High Critical

High Low High High Very High
Low Very Low Low High High

Very Low Very Low Very Low Low High

To define which responses should be taken given the risk exposure matrix, the DW
Security Administrator may define rules as the following:
 GIVEN RISK EXPOSURE AS Low|Medium|High|Critical
 ON FEATURE {FeatureName1, FeatureName2, ...}, AllFeatures
 TAKE ACTION {DoNothing,Alert,PauseCommand,TerminateCommand,KillSession}

The definition of probability and impact rules that make up the assessment of risk
exposure measures depend on the chosen intrusion detection features and sensitive
data assessment by the DW Security Administrator, and will be explained in the next
subsections. All risk exposure, probability and impact rules are stored in the DW-IDE
Database and used by the Intrusion Response Manager (IRM), as explained formerly.

2.2 Intrusion Detection and Response Management

Intrusion Detection. Given the distinctive assumptions for typical web-accessible
DWs [4], in Table 2 we define the relevant ID features from a usability perspective.
As shown, several features group values per user/IPAddress, other features are re-
ferred to values per command given each user/IPAddress, and further features refer
those that are grouped by each session of each user/IPAddress. This allows testing
features in different grouping levels (per user / per user session / per SQL command)
and thus, widens the detection scope. Our approach adjusts a probabilistic distribution
for each feature {F1, …, F29} for each user, from observations (feature values) during
an initial training stage. To obtain those observations, we suppose the existence of an
“intrusion-free” database command log. Executing that log’s user commands we ex-
tract the values, i.e., observations for building each feature’s statistical distribution.
Statistical adjustment tests are performed to obtain each population’s distribution.

Table 2. Intrusion detection features
Features per User/IPAddress

F# FeatureName Description
F1 #ConsFailedLoginAttempts The number of consecutive failed database login attempts by a UserID

or from an IPAddress (accumulated or in a given timespan)
F2 #SimultSQLSessions The number of active simultaneous database connections
F3 #UnauthorAccessAttempts The number of consecutive user requests to execute an unauthorized

actions (e.g. request to modify data when the database is read-only,
or requesting to query data to which does not have access privileges)

 Features per User/IPAddress per Command
F4 CPUTime CPU time spent by the DBMS to process the command
F5 ResponseSize Size (in bytes) of the result of the command’s execution

F6, F7 #ResponseLines,
#ResponseColumns

Nr. of lines and columns in the result of the command’s execution

F8, F9 #ProcessedRows,
#ProcessedColumns

Nr. of accessed rows and columns for processing the command

F10 CommandLength Number of characters
F11 #GroupBy Number of GROUP BY columns
F12 #Union Number of UNION clauses

F13…F17 #Sum, #Max, #Min, #Avg,
#Count

Nr. of SUM, MAX, MIN, AVG and COUNT functions

F18, F19 #And, #Or Nr. of AND and OR operators in the command’s WHERE clause(s)
F20 #LiteralValues Nr. of literal values in the command’s WHERE clause(s)

 Features per User/IPAddress per Session
F21 #GroupBy Number of GROUPBY columns in all SELECT statements, p/ session
F22 #Union Number of UNION clauses in all SELECT statements, per session

F23…F27 #Sum, #Max, #Min, #Avg,
#Count

Nr. of appearances of SUM, MAX, MIN, AVG and COUNT functions
in all commands, per session

F28 TimeBetwCommands Time period (in seconds) between exec. of commands, per session
F29 #SimultaneousCommands Number of commands simultaneously executing, per session

For each active user session, we gather each new value generated for each feature
and build sample sets. To detect an intrusion, statistical tests are performed: given
each feature’s original population, a new sample set is built joining that population
with the user session sample set for that feature. New statistical tests are performed to
adjust a new probability distribution to the former data collection. By testing if the

new feature’s distribution matches its original one (Ho), using Chi-square, Kolmogo-
rov-Smirnov or Shapiro-Wilk tests, all performed at a level of 5% significance, for
each test decision for a certain feature that results in rejecting the distribution’s
equality (Ho), we consider the user action as a probable intrusion.

Defining risk probability and impact. To determine each feature’s individual
importance in the overall intrusion detection process (which will be directly related to
its risk probability), we attribute a weight to it. To compute its weight, we assume a
priori each feature has the same relevance and will be incrementally self-calibrated
using their respective True Positives TP (i.e. alerts generated by the feature that were
confirmed as true intrusions) and False Positives FP (i.e. confirmed false alarms). For
each feature Fi, its weight Wi is given by:

Wi = 0.5 + ((TPi - FPi) / (TPi + FPi)) / 2 (1)
where TPi and FPi are the total number of TP and FP, respectively, of all alerts gener-
ated by feature Fi. Every time an intrusion alert is generated by a given feature Fi,
after it is checked the feature will have its TP or FP rate updated if it respectively
refers to a true intrusion or a false alarm and, consequently, its weight Wi is also ac-
cordingly updated (increased or decreased). Thus, the self-calibrating formula works
smoothly, giving a higher importance to the features that are more accurate.

To define the probability of each intrusion alert given the feature that generated it,
our approach allows defining rules with the following syntax (list values with | are to
be chosen from, while clauses in brackets are optional):
 DEFINE PROBABILITY AS None|VeryLow|Low|High|VeryHigh
 ON FEATURE {FeatureName1, FeatureName2, ...}, AllFeatures
 [WHERE {List of filtering conditions}]
 [WHEN {List of time-based conditions}]

 Using this rule syntax, the intrusion probability of each feature Fi given its Wi as:
DEFINE PROBABILITY AS VeryLow ON FEATURE Fi WHERE Weight(Fi)<=0.25
DEFINE PROBABILITY AS Low
 ON FEATURE Fi WHERE Weight(Fi)>0.25 AND Weight(Fi)<=0.50
DEFINE PROBABILITY AS High
 ON FEATURE Fi WHERE Weight(Fi)>0.50 AND Weight(Fi)<=0.75
DEFINE PROBABILITY AS VeryHigh ON FEATURE Fi WHERE Weight(Fi)>0.75

 The assessment of the impact caused by a user action is based on which, how
much, and when sensitive data can be exposed or damaged by the user command, as
well as who is the user. It is managed by using the following rules:

DEFINE IMPACT AS VeryLow|Low|High|VeryHigh
ON FEATURE {FeatureName1, FeatureName2, ...}, AllFeatures,
[WITH COLUMNS {Column1,Column2,...},AllColumns]
[WHERE {List of filtering conditions}]
[WHEN {List of time-based conditions}]
[JOINED WITH {Column1,Column2,...},AllColumns

The clauses are used in a similar manner to those in the probability rules, plus the
clause distinguishing which is the user command (ON COMMAND) and the clause defin-
ing the impact of two or more columns being processed or shown together (WITH
COLUMNS). The WHERE clauses in the DIDS rules (as in standard SQL WHERE
clauses) allow a wide range of definitions and due to lack of space are not included.
We just wish to make clear that the IRM algorithms can be easily adapted to cope
with a wide range of rule possibilities, providing a very wide ID scope.

3 Experimental Evaluation
We used the TPC-H benchmark [18] to build a 1GB DW using Oracle 11g DBMS on
a Pentium 2.8GHz machine with 2GB SDRAM (with 512MB dedicated to the data-
base server), in a scenario with ten open web connections to the DW in which there
are 2 “intruders” and 8 “true” DW users (non-intruders). For each “true” DW user’s
workload, a set of randomly chosen TPC-H benchmark queries were selected, i.e.,
each user has different queries to execute, as well as a distinct number of queries. In
each workload’s queries, several were randomly picked for randomly modifying their
parameters, to obtain a larger scope of diverse user actions. Each workload also in-
cluded a random number of random queries (randomly picking a set of tables, col-
umns, functions to execute, grouping and sorting, and literal restrictions for columns
included in the WHERE clauses). The TPC-H queries represent typical reporting
behavior, while ad hoc queries were simulated by random queries, in smaller number.

To build the statistical models for each feature of each “true” user, we executed
each user’s workload 50 times. To build each “intruder” workload, we generated 200
random intrusion queries of several types: SQL injection tautologies; Login/password
guessing; inserting, changing or deleting a random number of rows; Selecting a ran-
dom amount of columns and a random amount of functions (MAX, SUM, etc.) from a
random number of tables, with and without a random number of grouping columns,
with and without range value restrictions; SQL union queries with a random amount
of columns and a random amount of tables; Query flooding; Unauthorized actions
(create, drop, etc). These intrusion queries represent a wide variety of attacks.

The TPC-H benchmark has approximately seven years of business data. We con-
sider the data from the most recent year to have high impact due to intrusion actions,
the data from the two previous years as high impact, the data from the two years be-
fore that as low impact and the remaining as having very low impact.

Table 3 shows the ID results. Figure 3 shows the TP rate is considerably high
(89%) while the FP rate is relatively low (5%), with an absolute number of 48 false
alarms for a total of 225 generated alerts. Observing Table 4, the absolute number of
false negatives is relatively low (23 in a total of 995 non-intrusions). The approach’s
precision is considerable (79%) and its accuracy is high (94%). Observing Table 4,
the most relevant alerts (very high and critical) represent approximately one third of
all alerts; these should be the ones first deserving attention on behalf of the security
staff, instead of wasting time checking the remaining alerts (two thirds of all alerts),
given that they present smaller impact. Finally, we measured an average overhead of
20% on user workload response time due to running the DIDS detection algorithms.

Table 3. Experimental results for the generated alerts (absolute values)
True user actions # intruder actions #TP #FP #TN #FN

1020 200 177 48 972 23

Table 4. Number of generated alerts per risk exposure measure
Very Low Low High Very High Critical Total Number of Alerts

36 50 59 49 31 225

Fig. 3. True positive and false positive rates, precision and accuracy

4 Related Work
In [1], database transactions are defined by directed graphs describing the SQL com-
mand types used for malicious data access detection. This approach cannot handle ad
hoc queries and works at the coarse-grained transaction level as opposed to a fine-
grained query level. A Role Based Access Control mechanism for DIDS was pro-
posed by [3]. Data mining techniques are used, namely classification and clustering,
against SQL instructions stored in database audit files to deduce role profiles of nor-
mal user behavior. A limitation of this approach is that it cannot extract correlation
among queries in transactions. Moreover, since this solution is role-based, it works at
a higher coarse-grained level than the user-based profiling in our approach. Detecting
attacks by comparison, summarizing SQL statements into compact access patterns
named as fingerprints, is the focus of [5]. Profiling the data accessed by users to try to
determine their intent is an approach used in [6], using statistical learning algorithms.
They argue that analyzing what the user is looking for (i.e., what data) instead of ana-
lyzing how s/he is looking for it (i.e., which SQL expressions), is more efficient for
anomaly detection. In our paper, we integrate both these views. Data correlation using
data mining or machine learning techniques is used in [2, 7, 8, 10].

5 Conclusions and Future Work
We have pointed out issues involving ID in web-access DWs and proposed a specific
DIDS for these environments. Our DIDS works transparently between user applica-
tions and the database server as an extension of the DBMS itself. The SQL-like rule-
base allows extending DBMS data access policies and covers an extremely wide
range of intrusion attacks. Risk exposure assessment is used for ranking and prioritiz-
ing the generated intrusion alerts, presenting clear advantages when compared with
correlation techniques. Experimental results show our approach achieves high effi-
ciency and accuracy for the tested setup. As future work, we intend to test our ap-
proach in real-world DWs, namely in cloud environments.

References
1. Fonseca, J., Vieira, M., and Madeira, H., “Online Detection of Malicious Data Access Us-

ing DBMS Auditing”, ACM Symposium on Applied Computing (SAC), 2008.
2. Hu, Y., and Panda, B., “A Data Mining Approach for Database Intrusion Detection”, ACM

Symposium on Applied Computing (SAC), 2004.
3. Kamra, A., Terzi, E., and Bertino, E., “Detecting Anomalous Access Patterns in Relational

Databases”, Springer VLDB Journal, 17, 2008.
4. Kimball, R. and Ross, M. The Data Warehouse Toolkit. 2nd Ed, Wiley & Sons, Inc., 2002.
5. Lee, S. Y., Low, W. L., and Wong, P. Y., “Learning Fingerprints for a Database Intrusion

Detection System”, European Symp. on Research in Computer Security (ESORICS), 2002.
6. Mathew, S., Petropoulos, M., Ngo, H. Q., and Upadhyaya, S., “A Data-Centric Approach

to Insider Attack Detection in Database Systems”, Recent Advances in Intrusion Detection
(RAID), 2010.

7. Pietraszek, T., “Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection”, Recent Advances in Intrusion Detection (RAID), 2004.

8. Srivastava, A., Sural, S., and Majumdar, A. K., “Database Intrusion Detection using
Weighted Sequence Mining”, Journal of Computers, Vol. I, No. 4, 2006.

9. Treinen, J. J., and Thurimella, R., “A Framework for the Application of Association Rule
Mining in Large Intrusion Detection Infrastructures”, (RAID), 2006.

10. Valdes, A., and Skinner, K., “Probabilistic Alert Correlation”, (RAID), 2001.
11. Transaction Processing Council, TPC Decision Support Benchmark H, www.tpc.org/tpch.

