
Monitoring UNICORE jobs executed on
Desktop Grid resources

Jozsef Kovacs
MTA SZTAKI

Budapest, Hungary
smith@sztaki.hu

Filipe Araujo, Serhiy Boychenko
CISUC

Dept. of Informatics Engineering
University of Coimbra, Portugal

filipius@dei.uc.pt, serhiy@student.dei.uc.pt

Matthias Keller
University of Padeborn

Padeborn, Germany
mkeller@uni-paderborn.de

Andre Brinkmann
JGU Mainz

Mainz, Germany
brinkman@uni-mainz.de

Abstract—
The EDGI project builds a federation of Desktop Grid sites,

which provide volunteer and institutional compute resources.
EDGI offers these resources to gLite, ARC, and UNICORE user
communities. The jobs can be directly bridged to the Desktop
Grids via the standard gLite, ARC, or UNICORE interfaces.
The paper focuses on the UNICORE side, especially on the
monitoring aspect. A bridging mechanism has been implemented
in a modified UNICORE computing element to forward jobs
towards the Desktop Grid servers. This component is part of
the EDGI infrastructure, where all the bridge-related compo-
nents and resources are continuously monitored by a central
monitoring system. The monitoring system provides information
about the traffic among the sites in the infrastructure. The paper
gives a short overview of the EDGI infrastructure, especially
the monitoring system and introduces the technical details about
how the monitoring is integrated and supported by the modified
UNICORE computing element. The introduced solution is part of
the EMI software stack to make it easily accessible for UNICORE
infrastructure providers.

I. INTRODUCTION

The European Grid Infrastructure (EGI) creates and pro-
vides an eScience infrastructure for European research com-
munities. Those communities, reaching from high energy
physics to humanities, can choose from different grid tech-
nologies to execute their computations: Grids of cluster
computers, like the German D-Grid, supercomputers, like
the Distributed European Infrastructure for Supercomputing
Applications (DEISA), or desktop grids consolidated in the
International Desktop Grid Federation (IDGF). Each of the
technologies has different properties concerning access lim-
itations, amount and types of available resources, and pri-
vacy properties. UNICORE [1] supports both clusters and
supercomputers, which are also known as service grids (SGs).
Extending UNICORE to support desktop grids (DGs) is the
final step to enable UNICORE to operate with all available grid
resources. This extension enables European eScience commu-
nities, especially UNICORE VOs, to access all available grid
resources from one middleware.

Desktop grids collect idle resources from loosely coupled
desktop computers. Each DG client only has to install a
small client software to run computations. DGs exploit that
compute capacities of modern computers are rarely exhausted
while performing daily tasks, like reading mails and websites

or writing texts. The DG client software now allows the
utilization of idle capacities for scientific computations. The
desktop computers form either an institutional/private/campus
or a voluntary/public desktop grid. The first scenario aggre-
gates idle resources out of computer pools of an university
or out of employees’ computers of a company. The second
scenario motivates the general public to install DG client
software on their home computers and therewith to donate
compute resources for science similar to popular projects like
SETI@home [2].

Since there is no high-speed network between the desktop
computers, only a subset of applications is applicable to them,
like parameter studies (PS). Parallel applications requiring a
high-speed interconnect should still be executed on service
grids. However, PS currently running on service grids can
be outsourced to DGs, leaving more available resources for
researchers in need of highly interconnected nodes. The power
of the DG is the potential to collect and utilize millions
of desktop computers owned by citizens. A public desktop
grid can collect hundreds of thousands or even millions of
computers from the volunteers worldwide, depending on how
appealing the supported applications are for the citizens. In
case of a campus desktop grid, the typical size is several
thousands since they are collected within an institute/company.

The aim of the European Desktop Grid Initiative (EDGI)
is to deploy desktop grid and cloud services for EGI user
communities that are heavy users of distributed computing
infrastructures (DCIs) and require an extremely large multi-
national e-infrastructure. In order to achieve this goal, software
components of ARC, gLite, UNICORE, BOINC, XWHEP,
ATTICS, and 3G Bridge have been integrated into a platform,
which can move jobs from service grids to desktop grids.
Therefore, EDGI extends ARC, gLite, and UNICORE grids
with gateways to volunteer and institutional DG systems.
EDGI also integrates a bridge between service grids and
Eucalyptus, OpenStack, and OpenNebula cloud environments
to be able to support QoS for the DG environments. This
enables EDGI to explore new provisioning models in order to
ensure a harmonized transition from service grids to desktop
grids. EDGI will also provide a workflow-oriented science
gateway to enable user communities to access the EDGI infras-
tructure more easily. The EDGI project established the IDGF

Fig. 1. The EDGI software infrastructure.

organization to coordinate DG-related activities in Europe,
both for solving technical issues as well as to attract volunteer
DG resource donors by disseminating results of the EDGI and
EGI projects. IDGF and EDGI collaborate with EGI, EMI,
NorduGrid, the UNICORE Forum, and interested NGIs.

The rest of the paper is organized as follows. Section 2
gives a short overview of the EDGI infrastructure. Section
3 describes the technical challenges of extending UNICORE
as a UNiform Interface to Computing REsources to support
multiple DGs. Section 4 describes the EDGI monitoring in-
frastructure. Finally, Section 5 concludes the work described
in this paper.

II. OVERVIEW OF THE EDGI INFRASTRUCTURE

EDGI is a project supported by the FP7 Capacities Pro-
gramme. This section will give a short overview of the
key components of the EDGI infrastructure [3], which are
developed and maintained in the project. The aim of the
infrastructure shown in Figure 1 is to provide a gateway to
desktop grid resources for those users who are familiar with
gLite, ARC, or UNICORE type service grids and do not intend
to move their environment to another type of grid. Adding
a huge number of desktop grid resources can significantly
increase the overall capacity of a service grid system.

Desktop grid systems can be built based on institutional
or volunteer resources. In the former case, an institution
(e.g., a university) is maintaining the resources, while in the
latter case, the resources are provided by private PC owners.
In DG systems, applications must be ported (i.e., modified
according to the requirements of a DG software like BOINC)
and validated (to make sure they do not cause any harm on
the resource) before being deployed on the server. After the
deployment, which includes registering the application with all
of its binaries, work units can be submitted. In DG systems,
volunteers trust the applications provided by the attached DG
when letting the application run on their PCs. To store the
validated applications centrally, a new Application Repository
(denoted “AR” in Figure 1) has been introduced. The most
important information related to an application are a detailed
description, binaries, example input files, supported service
grids and desktop grids. Users can also select an application
and submit it to a well-known service grid.

The specially prepared Modified Computing Element (MCE
inside gLite, ARC, or UNICORE in Figure 1) is responsible
for forwarding the job to a desktop grid. Before doing that,
it checks whether the application originates from the AR
(through the “Bridge IF”) and then whether the application is
supported (i.e., registered) on the target desktop grid. Access
to a desktop grid is provided by the Generic Grid-Grid
bridge (3G Bridge) [4] component (depicted in the middle
of Figure 1) running on the server of the target desktop grid
system. The 3G Bridge is responsible for inserting the job as a
work unit into the desktop grid system (BOINC or XtremWeb),
for keeping track of its progress, and for reporting the status
and results back to the service grid computing element.

The EDGI infrastructure is also able to utilize cloud com-
puting resources (shown in the upper-right corner of Figure 1)
by instantiating virtual machines to speed up computation
when actual resources are considered unable to provide enough
capacity. The dynamic scheduling of cloud resources is part
of the newly developed SpeQuloS [5] software, which resides
on the DG server. The Attic P2P file system [6] is used
to store huge input files for jobs executed many times to
decrease the load on the desktop grid server. Monitoring [7]
in EDGI collects information about service and desktop grid
components and provides a web-based portal to inspect the
utilization of the overall infrastructure.

III. IMPLEMENTATION

This section describes the extension of UNICORE to access
desktop grid resources. After starting with a brief UNICORE
description, the implementation is described and critical tech-
nical details are outlined (please see [8] for a more detailed
description).

A. UNICORE Ecosystem

The following section describes the distributed architecture
of UNICORE. UNICORE is divided into three layers: client,
service, and system. Users and their applications can access
UNICORE services via different client tools. The UNICORE
services, associated with the service layer, are loosely coupled
Java Web services. They have to be registered in at least one
well-known Service Registry. The concrete resources, clusters,
or storage systems are UNICORE’s target systems and are
part of the system layer. The services on top of these target
systems provide a system independent UNiform Interface to
(COmputing) REsources (UNICORE).

UNICORE/X is the core component of a UNICORE site. It
hosts the webservices for job and storage management. The
Target System Service (TSS) is created by a factory (TSF)
and provides access to native resources. It uses the backend
component, the eXtended Network Job Supervisor (XNJS),
sometimes referred to as the job management and execution
engine of UNICORE. For job submission a Job Management
Service is created and provided. The Job Management Service
(JMS) handles the control flow of a single job: submit, abort,
pause, and monitor. To execute these requests the XNJS is
used. The Storage Management Service (SMS) offers unified

EDGI /DGUNICORE

UI
(UCC,
URC,
HiLA)

UNICORE/X
JMS, TSS

3G-Bridge
(proxy for DG)

Application
Repository
(App-,DG-
Metadata)

UNICORE/X
SMS

upload/

download

stagin -out

stagin/out
& submit

query
apps

which appssubmit apps Monitoring
(Statistic)events

Fig. 2. Architecture and Interaction of UNICORE and EDGI components.

access to arbitrary storage systems. The main functionality
is implemented inside the backend XNJS component. Finally,
the File Transfer Service (FTS) enables concurrent file transfer
operations.

These services are known as UNICORE atomic services
(UAS) and are indirectly accessible through a Gateway that
ensures security. Information about available services are
stored in a special Registry Service.

The Gateway component is the single entry point to a UNI-
CORE site. It authenticates all incoming requests and forwards
them to their intended destination services. Replies are sent
back to the clients. To authenticate users and assign roles
to them, the Gateway queries the XUUDB, which is a user
database mapping user credentials (certificates, distinguished
names) to access privileges for each service and to a set of
attributes, like Unix logins, roles, or projects.

The Registry Service provides a central point of registration
for different services of a UNICORE installation. At least one
registry is needed to run an installation.

The eXtended Network Job Supervisor (XNJS), also called
UNICORE engine, contains most of the core functionalities
of a UNICORE site, which is used by most UASs. It uses the
Target System Interface (TSI), which enables a unified access
to target systems for resource and storage handling. The XNJS
handles the control flow of a job, the staging to and from local
storage systems and submitting to local resource management
systems. This is done through the TSI, which implements the
access to native management and storage systems.

The Target System Interface (TSI) implements access to
local systems. In a typical grid environment, a resource
management software (RMS) schedules a job and a shared
file system provides access to the working directory for the
job. Currently, two types of TSI implementations exists: a
java and a perl implementation. The java implementation is
mainly used for test purposes. It executes a shell process and
stores data locally. The perl implementation runs a set of perl
scripts with different implementations for accessing Torque,
SGE, OpenCCS, or PBS.

B. Architecture and Implementation

This section describes the changes required to enable
DG job submission. Figure 2 shows UNICORE and EDGI
components and their interactions. With the User Interface

(UI), a user can upload his input data to an SMS, query
a UNICORE/X server for available applications, and submit
jobs using those applications and input data. The UNICORE/X
server will download the input data from the SMS and submit
the job to the 3G Bridge, which forwards the job to the target
DG. After the job terminates on a DG client, the UNICORE/X
server downloads the output data from the DG and stores it
on the given target storage. Later, the user can download the
results from the target UNICORE storage.

Typically, an UNICORE/X site represents a single cluster.
The extension keeps this architecture by wrapping a single
DG installation. Therewith, querying each UNICORE/X for
application or resource information results in individual data
for each DG. Additionally to submit a job, a user can choose a
DG installation. Wrapping a target system is usually done by
implementing a TSI. We decided to implement a java based
TSI, which includes a full reimplementation of the TSI for
accessing remote components like the application repository
and the 3G Bridge.

The staging process is slightly different from a standard
UNICORE system, because data has to be transferred addition-
ally to and from the DG head node. The XNJS initiates through
the TSI a stage-in process. This creates a working directory
for the job and downloads every input file into this directory.
In contrast to the stage-out process, this stage-in process is
unchanged and works by using existing code supporting every
UNICORE file transfer protocol.

Afterwards, the XNJS triggers a job submission and the
new TSI transforms the UNICORE job request into a 3G
Bridge request. This request cannot contain input data, which
is probably hundreds of megabytes large. Thus, the 3G Bridge
expects an alternative way to fetch the input data, e.g., via
HTTP. The 3G Bridge is typically collocated with the DG
management software on the DG head node, so the 3G Bridge
moves these files to the correct place. To enable fetching
input files, the filespace-directory, in which UNICORE creates
working directories, is exposed via a HTTP-server. To inform
the 3G Bridge about the download location, the input file
location of the request is replaced by the corresponding remote
URL.

If nothing unexpected happens, the status will change from
PENDING to RUNNING and FINISHED. The new TSI ob-
serves this by polling the 3G Bridge. If FINISHED is reached,
the 3G Bridge provides a list of output data with HTTP URLs.
This data is downloaded to the job’s working directory. This
functionality is hooked in prior to UNICORE’s normal stage-
out process to enable a fully supported file transfer. Thus,
the XNJS believes the computation is not finished until the
output file has been downloaded from the remote HTTP server.
After every file transfer is finished, the job and its files are
deleted on the DG site, and the normal XNJS functionality
continues: stage-out after job computation. This implementa-
tion preserves UNICORE/X stage functionality and supports
different target and source storage systems. It also cleans the
3G Bridge or the DG head node up.

The Incarnation Database (IDB) is basically an xml-file

read by the XNJS. The IDB is used to describe native or local
properties of the target system, for which the UASs provide an
uniform interface. The IDB has roughly three parts describing
the kind of local resources, CPU architecture, cluster size,
the available applications, and specific execution environments
used by applications, e.g., MPI. The solution updates the
IDB at UNICORE/X start time with information from the
application repository, which relates to the currently accessed
DG. This can also be triggered from command line and can
be continuously updated if an interval is specified. This eases
the administrative effort, because newly available applications
for DGs are automatically available for UNICORE users.

The XMLLogReport class handles the EDGI internal mon-
itoring system (Section IV-E), but does not need to com-
municate with external components, because the monitoring
system follows a pull model for observed nodes (Section
IV-A). For this, a directory is exposed by an HTTP server.
The XMLLogReport class writes monitoring events in files,
handling the special XML format for the monitoring and
cleaning up outdated files.

URL-passthrough is a concept realized in EDGI for glite to
bypass local staging processes. Publicly available data can be
downloaded directly from the DG clients. Otherwise, the data
has to be downloaded to a UNICORE/X side, then to a DG
head node, and from there DG clients could fetch them. This
would result in a waste of bandwidth and potentially cause
network bottlenecks on the UNICORE/X site or the DG head
node. For bypassing, the URL has to stick to the following
format: bypass://[protocoll]://[host,path to file]:[md5]:[size].

IV. MONITORING

A. Overview

The EDGI monitoring system provides information about
EDGI resources, including historical and real time data of the
connected grid systems. In particular, besides the UNICORE
grids that we cover in this paper, monitoring must also inte-
grate the following technologies: BOINC, XtremWeb, gLite,
ARC and cloud technologies.

Figure 3 gives an overview of the components of the EDGI
monitoring system. It depicts two sites as large rectangles: the
central and a foreign site. The (single) central site is responsi-
ble for the following functions: 1) collecting, 2) storing and 3)
displaying data. To collect data from (multiple) remote sites
(1), the monitoring system uses “foreign probes”. To centrally
gather these data, it uses an additional probe at the central
site. (2) Then, we store the data that goes through the probes
in a local MySQL database and in a round-robin database
(RRD)1. This latter database keeps data with different degrees
of granularity depending on its age. For instance, it will keep
all data of the last day, but it will use increasing levels of
consolidation (thus loss) for weekly, monthly and yearly views.
(3) To display data from the databases, we currently use a Java
Server Faces web site run by a GlassFish2 Application Server.

1http://www.mrtg.org/rrdtool/, visited on February 2nd 2012.
2http://glassfish.java.net/, visited on February 2nd 2012.

Any DG
site

ARC/
Unicore/
gLite site

Local
Filesystem

Local
Database

Foreign Site

Foreign
Probe

HTTP
Server

Other
Bridge &
SG sites

 Databases
(including
RRD)

Central Site

Central
Probe

Bridge site
Application

Server

Aggregator
Probe

Fig. 3. Modules and components of the monitoring environment.

B. The Data

We get data from several different resources. In some cases,
we need to query a BOINC or XtremWeb database, to get,
for example, the number of available cores, the number of
jobs that are running, or the number of FLOPs available. In
this case, we just extract and filter the data into a different
format: we periodically read from a MySQL database, write it
in XML, for later storage in an RRD database. For other grids,
we may have to produce data, based on job-related events, like
job submission, completion, or failure, to know exactly what
happened to each one of these jobs. This will enable us to
compute the overall number of jobs that finished successfully
or that failed, for instance. To have a better understanding of
this latter case, we illustrate in Table I a number of events that
two components of the EDGI infrastructure produce: the first
one is the modified Computing Element, which submits jobs
to the second one, the 3G Bridge, which finally submits jobs
to BOINC or XtremWeb for execution. As we can see from
the table, we can determine exactly what is happening to each
job.

C. XML Creation

To make the data available, we use XML files. In practice,
these serve as the glue that binds the monitoring system
together. We publish the XML files on the resources sides and
periodically download these files to the central site using the
HTTP protocol. The advantage of HTTP is that it completely
decouples communication between the foreign probes and
the central probe. System administrators must configure their
HTTP servers to enable the central probe to read the entire
list of files available in the directory. The names of the XML
files include the creation UNIX epoch. The central probe uses
these timestamps to keep track of the files it has already read. It
first reads the entire content of the directory, then determines
which files are new, and, finally, it downloads them one by

TABLE I
EVENTS OF INTEREST IN EDGI

Event Format
Modified Computing Element

Start dt=2010-01-06 13:30:30 event=job entry job id=xxxxxxxxxxxx application=yyyyyyyy in-
put grid name=zzzz

Status (Scheduled, Waiting, Finished, ...) dt=2010-01-06 13:30:30 event=job status job id=xxxxxxxxxxxx status=Running
Submission dt=2010-01-06 13:30:30 event=job submission bridge id=bridge URI job id=xxxxxxxxxxxx

job id bridge=zzzzzzzzzzzzzz status=Submitted
3G Bridge

Start dt=2010-01-06 13:30:30 event=job entry job id=zzzzzzzzzzzzzz application=yyyyyyyy
Status (Scheduled, Running, Finished) dt=2010-01-06 13:30:30 event=job status job id=zzzzzzzzzzz status=Running— Sched-

uled—Finished
Submission dt=2010-01-06 13:30:30 event=job submission job id=zzzzzzzzzzz job id dg=yyyyyyyy out-

put grid name=xw—boinc/xyz.com

one. For the sake of saving space, this scheme requires periodic
cleaning of XML files on the local sites. System administrators
can, e.g., use a cron daemon and file timestamps to regularly
clean old files.

To provide an idea of how do these files look like, we give
an example in Figure 4. This particular file contains events
regarding job submission to a 3G Bridge, from an MCE. For
convenience of the presentation, we split some job identifiers.

D. The Probe Concept

We run three sorts of probes: “foreign”, “aggregator” and
“central”. The foreign probe runs in the monitored sites, such
as BOINC, XtremWeb, 3G Bridge, etc.. The central probe is
common to all monitoring data paths. It receives data like
“80 cores” or “24 jobs” referring to some specific resource.
The aggregator probe keeps track of data that is still changing
across the different grids. For instance, if the 3G Bridge
submitted a job to BOINC, we must keep its identifier to
know when it finishes. The aggregator keeps track of the life
cycle of jobs and sends consolidated data to the central probe
using XML itself. In this example, when the job finishes,
the aggregator probe can add one to the number of jobs
that finished for that specific 3G Bridge, for that specific
application, and output this fact in the next XML file it writes.

We offer two mechanisms to publish the XML data: one of
them are “foreign probes”, the other are Java and C libraries
that developers can use in their source code. Usually these
probes search for specific text patterns in log files or run SQL
queries in databases to get data, e.g., job start, job finish,
or number of CPU cores. If users want to read data from
gLite resources, from BOINC, or from XtremWeb they should
install the appropriate probes. For instance, in BOINC and
XtremWeb, the main (but not single) goal of the probe is to
collect data regarding the desktop grid alone, e.g., the number
of running jobs, or the number of available CPU cores. In
the 3G Bridge, the metrics are slightly different, as we want
data regarding jobs that cross the bridge. Overall, we have
the probes for BOINC and XtremWeb, the gLite modified
Computing Element (MCE) probe, the 3G Bridge probe, the
aggregator probe and the central probe. The probes have
been developed in Java. Some of them work as stand-alone

<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<r e p o r t t imes t amp =”1328540459014”

t i m e z o n e =”GMT” v e r s i o n =”1.1”>
<m e t r i c d a t a>

<dt >2012−02−06 15:59:57 < / d t>
<even t>j o b e n t r y </ even t>
<j o b i d>h t t p s : / / g r i d 4 0 . l a l . i n2p3 . f r : 9 0 0 0 /

jw65o5NitPSFQPxhExvHgA
</ j o b i d>
<a p p l i c a t i o n >g u i n e a p i g−pp−1.1.1< / a p p l i c a t i o n >
<i n p u t g r i d n a m e>

g L i t e / demo . vo . edges−g r i d . eu
</ i n p u t g r i d n a m e>

</ m e t r i c d a t a>
<m e t r i c d a t a>

<dt >2012−02−06 15:59:59 < / d t>
<even t>j o b s u b m i s s i o n </ even t>
<j o b i d>h t t p s : / / g r i d 4 0 . l a l . i n2p3 . f r : 9 0 0 0 /

jw65o5NitPSFQPxhExvHgA
</ j o b i d>
<j o b i d b r i d g e>

ad956fa0−0c06−4d94−ba20−db01e6cc2e0f
</ j o b i d b r i d g e>
<s t a t u s >Submi t t ed </ s t a t u s >
<o u t p u t g r i d n a m e>

h t t p : / / xw . l r i . f r : 4322
</ o u t p u t g r i d n a m e>

</ m e t r i c d a t a>
<m e t r i c d a t a>

<dt >2012−02−06 16:00:12 < / d t>
<even t>j o b s t a t u s </ even t>
<j o b i d>h t t p s : / / g r i d 4 0 . l a l . i n2p3 . f r : 9 0 0 0 /

jw65o5NitPSFQPxhExvHgA
</ j o b i d>
<s t a t u s >Running </ s t a t u s >

</ m e t r i c d a t a>
</ r e p o r t >

Fig. 4. Example of an XML file generated by a probe

daemons, while others run under the control of a cron daemon.
This means that a system administrator must manually control
the former, while the latter reads a number of metrics and
sleeps until the end of the next period. Table II enumerates
which probes are daemons and which ones are not.

TABLE II
EXECUTION MODE OF THE PROBES

Probe Daemon/Cron
BOINC Cron
XtremWeb Cron
MCE/gLite Cron
3G Bridge Cron
Aggregator Daemon
Central Probe Daemon

E. XML Libraries

Although the monitoring probes still run in an important
fraction of the EDGI infrastructure, they have important dis-
advantages, because they need complex cron daemon con-
figurations and must run in different systems. Additionally,
they require hard to maintain rpm and debian packages. Since
the standard in EDGI monitoring is, in fact, settled by the
format of XML files, one alternative to run previously prepared
probes is to make the grid resources write the appropriate
XML themselves. We started to change this with the ARC
middleware. Despite producing the same XML output as the
monitoring probes, ARC uses its own code to get a similar
result. This makes monitoring simpler and more robust.

With UNICORE, we took the ARC model further ahead. We
created a Java library that the UNICORE developers hooked
to their code. This library allows UNICORE to directly call
Java methods whenever events of interest happen, e.g., a new
job is submitted to the 3G Bridge. In this way, neither we
depend on external processes, nor we force grid developers to
learn the internal details of the monitoring format.

The core of this library is the XMLLogReport class.
The library also contains a few helper classes, namely the
ReportEntry and the OutputThread. The former rep-
resents the data, while the latter, which extends the class
Thread, periodically outputs the new data into XML (each 10
minutes by default), while deleting the old files (one week old
by default). The XMLLogReport class contains the following
public methods:

• startReporting(). This method initiates the
OutputThread if it is not running yet.

• stopReporting(). Make the reporting thread finish
after the next reporting event.

• setReportsPath(). Set the file system path where
the thread should output the XML files to.

• setCleanupAge()/getCleanupAge(). Set or get
the age of files that should be deleted on cleanup.

• jobSubmission(). Report the submission of a job.
This data includes the identifier and the id of the job in
the 3G Bridge. This allows the monitoring system, more
precisely, the aggregator, to correlate all the identifiers of
the same job across the entire grid infrastructure.

• jobEntry(). This method serves to register the en-
trance of a new job in the UNICORE grid.

• jobChangeStatus(). This method should be called
when the infrastructure changed the status of some job
or when it became aware of job status change on some

other infrastructure.
• output(). Forces a report output. All the events that

were created by the previous methods are outputted to a
XML files upon invocation of this method.

• cleanup(). Deletes all files that are older than the
threshold defined in setCleanupAge() or older than
a default threshold if no other threshold has been set.

We also provided a main() method that uses the Java
library for the sake of testing it.

V. CONCLUSION

We have described the motivation for and the implementa-
tion of a UNICORE extension as well as the corresponding
monitoring environment, which directly supports desktop grids
from within this service grid middleware. The extension will
be integrated into the EMI environment. The stability of
the extensions is ensured by several unit tests and also by
EDGI’s work package to test the developed infrastructure.
Thus, an active cycle between test engineers and developers
is established.

Additional concurrent project efforts port a lot of application
to run on desktop grids, so that the UNICORE community can
choose from a rich set of applications. These new resources
will boost research, not only for those who use the additional
desktop grid resources, but also by leaving more capacity
for the rest of the users. In summary, the release quality,
the broad application spectrum, and newly available resources
make this extension a valuable contribution to the UNICORE
community.

ACKNOWLEDGMENTS

The research leading to these results is funded by the
European Union Seventh Framework Program (FP7/2007-
2013) under grant agreement no 261556.

REFERENCES

[1] A. Streit, P. Bala, A. Beck-Ratzka, K. Benedyczak et al., “Unicore 6
- recent and future advancements,” Berichte des Forschungszentrums
Jülich, vol. 65, 2010.

[2] D. Anderson, “Boinc: A system for public resource computing and
storage.” in Proceedings of the 5th IEEE/ACM International GRID
Workshop, Pittsburgh, USA, 2004, pp. 1–7.

[3] P. Kacsuk, J. Kovacs, Z. Farkas, A. Marosi, and Z. Balaton, “Towards
a powerful european dci based on desktop grids,” Journal of Grid
Computing, vol. 9, pp. 219–239, 2011.

[4] Z. Farkas, P. Kacsuk, Z. Balaton, and G. Gombás, “Interoperability of
boinc and egee,” Future Generation Computer Systems, vol. 26, no. 8,
pp. 1092 – 1103, 2010.

[5] S. Delamare, G. Fedak, D. Kondo, and O. Lodygensky, “Hybrid dis-
tributed computing infrastructure experiments in grid5000: Supporting
qos in desktop grids with cloud resources,” in Proceedings of the Grid500
Spring School, 2011.

[6] I. Kelley and I. Taylor, “Bridging the data management gap between
service and desktop grids,” Data Management, pp. 13–26, 2008.

[7] F. Araujo, D. Santiago, D. Ferreira, J. Farinha, L. M. Silva, P. Domingues,
E. Urbah, O. Lodygensky, A. Marosi, G. Gombas, Z. Balaton, Z. Farkas,
and P. Kacsuk, “Monitoring the edges project infrastructure,” in Proceed-
ings of the 3rd Workshop on Desktop Grids and Volunteer Computing
Systems (PCGrid), Rome, Italy, May 2009.

[8] M. Keller, J. Kovacs, and A. Brinkmann, “Desktop grids opening up to
unicore,” in Proceedings of the UNICORE Summit, Torun, Poland, 2011,
pp. 67–76.

