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Abstract
Sparse matrix-vector multiplication dominates the perfor-
mance of many scientific and industrial problems. For exam-
ple, iterative methods for solving linear systems rely on the
performance of this critical operation. The particular case
of binary matrices shows up in many important areas of
computing, such as graph theory and cryptography. Unfortu-
nately, irregular memory access patterns cause poor memory
throughput, slowing down this operation.

We transform the matrix into a straight-line program that
takes full advantage of the instruction cache. The regular
loop-less pattern of the program minimizes cache misses,
thus decreasing the latency for most instructions. We focus
on the widely used x86 64 architecture and on binary matri-
ces, to explore several possible tradeoffs regarding memory
access policies and code size. When compared to a Com-
pressed Row Storage (CRS) implementation, we obtain a
20% performance improvement in a binary sparse matrix
with 5426753 rows and weight 370909586.

Keywords x86 64, number field sieve, sparse matrix-vector
multiplication

1. Introduction
Many problems in areas such as cryptography, graph the-
ory and pattern recognition [1, 20, 27] can be modeled as
linear algebra problems. Solving those problems often in-
volves large numbers of sparse matrix-vector multiplications
(SMVM), one of the most fundamental operations in numer-
ical linear algebra. For instance, the Lanczos [18] and Con-
jugate Gradient [11] methods to solve linear systems rely
heavily on the speed of this operation, which may account
for as much as 90% of total runtime.

The particular case of binary sparse matrices is also
widely used in practice, including for cryptanalysis [1, 8,
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31]. Integer factorization algorithms, such as the quadratic
sieve [23] and the number field sieve [19], are able to find
factors of large integers, after computing solutions to a lin-
ear system of the form Ax = 0, where A is a very large
binary matrix. For large n × n matrices, the Block Lanc-
zos [21] and Block Wiedemann [6], which require O(n)
matrix-vector multiplications, are the most popular algo-
rithms. In a recent factorization record [16, 17], the matrix
to solve was of dimension 192, 796, 550 × 192, 795, 550,
with 27, 797, 115, 920 nonzero entries, totalling about 105
GB in disk space. It was solved using the Block Wiedemann
method, which took roughly 119 days — 85% of it spent on
sparse matrix-vector multiplications.

The bottleneck in sparse matrix-vector multiplication
is often poor memory access locality, causing suboptimal
memory bandwidth [29]. Many different representations try
to push memory accesses closer together, to improve local-
ity [2, 5, 12, 25]. One common characteristic of most, if
not all, is that they only improve data cache accesses —
instruction cache remains largely unused.

However, in most modern CPUs, like Intel’s Core 2 and
i7 processor lines and AMD’s Phenom and Opteron proces-
sors, the instruction cache amounts to half of the total L1
cache. To explore this resource, we propose a machine code
representation of binary sparse matrices. Conversion cost
from common formats (e.g., Compressed Row Storage) to
our format is proportional to the number of nonzero entries
of the matrix. With the representation we use, we can keep
the L1 data cache almost exclusively for the input vector,
while keeping the matrix itself in the L1 instruction cache;
the output vector never resides in cache. Our focus in this
paper is on serial, or single-core, speed and not (yet) with
multi-core processor idiosyncrasies.

The approach we took in our work was to write a compiler
to convert the sparse matrix, which represents an Fn

2 → Fn
2

linear map, into x86 64 machine code implementing that
very map. This has a number of advantages:

Full L1 cache usage Regardless of the quality of the rep-
resentation and ordering used for sparse matrices, they are
still using only about 1/2 of the available L1 cache, the
fastest memory available in the processor. Additionally, the
matrix’s nonzero entries replace entries of the input vector
from L1 cache, despite their single time utilization.
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Figure 1. Core 2 memory layout.

Flexibility There is a large volume of published research
on reordering, partitioning, and blocking techniques (e.g., [7,
13, 24]). Most of these improvements require changing the
representation of the matrix, which also requires new code
to use it. Using a linear map program allows us to freely
integrate such techniques without having to change any extra
matrix handling functionality. For example, a matrix in the
Compressed Sparse Row (CSR) format [2], when converted
to, say, Compressed Sparse Block (CSB) [5] format, will
require new code to deal with the new representation. When
one adds a new technique to our code representation, only
the matrix compiler has to change, while everything else
(i.e., the code that performs the matrix-vector multiplication)
remains unchanged.

Implicit prefetching Modern processors have very elab-
orate predictive mechanisms to avoid pipeline stalls due
to branching mispredictions, false dependencies, and so
on [10]. As a result, processors load and decode instructions
much before they actually execute them. Our representation
is able to take advantage of this quite aggressive instruction
prefetching.

We organize the rest of this paper as follows. Section 2
describes the architecture we targeted with our techniques.
Section 3 describes our techniques to convert a CSR matrix
into code. Finally, Section 4 describes and explains our ex-
perimental results, and Section 5 discusses the results and
concludes with future directions.

2. Target architecture
In this paper, we target the x86 64 architecture, as seen in
the Intel Core 2 processor line. For this reason, we must start
by overviewing the precise architecture we target. Neverthe-
less, we must emphasize that our idea is not restricted to
this specific architecture. To create machine code for other
microarchitectures available today, such as the Core i7 and
AMD’s K10, we just need to slightly tune the compiler.

2.1 Pipeline
When executing long runs of non-branching code, there are
three things that influence speed: instruction fetch and de-
coding, instruction dispatch into execution units, and mem-
ory bandwidth. The Core 2 pipeline can be divided in several
main stages: instruction fetching, decoding, dispatching, ex-
ecution and retirement.

The instruction fetching in the Core 2 has a total band-
width of 16 bytes per clock, after which it passes through the
predecoder, a mechanism that detects where instructions be-
gin (due to the variable-sized instruction set). The combined
throughput of the fetching and predecoding is 16 bytes or
6 instructions, whichever is the smallest [10]. The optimal
instruction length is roughly 3 bytes for the best possible
fetching throughput.

The instruction decoder in the Core 2 is able to convert
up to 32 bytes of code, stored in the decoder queue from the
predecoder, into at most 7 µops per cycle. µops are RISC-
style instructions actually ran by the execution units in the
next stages.

After decoding, instructions are renamed, if needed, and
sent to a reservation station. Here, the Core 2 implements
dynamic scheduling through Tomasulo’s algorithm [26] with
5 execution units: 3 ALUs, 1 memory read unit, 1 ALU for
address calculation, and 1 memory write unit. Thus, at any
given time, it is possible to execute at most 6 µops per cycle,
one less than the decoder is able to output.

2.2 Memory system
The Core 2, like most recent CPUs, spends most of its
area on caches. It sports 2 32KB 8-way set associative L1
caches, exclusive to each core, and a larger (usually) 4MB
16-way set associative L2 cache, shared between two cores
(cf. Figure 1). Each access to the L1 caches costs 3 cycles,
while the L2 has a latency of 15 cycles. In each cycle, the L1
caches are able to pull 32 bytes from the L2 caches.

There are 3 hardware L1 prefetchers (per core) and 2 L2
prefetchers in the Core 2. The 3 L1 prefetchers are divided
into 1 instruction prefetcher and 2 data prefetchers. These
prefetchers detect access patterns, and preload the caches
with data likely to be used.

3. Fast sparse matrix-vector multiplication
In our struggle to decrease the running time to solve sparse
matrices created from integer factorization algorithms, we



void spmv(const u32 *colind , const u32 *rowidx ,

const u32 nrows , const u32 *in , u32 *out)

{

u32 i,j;

u32 *ptr = colind;

for(i=0; i < nrows; ++i)

{

const u32 ncols = rowidx[i+1]- rowidx[i

];

u32 s = 0;

for(j=0; j < ncols; ++j)

s ^= in[* colind ++];

out[i] = s;

}

}

Figure 2. A typical CRS matrix-vector multiplication im-
plementation.

found two main options: the Block Lanczos and the Block
Wiedemann algorithms. The Lanczos approach has an heuris-
tic cost of n

b−0.73 matrix-vector multiplications, b being
the blocking factor, and Wiedemann has a running time
of 3(nb + n

b ). Lanczos, however, requires that input ma-
trices be symmetric — this, in turn, forces the use of n

b−0.73
matrix-vector multiplications and n

b−0.73 transposed matrix-
vector multiplications. The Wiedemann approach is also dis-
tributable to several different sites for a key step [17], which
makes it more desirable for very large jobs.

3.1 Sparse matrix-vector multiplication
A common way to represent (binary) sparse matrices is
Compressed Row Storage (CRS) [2]. In this representation,
there are 3 arrays. One array contains the indexes for the
columns of all nonzero entries in succession. Another one
contains the starting positions of each row in the previous ar-
ray. The last one contains the values of the nonzero entries;
in a binary matrix, this array is not required. Figure 2 ex-
hibits a simple implementation of sparse matrix-vector mul-
tiplication, with the binary matrix in CRS representation.

The major problem with CRS and sparse matrix-vector
multiplication is memory bandwidth. Since accesses to the
in vector (cf. Figure 2) are potentially highly irregular,
memory latency is often the bottleneck [29]. Many tech-
niques have been proposed over the years, most notably reg-
ister blocking, cache blocking, software pipelining, software
prefetching, TLB caching, among others [12, 14, 15, 22, 28,
30].

Consider the following 5× 5 matrix

A =


0 0 1 0 1
1 0 1 1 0
0 0 0 0 1
1 0 0 0 0
0 1 1 1 0

 , (1)

implementing the linear map

A


a
b
c
d
e

 =


c+ e

a+ c+ d
e
a

b+ c+ d

 (2)

One could simply convert the mapping into, say, C code,
and let an optimizing compiler choose the best combination
of instructions and memory access patterns. As matrices
grow, however, compilers are unable to generate that volume
of code in reasonable time (cf. [3]). As such, we do the
optimization and compilation of the matrix ourselves. This
section describes the various approaches and improvements
possible on the target (x86 64) architecture; knowledge of
this instruction set is assumed.

3.2 Base approach
Our initial approach converts this mapping to x86 64 code
in the most straightforward way possible: simply convert
the arithmetic of a normal CRS matrix-vector multiplica-
tion (cf. Figure 2) to an actual straight-line function, callable
from most native compiled languages such as C or FOR-
TRAN. We use 32-bit registers whenever possible, to avoid
the REX.W prefix necessary for full 64-bit operations, which
would cost 1 extra byte per instruction. Additionally, we use
the STOSD instruction, only 1 byte long, to store the result of
each row into the output vector.

For an n×nmatrix with ω nonzero entries, this approach
requires at most n + 6ω bytes of storage; the standard CRS
format with 32-bit indices requires 4n + 4ω bytes. Figure 3
shows the x86 64 assembly code1 obtained by our initial
approach.

3.3 Reducing code size
Once we have the initial compiler, the first observation we
made was that there are three different instruction sizes
for different displacements. When there is no displace-
ment (e.g., MOV EAX, [RSI]), the instruction requires 2
bytes. When the displacement is between −128 and 127
bytes (e.g., MOV EAX, [RSI+32]), the instruction requires
3 bytes. Finally, for general 32-bit displacements (e.g., MOV
EAX, [RSI+12345678]), the instruction requires 6 bytes.
In Figure 3, for instance, all but one access are 3 bytes, since
A is small enough that the vector fits perfectly within 256
bytes.

Our first improvement is to take advantage of the smaller
encoding for [−128; 127] displacements and try to create as
many of them as possible. We do this by moving the RSI

register forward whenever there is a “burst” of nonzero en-
tries close together. Moving RSI costs 6 bytes — the savings
are 3 bytes per entry. Thus, we only advance RSI when there

1 Our converter outputs actual machine code, not assembly mnemonics; we
show instead the commented assembly code for readability purposes.



; void spvm(u32 *out , u32 *in)

; RSI contains source , RSI destination

; Row 1

mov eax , [rsi + 8] ; 8B 46 08

xor eax , [rsi + 16] ; 33 46 10

stosd ; AB

; Row 2

mov eax , [rsi] ; 8B 06

xor eax , [rsi + 8] ; 33 46 08

xor eax , [rsi + 12] ; 33 46 0C

stosd ; AB

; Row 3

mov eax , [rsi + 16] ; 8B 46 10

stosd ; AB

; Row 4

mov eax , [rsi] ; 8B 06

stosd ; AB

; Row 5

mov eax , [rsi + 4] ; 8B 46 04

xor eax , [rsi + 8] ; 33 46 08

xor eax , [rsi + 12] ; 33 46 0C

stosd ; AB

retn ; C3

Figure 3. Straight-line program implementing the linear
mapping represented by matrix A.

are at least 3 nonzero entries in a 256-byte interval. Since we
are changing RSI, we must reset to its original value in the
beginning of each row: we do this using the PUSH and POP

instructions, each costing 1 byte to store and recover RSI,
respectively.

In the worst case, this improvement does not improve
anything at all, leaving the code size at n + 6ω bytes. In
the best case, where every nonzero entry is in a 256-byte
neighborhood, we get 3n+ 3ω + 6

64ω bytes.

3.4 Register blocking
Register blocking is a technique already known from sparse
linear algebra optimization [12], that we employ quite liter-
ally. Instead of using simply one register and traversing the
matrix row by row, we use a number of registers B and tra-
verse the matrix B rows at a time. Whenever two elements
of vector x are accessed by two or more rows in the same
register block, only one memory load is issued. This saves
memory bandwidth, decreases code size, and increases in-
struction level parallelism. Plus, unlike register blocking in
usual data formats (e.g., [12]), code register blocking does
not add fill overhead due to storing extra 0s to make the
blocks dense.

We have implemented 2 variants of register blocking: one
with block size 4 and another with block size 12. The former
only uses the registers available in the IA-32 instruction set
(EAX, EBX, ECX, and EDX — ESI and EDI are used for ad-
dressing, ESP for stack and EBP as a temporary variable),
guaranteeing that no REX prefix bytes are used. The latter
uses all available general-purpose registers in the x86 64 ar-
chitecture (RAX–R15 except {RSI,RDI,RBP}), minus 4 reg-

; First nonzero column

mov eax , [rsi + 8] ; 8B 46 08

mov ebx , [rsi] ; 8B 1E

mov ecx , [rsi + 16] ; 8B 4E 10

mov edx , ebx ; 89 DA

; Second nonzero column

xor eax , [rsi + 16] ; 33 46 10

xor ebx , [rsi + 8] ; 33 5E 08

; Third nonzero column

xor ebx , [rsi + 12] ; 33 5E 0C

; Store block

stosd ; AB

xchg eax , ebx ; 93

stosd ; AB

xchg eax , ecx ; 91

stosd ; AB

xchg eax , edx ; 92

stosd ; AB

; Row 5 --- part of a new block

mov eax , [rsi + 4] ; 8B 46 04

xor eax , [rsi + 8] ; 33 46 08

xor eax , [rsi + 12] ; 33 46 0C

stosd ; AB

retn ; C3

Figure 4. Straight-line program for A using basic register
blocking (B = 4).

isters used for the vector addresses, stack, and a temporary
variable. Figure 4 shows the assembly code for matrix A
with register blocking (B = 4).

To store row results, we still prefer to use the STOSD

instruction. Since STOSD has the implicit argument EAX for
the value to save, we use the XCHG instruction, only 1 byte
long, to load values onto EAX, and STOSD to save them to the
output vector (cf. Figure 4). Using XCHG coupled with STOSD
seems to be the shortest possible method to store the output
vector elements, with every other approach being at least 3
bytes long.

In the worst case, the B = 4 variant (applied to the base
method of Section 3.2) uses 2n+ 6ω bytes, and the B = 13
variant uses 2·4+3·9

13 n+ 4·6+9·7
13 ω bytes. In the best case, i.e.,

when every row has the same entries, we get 4n+ 3n+ 2ω
and 4n + 3n + 2·4+3·9

13 ω bytes, for B = 4 and B = 13
respectively.

3.5 Sorted register blocking
From the example in Figure 4, it is easy to see that the basic
register blocking method of Section 3.4 is not performing
optimally. There are needless duplicate loads of both [RSI

+ 16] and [RSI + 8], because their column indexes do not
coincide.

Instead of blindingly converting the matrix operations
as they appear on its CRS representation, one can instead
sort the order of operations by memory accesses. Since the
CRS rows are sorted to begin with, this is a very fast merge
operation. This has no negative influence on code size, as
it is simply a reordering of instructions, but has several



;

mov ebx , [rsi] ; 8B 1E

mov edx , ebx ; 89 DA

mov eax , [rsi + 8] ; 8B 46 08

xor ebx , eax ; 31 C3

xor ebx , [rsi + 12] ; 33 5E 0C

mov ecx , [rsi + 16] ; 8B 4E 10

xor eax , ecx ; 31 C8

; Store

stosd ; AB

xchg eax , ebx ; 93

stosd ; AB

xchg eax , ecx ; 91

stosd ; AB

xchg eax , edx ; 92

stosd ; AB

; Row 5 --- part of new block

mov eax , [rsi + 4] ; 8B 46 04

xor eax , [rsi + 8] ; 33 46 08

xor eax , [rsi + 12] ; 33 46 0C

stosd ; AB

retn ; C3

Figure 5. Straight-line program for A using sorted register
blocking (B = 4).

speed advantages: memory accesses become optimal (up to
block size), and there is an increased likelihood of existing
a neighborhood of nonzero entries less than 256 bytes apart.
Figure 5 shows the assembly listing for the sorted register
blocking output of matrix A.

3.6 Uncached stores
Up until now, we have been employing the STOSD instruction
to perform the memory stores of the result of each row’s in-
ner product with the input vector. STOSD, however, brings the
whole cache line corresponding to that memory location to
cache and modifies it, possibly evicting input vector values
from cache.

To avoid cache pollution, we employ the SSE2 instruc-
tion MOVNTI. This instruction is one of several non-temporal
store operations provided by the SSE2 instruction set. Non-
temporal instructions give a hint to the processor that the
stored data is not going to be used anytime soon and there-
fore do not need to be brought to cache memory. When ap-
plied to the base code from Section 3.2, this tweak slightly
increases the code size to at most 4n+ 6

64n+6ω bytes. Fig-
ure 6 displays the code for A when using MOVNTI.

3.7 Extended register blocking
In Section 3.4, we have introduced register blocking to im-
prove memory locality and software parallelism of the mul-
tiplication, limiting ourselves to general-purpose registers.
This need not be so: using the SSE4.1 instruction set, one
can use the PINSRD and PEXTRQ instructions to effectively
turn the 16 XMM registers into an addressable fast memory
space to store a register block. This increases the register

; Row 1

mov eax , [rsi + 8] ; 8B 46 08

xor eax , [rsi + 16] ; 33 46 10

movnti [edi], eax ; 0F C3 07

; Row 2

mov eax , [rsi] ; 8B 06

xor eax , [rsi + 8] ; 33 46 08

xor eax , [rsi + 12] ; 33 46 0C

movnti [edi + 4], eax ; 0F C3 47 04

; Row 3

mov eax , [rsi + 16] ; 8B 46 10

movnti [edi + 8], eax ; 0F C3 47 08

; Row 4

mov eax , [rsi] ; 8B 06

movnti [edi + 12], eax ; 0F C3 47 0C

; Row 5

mov eax , [rsi + 4] ; 8B 46 04

xor eax , [rsi + 8] ; 33 46 08

xor eax , [rsi + 12] ; 33 46 0C

movnti [edi + 16], eax ; 0F C3 47 10

retn ; C3

Figure 6. Straight-line program implementing the linear
mapping represented by matrix A, with non-temporal stores.

block size by 64, to a maximum of 76 possible blocks. Fig-
ure 7 illustrates the workings of extended register blocking.

This method has, however, a big disadvantage: code size.
While (general-purpose) register blocking has no overhead
and often even saves space, extended register blocking re-
quires 12 bytes per register block access, which is unaccept-
able. Applying this technique to the base case of Section 3.2
would put the best case scenario of the code size at n+18ω,
and the worst case at n + 21ω. Thus, we do not use this
method for large matrices. In comparison, using the stack
memory to store temporary elements would cost n+ 12ω.

3.8 Memory prefetching
When one converts a sparse matrix into code, it becomes
mostly unnecessary to try and prefetch the matrix itself —
the processor’s hardware prefetcher (cf. Section 2) already
takes care of code prefetching. There is, however, still room
for software prefetching when it comes to the input vector.
In particular, since we have exact knowledge of all memory
accesses, we are able to prefetch values that are far away, and
to prefetch the first value of a new row before the current
one is finished. The prefetching instructions (PREFETCHT0
for Intel, PREFETCH for AMD) are not short, however: each
prefetch instruction costs about 7 bytes, so it is used sparsely.

3.9 Summary
We have studied several possible combinations of x86 64

operations previously in this section. Table 1 summarizes
their relative advantages and disadvantages, in terms of code
size. To recap, n is the number of rows in the matrix, and ω
is its weight. All sizes after the initial case from Section 3.2
are relative to each technique implemented individually on
top of this base case, not cumulatively.



; Suppose we want to access register number 33

of the register block

pextrd eax , xmm8 , 1 ; 33 div 4, 33 mod 4

xor eax , [esi + 40]

pinsrd xmm8 , eax , 1 ; Insert back into register

block

XMM0 b3 b2 b1 b0
XMM1 b7 b6 b5 b4
XMM2 b11 b10 b9 b8
XMM3 b15 b14 b13 b12
XMM4 b19 b18 b17 b16
XMM5 b23 b22 b21 b20
XMM6 b27 b26 b25 b24
XMM7 b31 b30 b29 b28
XMM8 b35 b34 b33 b32
XMM9 b39 b38 b37 b36
XMM10 b43 b42 b41 b40
XMM11 b47 b46 b45 b44
XMM12 b51 b50 b49 b48
XMM13 b55 b54 b53 b52
XMM14 b59 b58 b57 b56
XMM15 b63 b62 b61 b60

Figure 7. How to use the XMM register set as an array of
addressable 32-bit integers.

Method(s) Best case Worst case
CSR 4n+ 4ω 4n+ 4ω

Section 3.2 n+ 6ω n+ 6ω
Section 3.3 3n+ 3.09ω 5n+ 6ω

Section 3.4 B = 4 4n+ 2n+ 2ω 2n+ 6ω
Section 3.4 B = 13 4n+ 2.69n+ 2ω 2.69n+ 6.69ω
Section 3.5B = 4 4n+ 2n+ 2ω 2n+ 6ω

Section 3.5B = 13 4n+ 2.69n+ 2ω 2.69n+ 6.69ω
Section 3.6 4.09n+ 6ω 4.09n+ 6ω
Section 3.7 n+ 18ω n+ 21ω

Table 1. Code sizes of the various approaches described in
Section 3.

4. Results and discussion
To benchmark our code, we used two different matrices
obtained from number field sieve factorization jobs. The
first one, small.crs, resulting of a 265-bit Number Field
Sieve (NFS) factorization, is 150, 615 × 150, 802 in size
and 14, 599, 768 in nonzero entries. The second matrix,
large.crs, results from a 512-bit NFS factorization as
well, and is 5, 426, 753 × 5, 426, 928 with 370, 909, 586
nonzero entries. Due to size concerns, we did not test the
extended register blocking of Section 3.7, as we did not
have enough memory. The test machine was an Intel Core 2
Duo E8400, using DDR2 RAM running at 800 MHz (CL5).

We test our CRS implementation in F2 against 5 combi-
nations of the techniques of Section 3:

Method 1 The base method of Section 3.2;

Method 2 Method 1, plus RSI movement;

Method 3 Method 2, plus B = 4 sorted register blocking;

Method 4 Method 2, plus B = 12 sorted register blocking;

Method 5 Method 4, plus non-temporal stores.

Our first tests concern our key performance figures: time
(measured in clock cycles) and code size. Code size is mea-
sured in bytes per nonzero matrix entry. Table 2 lists those
performance figures when measured for the small.crs ma-
trix, roughly 45MB in size when stored in CRS format. In
this matrix, our code is always faster than the CRS im-
plementation, including when using the worst of our ap-
proaches, i.e., the base case of Section 3.2.

In the large.crs matrix, the situation is slightly differ-
ent, as shown in Table 3. This 1.5GB matrix puts far more
pressure into every part of the memory subsystem, and our
more naı̈ve implementations fall behind the CRS implemen-
tation. As our methods improve, so does the performance of
our code — register blocking reveals to be a real asset, even
when it increases the code size. It also worth to point out
that, while the register blocked code is indeed slightly larger,
it is made up of much smaller instructions than the naı̈ve (cf.
Figure 5) — in average, the register blocked code (with RSI

updates) generates 2 and 3 byte instructions, the optimal size
on the Core 2 architecture (cf Section 2.1). Further, it also
provided much more instruction level parallelism, by run-
ning several independent rows, allowing the execution units
to work while waiting for memory loads. Our best imple-
mentation runs in about 20% less cycles than CRS, despite
being 1.52× larger.

Another point of interest to us was the behavior of the
cache memory. To measure it, we employed the hardware
counters available in most common processors, and made
easily available to us by the PAPI library [4]. Figure 8 shows
the cache behavior of our best-behaving implementation,
and of the CRS stored implementation. The first thing we no-
ticed is how the CRS has nearly 0 instruction cache misses.
This is natural, since even an optimized CRS implementa-
tion will generally have a small enough loop to fit within
Core 2’s loopback buffer [10]. Our implementation has a rel-
atively small number of instruction cache misses, which is to
be expected due to the large code size. Its other (L1d and L2)
cache misses, however, are both lower than CRS; the total
sum of misses of our method saves over 150 million cache
misses overall, which results in its superior performance.

5. Conclusion
In this paper, we have studied the implications and conse-
quences of fully converting a binary sparse matrix to code.
Our method takes full advantage of the L1 instruction cache,
and sorted register blocking allied with non-temporal hints
and careful size-coding allowed us to produce straight-line



Method CRS Method 1 Method 2 Method 3 Method 4 Method 5
Clock cycles 60,430,464 51,368,463 51,153,390 46,285,497 45,591,255 44,175,024

Bytes/nonzero 4.0264 6.01392 5.71479 5.30643 5.61708 5.66502

Table 2. Speeds (in clock cycles) and bytes per nonzero entry for the small.crs matrix.

Method CRS Method 1 Method 2 Method 3 Method 4 Method 5
Clock cycles 17,841,138,813 18,960,412,932 18,898,653,474 16,471,466,667 14,371,353,612 14,318,379,171

Bytes/nonzero 4.0245 6.0146 5.88905 5.63507 6.09096 6.13851

Table 3. Speeds (in clock cycles) and bytes per nonzero entry for the large.crs matrix.
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Figure 8. Comparison of cache misses between the CRS
implementation and Method 5.

programs representing the same linear map in relatively
small space, and up to 20% superior performance.

While our focus was on the arithmetic of F2 matrices
for Block Wiedemann in integer factorization, our ideas and
methods have broader applications. Many matrices result-
ing from adjacency graphs and web mining. Some of those
matrices, although in principle belonging to the real num-
bers, only have small entries, say, in the set {0,1,-1}. One
can use our methods to convert such matrices to code, re-
placing the XOR instruction by FADD/FSUB or ADDPS/SUBPS
or ADDPD/SUBPD, and the MOV instruction by FLD/FST or
MOVAPS or MOVAPD. Most size considerations should remain
similar after this conversion.

Some questions have been still left unanswered. We have
yet only studied the performance of our code on the single-
core single-threaded scenario; since today’s machines have
several cores, this is a very interesting (and active!) research
direction.
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J. W. Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A.
Osvik, H. Te Riele, A. Timofeev, and P. Zimmermann. Factor-
ization of a 768-bit RSA modulus. In Proceedings of the 30th
annual conference on Advances in cryptology, CRYPTO’10,
pages 333–350, Berlin, Heidelberg, 2010. Springer-Verlag.

[17] T. Kleinjung, L. Nussbaum, and E. Thomé. Using a grid plat-
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