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Abstract. Defending programs against illegitimate use and tampering
has become both a field of study and a large industry. Code obfuscation
is one of several strategies to stop, or slow down, malicious attackers
from gaining knowledge about the internal workings of a program.
Binary code obfuscation tools often come in two (sometimes overlapping)
flavors. On the one hand there are “binary protectors”, tools outside of
the development chain that translate a compiled binary into another, less
intelligible one. On the other hand there are software development kits
that require a significant effort from the developer to ensure the program
is adequately obfuscated.
In this paper, we present obfuscation methods that are easily integrated
into the development chain of C++ programs, by using the compiler it-
self to perform the obfuscated code generation. This is accomplished by
using advanced C++ techniques, such as operator overloading, template
metaprogramming, expression templates, and more. We achieve obfus-
cated code featuring randomization, opaque predicates and data mask-
ing. We evaluate our obfuscating transformations in terms of potency,
resilience, stealth, and cost.

1 Introduction

Today, the Internet is the major channel for software distribution. However,
software available online may not only attracts legitimate users, but malicious
agents as well (e.g., pirates, competitors, etc). To fight these agents vendors
may resort to diverse mechanisms including legal suites, and technical measures.
Technical measures consist of transformations that render the code harder or
(ideally) impossible to reverse engineer. One particularly effective measure is to
move critical areas of code out of the reach of the attacker, by e.g. offloading
execution to a remote server. It is not, however, always possible to offload critical
bits of an application elsewhere, leading to alternative “white-box” techniques to
thwart analysis.

Obfuscation has been often used as such an anti-reverse engineering mea-
sure [10]. Formally, an obfuscating transform O is a function that takes in a
program P and outputs a program O(P ) with the same semantics, but somehow
“harder” to understand. Although general obfuscators cannot exist [5], secure



obfuscators can exist for several important assumptions and classes of func-
tions [6,20]. One widespread technique, used to thwart static analysis1 of the
output is to compress and encrypt a binary (“packing”), and append a decryption
stub that when executed, rebuilds the original code in memory. Many variations
of this idea have been developed and commercialized, but the rise of automated
“unpackers” has forced the defensive side to use more aggressive means.

Current protections employ advanced code transformation methods that irre-
versibly mutate the original code into a hard-to-understand representation. One
popular technique, “virtual machines” [32,23], converts actual binary code into
custom generated bytecode, interpreted at runtime. The original code is lost,
and an attacker is forced to reverse engineer the interpreter to understand the
bytecode. This is a tedious and mostly manual process (cf. [26]), which raises the
cost of reverse engineering. Code obfuscation may also have alternative positive
applications. It may be used to increase code diversity at little cost, lowering the
effectiveness of certain exploit techniques, cf. [24].

Obfuscators often come in two, sometimes overlapping, flavors: binary ob-
fuscators, which transform the executable directly oblivious to the higher-level
structures of the code, and source-based protectors, which rely on certain manu-
ally injected API calls and functions, that yield a protected binary. Both ap-
proaches have important disadvantages: binary obfuscation leaves significant
trace in the binary code, whereas source-based protectors require considerable
intervention. In this paper we strive for minimal developer intervention, while
also trying to minimize possible mismatches between the original and the ob-
fuscated program. To do this we resort to operator overloading and template
metaprogramming of the ubiquitous C++ language.

Our work yields an obfuscator that makes sole use of the C++ compiler,
and generates randomized obfuscated code using standard techniques, such as
opaque predicates and dead code generation, and also our own code expansion
technique. The results show that, albeit heavy on the compiler, our obfuscating
transforms increase the difficulty of reverse-engineering a program.

Section 2 describes the very basics of the feature we abuse to achieve our
goal, C++ template metaprogramming. Section 3 explains how to achieve ran-
domized algorithms within template metaprograms. Section 4 describes our main
obfuscating transforms that render regular into obfuscated code. Section 5 also
describes how to obfuscate data, data being both the values one is working on,
and static data such as integer constants and strings that may help an attacker.
We evaluate our work in Section 6, and conclude with Section 7.

2 C++ template metaprogramming

1 Static analysis refers to attempts to understand a program without running it, e.g.,
using a disassembler. When one is able to see the state of the program as it runs
via, say, a debugger, one is performing dynamic analysis.



template<int N>
struct Factorial {

static const int value = N * Factorial<N-1>::value;
};
template<>
struct Factorial<0> {

static const int value = 1;
};
// Factorial<5>::value == 120

Fig. 1. C++ metaprogram capable of computing the factorial function.

It was discovered during the C++ standardization effort that it is possible to
use the C++ template system to perform small computations [29]. It was later
shown that C++’s template system is Turing-complete [31].

The basic mechanism by which C++ templates can be programmed is tem-
plate specialization. The easiest way to describe it is by example. Consider
Fig. 1. The value of Factorial<N>::value is defined recursively by instantiat-
ing Factorial<N-1>, and by specializing the implementation of the case N = 0,
one avoids infinite recursion.

Template metaprogramming can also be used to implement higher-order
functions [2]. A simple example is a function that, taking a function f(x) and
g(x), returns f(g(x)). Fig. 2 illustrates this concept by creating a new function
by composing two arbitrary functions passed as parameters (e.g., the Factorial
function from Fig. 1).

template<template<int> class F, template<int> class G>
struct Compose {

template<int N>
struct apply {

static const int value = F<G<N>::value>::value;
};

};
template<int N>
using DoubleFactorial = Compose<Factorial, Factorial>::apply<N>;
// DoubleFactorial<3>::value == 720

Fig. 2. Metaprogram that returns the composition of two functions.

C++ template metaprogramming has since seen a myriad of practical uses.
Expression templates [30] allow the elimination of unnecessary temporary vari-
ables by generating expression trees at compile time; entire embedded domain
specific languages (EDSLs) have been devised with creative use of operator over-
loading and template metaprogramming [12,14]. In view of the popularity and
utility of such techniques, the recent C++-11 standard [16] includes additional
metaprogramming-oriented features, such as variadic templates, generalized con-
stant expressions, static assertions, and user-defined literals.



3 Randomization

No matter how good a single transformation may be, if used repeatedly it loses
its strength and becomes more prone to automated analysis [22]. The notion
of “software diversity” was brought up as early as 1993 [8], as a measure of
protection against malicious attacks. It is still an idea worth exploring, as shown
by recent countermeasures to exploitation that rely on diversity of addresses [27]
and code [24].

Performing randomization in the C++ template metaprogramming setting
has difficulties similar to other pure functional languages. The first step is to
define a pseudorandom generator. For simplicity, we employ a linear congruen-
tial generator, using leapfrogging [18] to split it in two when required (e.g., in
recursive calls). Fig. 3 shows our simple generator.

template<u32 S, u32 A = 16807UL, u32 C = 0UL, u32 M = (1UL<<31)-1>
struct LinearGenerator {

static const u32 state = ((u64)S * A + C) % M;
static const u32 value = state;
typedef LinearGenerator<state> next;

struct Split { // Leapfrog
typedef LinearGenerator< state, A*A, 0, M> Gen1;
typedef LinearGenerator<next::state, A*A, 0, M> Gen2;

};
};

Fig. 3. Linear congruential generator to use with template metaprograms.

Code that receives a LinearGenerator as template argument can then use
its next member as an argument to a subsequent recursive call; recursive calls
with multiple arguments must split the generator to avoid repeating values in
different paths.

To ensure that different expressions have different seeds, one can use the
standard C macro __LINE__ coupled with the common __COUNTER__ macro as
seed to the random generator. This, however, does not result in different re-
sults for different compilations of the same program. There appears to be no
other alternative than to define a macro in the build script immediately before
compilation (__RAND__ in our case).

4 Obfuscating integer arithmetic

Integer arithmetic is, by and large, the most common operation that does not
relate to control flow in most binaries [4]. In this section, we describe how we ob-
fuscate integer operations by recursively dividing them into sequences of simpler
operations that preferably are not algebraically compatible.

Our transformations are quite simple, and exploit several identities from
boolean logic and two’s complement integer arithmetic [7,33,3,17], such as:



a+ b = (a⊕ b) + 2(a ∧ b);
a− b = (a⊕ b)− 2(¬a ∧ b);
a⊕ b = a+ b− 2(a ∧ b);
a ∨ b = (a⊕ b) + (a ∧ b).

Note that one can combine many of these identities together to obtain a more
complex expression, which is not easily reduced using, say, constant folding or
other standard compiler optimization methods. Certain recursions create cycles
when used in certain orders, and such cycles must be broken by either recursion
depth limits or randomization. Fig. 4 shows a single basic code transformation,
which significantly increases the code length for an integer addition, rendering
the binary output harder to understand. We can use the above identities to im-
plement multiplication, division, and the remaining integer instructions, building
up from basic logic and arithmetic operations.

template<typename T, typename RandGen>
struct ObfuscatedAdder {

enum Adder_Method {
Adder_Method_0,
// ...
Adder_Method_Count

};
template<typename Gen, u32 MutationIndex> struct Mutation;

template<typename Gen>
struct Mutation<Gen, Adder_Method_0> {

template<u32 N, typename D>
struct Remaining {

static inline T eval(const T a, const T b) {
typedef Mutation<typename Gen::next, Gen::value%Adder_Method_Count> NextMutation;
return NextMutation::template Remaining<N-1, D>::eval(a^b, 2*(a&b));

}
};

template<typename D>
struct Remaining<0, D> {

static inline T eval(const T a, const T b) {
return a ^ b; // no more carries to propagate, just xor

}
};

};
// ...
static inline T eval(const T a, const T b) {

typedef typename Mutation<RandGen::next, RandGen::value%Adder_Method_Count> M;
return M::template Remaining<Bits<T>::value, NullType>::eval(a, b);

}
};

Fig. 4. Randomized obfuscated adder generator.

Fig. 4 shows the basic structure for most implemented obfuscations. The
class takes in an integer type and a random generator, and offers solely the eval
function to the user. This function, in turn, uses the random generator to select
one of many possible transformations, and jumps to its eval function. There,



that function can jump to any other eval function from any other mutation,
again selected at random. The process terminates when enough operations have
been performed (in this case, the number of bits of the input type).

To further confuse analysis tools, one can reimplement the addition of Fig 4
using MMX, SSE2, or floating-point CPU instructions, again increasing the cost
of analysis of the code.

Operator overloading can be used to hide the ugly syntax, as illustrated in
Fig. 5. With simple operator overloading, each operation is expanded, as shown
in Fig. 5, but the order of operations remains the same as in the unobfuscated
code. For example, the expression a*b+c will be evaluated as t = a*b; t +=
c;, whereas we might have wanted to execute the whole expression as a single
multiply-and-add. To enable such operations, we use expression templates [30].
Expression templates allow us to manipulate the AST of an expression, and
evaluate it any way we want. In the obfuscation context, we want to be able to
change the order or combine subexpressions when possible.

struct uint32 {
unsigned int x_;
uint32(unsigned int x) : x_(x) {}
uint32(const uint32 &oth) : x_(oth.x_) {}
uint32 &operator=(const uint32 &oth) { x_ = oth.x_; return *this; }
operator unsigned int() const { return x_; }
// ...

};
// ...
static inline uint32 operator+(const uint32 &a, const uint32 &b) {

return uint32(ObfuscatedAdder<unsigned int>::eval(a.x_, b.x_));
}

Fig. 5. Integer wrapper class for usage with obfuscation transformations.

4.1 Opaque predicates

One software complexity metric, due to McCabe [19], states that the more pred-
icates (“ifs”) a program has, the more complex it is. This immediately suggests a
simple method to increase a program’s complexity, without altering its seman-
tics: add a large number of conditional operations within the program, whose
result is known a priori to the obfuscator, but not the attacker. Arbitrary quan-
tities of useless code can be inserted in the unused code paths. Such predicates
are known in the literature as opaque predicates [11]. Some examples of (always
true) opaques predicates are:

a2(a+ 1)2 mod 4 = 0;
(a3 − 3) mod 3 = 0;
a+ b ≥ a⊕ b;
7a2 − 1 6= b2.



template<typename T>
struct OpaquePredicate {

template<size_t N> struct Predicate;

template<size_t N>
struct Predicate<0> {

static inline bool always_true(const T a, const T b) {
return (7*a*a - 1) != (b*b);

}
};

static inline bool always_true(const T a, const T b) {
return Predicate<0>::always_true(a,b);

}
};

Fig. 6. Sample opaque predicate.

Fig. 6 shows the implementation of a single opaque predicate. The implemen-
tation looks needlessly complicated, but the generality is useful to implement
many different variants of opaque predicates.

Combining arbitrary opaque predicates and useful code can be done fairly
easily, as shown in Fig. 7. We make use of C++’s lambda functions to represent
the correct code to be executed.

template<typename T, typename RandGen>
struct PredicatedExecute {

template<typename Functor>
static FORCEINLINE T eval(Functor f, const T a, const T b) {

if(OpaquePredicate<T, RandGen>::always_true(a, b)) return f(a, b);
else return BogusOperation<T, RandGen>::eval(a, b);

}
};
// ...
typedef PredicatedExecute<T, LinearGenerator<__LINE__>> Doer;
Doer::eval( [](const T a, const T b) { return a + b; }, x, y);

Fig. 7. Template class wrapping opaque predicates, useless code, and useful code.

Dead code is generated randomly via expression trees, similarly to the meth-
ods used to construct expression templates. Trees are generated randomly up to
a maximum depth, and use the same arguments of the correct predicate function.

5 Data obfuscation

It is often as important to hide the data being processed as it is to hide how it
is being processed. Apart from masking the data being processed, obfuscating
data also involves hiding strings, keys, and other data that may help an attacker
to better understand the program. This section depicts both integer and string
obfuscation.



template<char C, size_t I>
struct Pair {

static const char first = C;
static const size_t second = I;

};

template<template<typename> class BlockCipher, typename Key, typename T>
struct EncryptByte {

static const u32 L = BlockCipher<Key>::block_length;
typedef typename BlockCipher<Key>::template EncryptCtr<T::second / L> Block;
static const char value = T::first ^ Block::template Byte<T::second % L>::value;

};

template<template<typename> class BlockCipher, typename Key, typename...T>
struct EncryptHelper {

static const char value[sizeof...(T)];
};

template<template<typename> class BlockCipher, typename Key, typename...T>
const char EncryptHelper<BlockCipher, Key, T...>::value[sizeof...(T)] = {

EncryptByte<BlockCipher, Key, T>::value...
};

# define THRESHOLD 256
# define AT(L,I) (I < sizeof(L)) ? char(L[I]) : char(’\0’)
# define DECL(z, n, L) Pair<AT(L,n),n>,
# define ENCSTR(K0,K1,K2,K3,L) EncryptHelper<AES128, AESKey<K0,K1,K2,K3>, \

BOOST_PP_REPEAT(THRESHOLD, DECL, L) DECL(0, THRESHOLD, L)>::value
# define SAFERSTR(L,K0,K1,K2,K3) DecryptCtr<AES128, AESKey<K0,K1,K2,K3>>\

(ENCSTR(K0,K1,K2,K3,L),THRESHOLD)
# define SAFESTR(L) SAFERSTR(L,__RAND__,__LINE__,__COUNTER__,0)

// std::cout << SAFESTR("AES-encrypted string") << std::endl;

Fig. 8. Compile-time string encryption using AES-128 in CTR mode.

5.1 Integer obfuscation

One method to represent obfuscated integers is to use alternative, less common,
representations. One such representation was suggested by Zhu et al [34], rely-
ing on residue number systems (RNS). In this representation, an integer n is
represented by its residue modulo a set of primes n mod p1, n mod p2, . . . , n
mod pn, and arithmetic is performed element-wise modulo each prime.

5.2 String and constant obfuscation

Strings and integer constants often provide reverse engineers strong clues
regarding the behavior of a program. Strings, in particular, often offer plenty
of information of the high-level behavior of a program (e.g., error messages).
We hide such data using strong encryption algorithms, namely the AES [1] (or,
optionally, XTEA [21]) block cipher in counter mode.

Refer to Fig. 8. Integer constants are fairly easy to hide: given an integer,
encryption is a simple matter of xoring against the block EncryptCtr(K, IV).
The key and IV here can be chosen in the same fashion as the seeds in Section 3.

However, string literals are harder to obfuscate, because even the most re-
cent C++ standard does not allow for string literals as template parameters.



We can get around this by using preprocessor metaprogramming2 and variadic
templates. The downside of this approach is that more developer involvement is
required, the maximum size for encryption is fixed, and every encrypted string
will have this maximum size. Binaries with many small strings might see a sig-
nificant jump in size due to this limitation.

6 Evaluation

Table 1. Average code size, compilation, and running time for the XTEA function.

Code size (bytes) Running time (CPU cycles) Compile time (s)
Original XTEA 2012 400 2

Obfuscated XTEA 660803 54600 19
Increase/slowdown 328.4× 136.5× 9.5×

We have implemented the XTEA cipher [21], fully unrolled, and compiled
obfuscated and unobfuscated versions. The compiler used was GCC 4.7.1, and
the experiments were performed on an Intel Core i7 2630QM CPU. Table 1 shows
the average overhead we obtained when using all the methods from Section 43.
While both the size and runtime of the obfuscated are quite higher than their
original counterparts, both remain acceptable, provided the obfuscated code is
not a bottleneck. In comparison, a simple Python XTEA implementation on the
same machine runs in roughly 65000 cycles. The compilation time is significantly
longer, but not unpractically so, considering the rather extense code sequence
being obfuscated.

Despite the inherent difficulty in objectively evaluating obfuscating transfor-
mations, there are some metrics that can shed some light into their strength.
Collberg et al. [9,10] proposed 4 general measures to classify obfuscations: po-
tency, resilience, stealth, and cost.

Potency measures the complexity added by the obfuscation in the eyes of a
human reader. Halstead [15] uses program size and diversity of operations as a
proxy for complexity; McCabe [19] uses the complexity of the control-flow graph
of the program. Our obfuscations increase both program size and control-flow
graph complexity by about one or two orders of magnitude, which renders our
obfuscated binaries quite unreadable for human readers.

Resilience is the resistance of the obfuscated program to automated anal-
ysis. Although difficult to assess, it is worth noting, however, that since our
transformed outputs pass unscathed through an optimizing compiler, the bar for

2 For brevity, we make use of the Boost Preprocessor library to implement repetition
constructs.

3 Maximum tree depth used for random dead code expressions: 5



generic deobfuscation is quite higher — most deobfuscators simply use compiler-
like optimization passes to improve readability [13,25,28] — therefore special-
purpose deobfuscators are required, increasing the cost for the attacker.

Stealth is the property of an obfuscation that is hard to spot by an attacker,
human or otherwise [11]. Binary-level obfuscations that insert large quantities
of useless code are often quite easy to spot. Our transformations, on the other
hand, look very much like regular compiled code, because this is exactly what
they are.

The cost metric represents the added cost, in terms of resources needed, to
execute the obfuscated program. Since our transformations are a constant factor
longer than the original (or, if inside a loop, a linear one in terms of execution
cost), our transformations rank as “free” or “cheap” in Collberg’s taxonomy [9].

7 Conclusions and Discussion

We have presented certain techniques and transformations, using C++ template
metaprogramming and operator overloading, that enable the generation of ob-
fuscated code from the original, clean, syntax tree. The idea of generating code
at compile time in C++ is not new; metaprogramming has been used to build
parsers [14], implement languages [12], and much more.

The idea of using the compiler itself to perform binary obfuscation, however,
seems to be new. We have shown that not only it is feasible, but our meth-
ods are actually practical, provided that the amount of code to obfuscated is
not prohibitively high. Further work will go into finding other, more complex,
obfuscations and predicates, and also to try to break the statement barrier of
expression templates.

Nevertheless and despite our previous results showing that compile-time ob-
fuscation is feasible, there are some limitations inherent to C++: the obfuscation
scope is quite limited and restricted to a single statement; only a few types that
can be used as template parameters — e.g., floating-point types are not sup-
ported; finally compilation time might be a problem for large-scale projects. It
may be advisable to obfuscate only small, critical pieces of code that need to be
hidden.
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