
Benchmarking the EDGI Infrastructure

Serhiy Boychenko and Filipe Araujo

CISUC
Dept. of Informatics Engineering
University of Coimbra, Portugal

Abstract. The European Desktop Grid Initiative (EDGI) is an Euro-
pean project that aims to close the gap between service push-based grids,
such as gLite, ARC and UNICORE, and desktop, pull-based, grids, such
as BOINC and XtremWeb. Given the inevitably large size of the overall
infrastructure, the EDGI team needs to benchmark its components, to
identify configuration problems, performance bottlenecks, and to ensure
the appropriate QoS levels.
In this paper, we describe our benchmarking effort. To take our mea-
surements, we submitted batches of jobs to demonstration facilities, and
to components that we disconnected from the infrastructure. We focused
our measurements on the two most important metrics for any grid re-
source: latency and throughput of jobs. Additionally, by increasing job
submission load to the limits of the EDGI components, we identified sev-
eral bottlenecks in the job flow processes. The results of our work provide
important performance guidelines for grid developers and administrators.

1 Introduction

Many different definitions exist for Grid computing [18, 7, 14]. Ian Foster pro-
vides the following checklist for a grid [18]: decentralized control of resources;
standard, open, general-purpose protocols and interfaces; and the delivery of
non-trivial quality of service. CERN, one of the largest users and promoters of
grid systems defines grid as “a service for sharing computer power and data
storage capacity over the Internet” [7]. CERN’s Large Hadron Collider (LHC)
was one of the grid driving forces in Europe with huge computational and data
storage demands (15 PiB per year almost a decade ago). In response, European
projects like the Enabling Grids for E-SciencE (EGEE) [4] emerged to integrate
huge computational resources throughout the continent. EGEE knew several ver-
sions and its work goes on in projects like the European Grid Infrastructure [5].
It gave birth to well-known middleware, such as gLite, currently maintained by
the European Middleware Initiative (EMI) [8].

As these service grids (SGs) were growing, desktop grids (DGs) were starting
to become popular as well, by scavenging resources from millions of users. Most
of the time, many of the computers that are turned on are simply idle [17]. The
abundance of spare resources eventually motivated researchers to take advantage
of underutilized computational power. BOINC is a result of this effort [13].



The Enabling Desktop Grids for e-Sciente (EDGeS) [16] was an European
project that aimed to bridge the gap between Service Grids and Desktop Grids.
The huge computational power owned by volunteers could support faster execu-
tion of parameter-sweeping applications submitted through SG standard mech-
anisms. The European Desktop Grid Initiative project (EDGI) [6] followed the
EDGeS project, by including Cloud computing resources and extending service
grids beyond gLite [8, 2]. EDGI now supports ARC [1], and UNICORE [11].
From any of these technologies, users may transparently submit jobs to BOINC
and XtremWeb [15].

The resulting EDGI infrastructure is a large-scale distributed system, inte-
grating many different technologies. To assess the performance of this infras-
tructure, we benchmarked the overall job flow process and the 3G Bridge[16], a
key EDGI component. Another significant task we performed was to determine
the infrastructure limits and the behavior of the system, when these limits are
reached. By running tests in an overloaded system, we were able to find existing
problems in the EDGI infrastructure, and to identify bottlenecks in job flows.

The rest of the paper is organized as follows: Section 2 presents the EDGI
infrastructure. In Section 3 we present the benchmarking methodology and in
Section 4 the results. In Section 5 we discuss the results and conclude the paper.

2 The EDGI Infrastructure

The purpose of the EDGI production infrastructure shown in Figure 1 is to pro-
vide DG and cloud resources for the ARC, gLite and UNICORE user communi-
ties. The gLite CREAM is a lightweight service for job management operation,
integrated with gLite at the Computing Element level, enriching it with new
functionalities. UNICORE is another Grid middleware, widely used in several
supercomputer centers worldwide. UNICORE provides access to different kind
of resources, ranging from database storage to computational resources. ARC
stands for Advanced Resource Connector and offers client Grid middleware tools.

A user has several ways of submitting jobs to a Desktop Grid, e.g., using a
Computing Element (CE) client or using a web-based EDGI portal. The gLite,
ARC and UNICORE CEs were modified to include other infrastructure ser-
vices, such as monitoring and ATTIC. ATTIC [10] is a peer-to-peer file system
aiming to reduce required bandwidth for frequently used job input files. Refer
to Figure 1. One should notice that this figure omits the Workload Manage-
ment System and illustrates a simpler interaction with CEs. [12] provides a brief
discussion about this issue. Once the job is staged by the Service Grid, it is
submitted to the 3G Bridge through a web service interface. The 3G Bridge is
the job-bridging component that serves as the gateway between different kinds
of grids. Each supported Service or Desktop Grid technology has its own plugin
deployed in the 3G Bridge. Through the available SG handlers, user requests are
received in the bridge and forwarded to a DG, through the appropriate plugin.
Then, the DG executes the jobs, and returns the corresponding results. Desk-



top Grid systems are also integrated with OpenNebula Cloud technology [9], to
provide additional nodes capable of ensuring timely execution of batches of jobs.

Fig. 1. EDGI Infrastructure.

3 Benchmarking Methodology

We believe that latency and throughput are the most relevant benchmarking
metrics for grid users, because they can account for job delays and for numbers
of jobs over time. For example, Aiftimieia et al. [12] also care for throughputs. To
collect all necessary data for every particular component involved in the flow of
jobs, we used the existing EDGI monitoring system [3]. In our experiments, we
systematically increased the load of the system, to determine which components
are responsible for EDGI’s bottlenecks.

3.1 Metrics

Latency Latency is the time that elapses between two events of interest in the
system. The goal of measuring latency is to identify the delays introduced by
the different middleware components of the EDGI infrastructure. Timestamps
of events related to job flows are collected from all accessible components of the
EDGI infrastructure. We care for overall job completion latency, and for latency
in other components of the infrastructure.

Throughput Throughput is the number of jobs processed per time unit. Full
system and partial throughput information allows analysis of possible problems



and bottlenecks, not only for a particular middleware, but also in the whole job
flow process.

3.2 Test Description

Our tests were performed on the EDGI Demo site, which is very similar to
the environment of Figure 1. As we show in Figure 2, we use two applications
to collect all necessary data for the benchmarking. One of the applications,
the Submitter Script, interacts directly with the User Interface (UI) provided
by the EDGI infrastructure component (UCC, or gLiteUI for example). The
Submitter Script executes commands that manage the job flow and collects the
data available at the endpoint. In our experiments, we always used a small
application with a very short execution time that is able to run in all Service
and Desktop Grid technologies.

The Data Manager Application remotely collects monitoring data from other
points. These reports are periodically generated and saved by the EDGI infras-
tructure in XML files. These files store events related to the entry of jobs to
the infrastructure component, submission to the next component in the job
flow process and status changes of each particular job. HTTP servers installed
and configured on the EDGI infrastructure provide access to these XML report
files [20]. The Data Manager Application also includes the Submitter Script data
to perform the calculations required for each particular metric.

Fig. 2. Developed applications data collection scenario.

To measure latencies and throughputs, we collected, aggregated and pro-
cessed timestamps in several points of the infrastructure (refer to Figure 3).

Timestamps T1 and T8 are collected on the submitter endpoint of the infras-
tructure, by the Submitter application. The remaining timestamps are collected



Fig. 3. Timestamps collected for throughput and latency measurment.

by the Data Manager application from the monitoring data generated by the
components involved in the job flow. After collecting all the previous times-
tamps, data processing extracts the following useful intermediate timestamps
necessary for posterior performance analysis:

T1, T1a : job submission on UI
T2, T2a : job entry to the Computing Element
T3, T3a : job submission to the 3G Bridge
T4 : job entry to the 3G Bridge
T5 : job submission to the Desktop Grid
T6 : job completion on 3G Bridge
T7, T7a : job completion on Computing Element
T8, T8a : job completion on UI

4 Benchmarking Results

In this section we present benchmarking results of the gLite and UNICORE
technologies. Unfortunately, ARC was in an earlier stage of development that
did not allow us to push it to the same limits as gLite and UNICORE.

4.1 gLite CREAM Results

The tests for measuring throughput and latency were run on a production infras-
tructure called EDGI Demo, installed at SZTAKI, Budapest, Hungary. In order
to ensure correctness of results, we repeated the execution of each experiment
10 times. One should notice that some of the experiments take many hours to
complete, which made it unpractical to use a larger number of samples. The con-
figuration of every experiment allowed submission of the jobs during one hour,



with a predefined submission rate, varying from 20 to 100 jobs per minute, with
increments of 20 jobs for each new batch of tests. After test completion, results
were collected and processed by the Data Manager Application.

Throughput In the EDGI Demo site, we identified two different throughputs
that are relevant for CREAM CE: job submission throughput and job completion
throughput. Here, we focus on the latter. To measure the completion throughput,
up to the N -th job, we use the gLite UI’s submission timestamp (T1) of the first
job and the gLite UI’s finish timestamp (T8) of the last job of interest to us,
according to the following formula:

Throughput =
N

T8Nthjob − T1firstjob
(1)

In every batch of jobs, we omitted 15% of the initial results considering
such period as warm up. In Figure 4, we illustrate the average throughput of
the system as a function of the job submission throughput. We show standard
deviation as error bars in the figure.

Fig. 4. CREAM average throughput related to submission rate.

One should notice the loss of throughput for higher submission rates. To
understand what causes this effect, we proceeded to analyze the throughput of
each particular element of the system. In the plot of Figure 5, we show the
results of this analysis. The “Expected throughput” is the throughput that we
would expect from a system without job delays, i.e., the same as the submission
throughput. The blue part of the column shows the percentage of throughput
actually obtained at given points of the infrastructure, besides the endpoint,
which is the gLite UI. The smaller the blue part, the worse. We can see that
problems start immediately in the gLite submission, but that they get amplified
in the finalization. The finalization throughput is also the responsible for the low



UI throughput, as the latter is always limited by the slowest component (as any
component is limited by the slowest upstream one).

Fig. 5. CREAM Average/Expected throughput for 100 jobs/minute submission rate.

To understand if CREAM CE finalization could be the bottleneck of the
EDGI Demo site, we analyzed the source code of the CREAM CE. We realized
that there is an element responsible for job status update, called UpdateManager.
UpdateManager is a Thread that retrieves jobs from a database and queries the
3G Bridge for the actual status of the job (IDLE, PENDING, RUNNING) using
a Web Service. After getting response from the 3G Bridge, the UpdateManager
handles the received response, updating the corresponding job status in the
database and generating data for monitoring. When the number of jobs in the
list is small, this model might work very effectively, but when the number of
jobs in the list increases, the job status check processes consumes much more
resources.

The CREAM CE job finalization is not the only bottleneck we identified.
As CREAM CE was increasingly unable to keep up with the job submission
rate, the number of failed jobs was increasing accordingly. This happens due to
connection timeouts during the execution of the job submission commands.

Latency The latency analysis of the other EDGI Demo elements (3G Bridge
and Desktop Grid) was also performed for comparison purposes and possible
detection of infrastructure problems.

We used the timestamps collected at different points of the architecture to
compute the latencies introduced by the different components. In Figure 6 we
illustrate the latencies for different job submission rates.

We can observe a drastic increment of the CREAM CE job finalization time
for heavier loads. After submitting 40 jobs/minute, we increased load to 60



Fig. 6. Latency introduced by EDGI infrastructure components.

jobs/minute. This corresponds to a load increment of 150%. However, latency
rose from 262.9 to 1796.1 seconds, a 685% increase. More detailed analysis al-
lowed us to confirm that the CREAM CE finishing time directly influences the
overall performance of the job running time and consequently of the whole ex-
periment. The finalization bottleneck directly affects the overall system latency,
by slowing down the CREAM CE job finalization process.

4.2 UNICORE Results

Benchmarking tests of the UNICORE CE were run on the infrastructure installed
and provided by the University of Paderborn. We have used the UNICORE
Command-line Client (UCC) user interface to send commands to the UNICORE
server. Similarly to the tests previously executed on CREAM, we repeated each
experiment 10 times. We varied submission rates between 10 and 40 jobs per
minute. We were unable to push UNICORE to 100 jobs/minute submission rate
(as we initially planned), due to performance problems described in the following
section. In Figure 7, we illustrate the overall throughput of the system as a
function of the job submission throughput.

We noticed that UNICORE was not able to handle more than 40 jobs/minute
very well, stopping to respond to the UI commands. To understand what causes
this effect, we proceeded to analyze the preparation throughput and finishing
throughput of the UNICORE system. Figure 8 shows the results of our exper-
iment. The lower part of the column is the actual throughput, while the upper
part of the column is the expected (but unreached) throughput. The problem
resided on the job submission from the client application (UCC) to the UNI-
CORE server. This time was growing quite fast relatively to the job submission
rate. Whenever a request takes too much time to submit, the client application
reports an error and stops execution of the request. There are several problems



Fig. 7. UNICORE average throughput related to submission rate.

that may contribute to this issue, creating a bottleneck on the request sub-
mission part. The job submission procedure in UNICORE is quite heavy. The
first step is authentication of the request, by querying a database. The next
step, after the request is authorized is performing a Web Service call. A staging
process follows to run the executable. It creates a working directory, it has file
Input/Output operations, communication with one EDGI component called Ap-
plication Repository, and database insertion operations. After successful staging,
the request is transformed to a 3G Bridge compatible format and submitted to
the bridge. All these steps require communication with external services, making
them a possible cause of this bottleneck.

Fig. 8. UNICORE Average/Expected throughput for 40 jobs/minute submission rate.

Another problem could be the client application. To ensure that the Submit-
ter Script keeps up with the defined submission rate, several submitter threads
are created. Since there is no reuse of already running instances of the client



application, every time a request is executed, a new UNICORE UI application
instance is started. This process requires a lot of computational power on the
machine where the tests are run. We ran some CPU Usage and Memory Usage
tests, which confirmed the high demand of resources by UCC, especially CPU
processing power.

UNICORE latency measurements allowed us to identify two important la-
tencies to work with: CE Preparation Latency and CE Finishing Latency. Figure
9 shows these latencies for the UNICORE system. We could conclude that the
latency of the 3G Bridge remained constant independently of the technology
used upstream. Latency of the Desktop Grid stayed pretty much constant for
the amount of jobs we submitted. We can also conclude that the latency of the
UNICORE system is quite stable. We observed that a quite significant portion of
average job execution time of a UNICORE job is due to the finalization latency.
This can be explained by the staging out process, where UNICORE reports jobs
as finished when all data is downloaded and cleaned from the 3G Bridge and
Desktop Grids.

Fig. 9. UNICORE in the EDGI infrastructure.

4.3 3G Bridge Results

Besides the test ran on the EDGI Demo site, we ran benchmarking tests on
the 3G Bridge installed on our own local machines. This version of the bridge is
newer than the one we tested in [19]. The main goal of the 3G Bridge benchmark-
ing was to check if bottlenecks exist in this component. From the tests executed
on the EDGI Demo, no performance problem is apparent in the 3G Bridge, be-
cause CREAM CE, which lies upstream exhibited problems first, starting at 80
jobs/minute. We have installed the latest available version of the 3G Bridge.
For test purposes, we configured the NullHandler plugin, which marks jobs as
finished, as soon as it receives a job status query. After performing latency anal-
ysis, we could not find any noticeable problem with this metric. For throughput,



we were also unable to detect any anomaly in the 3G Bridge performance, up
to 100 jobs/minute. The average throughput in all experiments was equal to
the expected throughput. Based on these results, we could conclude that there
are no performance issues or any bottleneck spotted on the 3G Bridge for the
currently existing demands.

5 Discussion and Conclusions

The main conclusion we can take is that the EDGI Demo site can deal with up to
1 job/second without demonstrating any particular problems. After this point,
scalability problems emerge on the CREAM Computing Element. Throughput
and latency tests confirmed that CREAM CE job finalization process was not
efficient enough to handle higher workloads. Evaluation of the source code of the
CREAM Computing Element identified the UpdateManager component as the
source of this bottleneck. Since this component checks jobs status sequentially,
our results suggest that it should be multi-threaded. A second source of perfor-
mance problems of CREAM CE lied on the submission of jobs. As we try to
increase job submission rate, the number of jobs that we are unable to submit
also grows.

UNICORE did not show any latency related problems in our measurements.
However, throughput losses after the 40 jobs/minute threshold prevented us
from executing tests with higher submission rates. We could conclude that one
of the causes for this problem is the UNICORE Client-Server communication,
making this part the major bottleneck of the system. A deep analysis of the dif-
ferent phases of the job flow revealed problems on the UNICORE server request
processing. This also impacted the client CPU consumption.

Unlike the Computing Elements, the 3G Bridge seems to be efficient enough
for the EDGI Demo site. This component is definitely not the major bottleneck
of the system. In fact, we were unable to observe any unpredicted behavior in
the 3G Bridge measurements, because this component responds very well to the
job submission rates we used. In general, we concluded that performance and
quality of service provided by the 3G Bridge were highly satisfactory, both in
isolated and in EDGI Demo measurements.

Acknowledgments

The research leading to these results is funded by the European Union Seventh
Framework Program (FP7/2007-2013) under grant agreement no 261556.

References

1. Advanced resource connector. http://www.nordugrid.org/arc/. Visited on June
19, 2012.

2. Computing resource execution and management service. http://grid.pd.infn.

it/cream/. Visited on June 19, 2012.



3. Edgi infrastructure monitoring web page. http://edgi.dei.uc.pt/

NewEDGIMonitoring/. Visited on June 19, 2012.
4. Egee portal: Enabling grids for e-science. http://www.eu-egee.org/. Visited on

June 19, 2012.
5. Egi. http://www.egi.eu/. Visited on June 19, 2012.
6. European desktop grid initiative. http://edgi-project.eu/. Visited on June 19,

2012.
7. Gridcaf’e: the place for everybody to know about grid computing. http://www.

gridcafe.org/. Visited on June 19, 2012.
8. Home - european middleware initiative. http://www.eu-emi.eu/. Visited on June

19, 2012.
9. Opennebula is an open-source project developing the industry standard solution

for building and managing virtualized enterprise data centers and cloud infrastruc-
tures. http://opennebula.org/. Visited on June 19, 2012.

10. P2p data sharing software architecture. http://www.atticfs.org/. Visited on
June 19, 2012.

11. Uniform interface to computing resources. http://www.unicore.eu/. Visited on
June 19, 2012.

12. Cristina Aiftimiei, Paolo Andreetto, Sara Bertocco, Simone Dalla Fina, Alvise
Dorigo, Eric Frizziero, Alessio Gianelle, Moreno Marzolla, Mirco Mazzucato, Mas-
simo Sgaravatto, Sergio Traldi, and Luigi Zangrando. Design and implementa-
tion of the glite cream job management service. Future Gener. Comput. Syst.,
26(4):654–667, April 2010.

13. David P. Anderson. Boinc: A system for public-resource computing and storage.
In GRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing, pages 4–10, Washington, DC, USA, 2004. IEEE Computer Society.

14. Rajkumar Buyya and Srikumar Venugopal. A gentle introduction to grid com-
puting and technologies. CSI Communications, 29(1):9–19, July 2005. Computer
Society of India (CSI).

15. Franck Cappello, Samir Djilali, Gilles Fedak, Thomas Hérault, Frédéric Magniette,
Vincent Néri, and Oleg Lodygensky. Computing on large-scale distributed systems:
XtremWeb architecture, programming models, security, tests and convergence with
grid. Future Generation Comp. Syst., 21(3):417–437, 2005.

16. Miguel Cárdenas-Montes, Ad Emmen, Attila Csaba Marosi, Filipe Araujo, Gábor
Gombás, Gabor Terstyanszky, Gilles Fedak, Ian Kelley, Ian Taylor, Oleg Lodygen-
sky, Péter Kacsuk, Róbert Lovas, Tamas Kiss, Zoltán Balaton, and Zoltán Farkas.
Edges: bridging desktop and service grids. In 2nd Iberian Grid Infrastructure Con-
ference (IBERGRID 2008), Porto, Portugal, May 2008.

17. Patricio Domingues, Paulo Marques, and Luis Silva. Resources usage of windows
computer laboratories. Technical Report Technical Report. http://www.cisuc.

uc.pt/view_member.php?id_m=207, CISUC, January 2005.
18. Ian Foster. What is the Grid? - a three point checklist. GRIDtoday, 1(6), July

2002.
19. Naghmeh Ivaki, Diogo Ferreira, and Filipe Araujo. Benchmarking the 3g-bridge in

the edges infrastructure. In Cracow Grid Workshop (CGW’09), September 2009.
20. Jozsef Kovacs, Filipe Araujo, Serhiy Boychenko, Mathias Keller, and Andre

Brinkmann. Monitoring unicore jobs executed on desktop grid resources. In 35th
Jubilee International Conference on Information and Communication Technology,
Electronics and Microelectronics (MIPRO 2012), Opatija, Croatia, May 2012.


