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Abstract—Although the need for the exactly-once request-
response interaction pattern is ubiquitous in distributed systems,
making it work in practice is anything but simple. Ensuring the
at-most-once part of the invocation is relatively easy. Unfortu-
nately, the same is not true for the at-least-once guarantee, which
depends on the recovery from crashes of the client, the server
and the network. This is what makes the exactly-once interaction
so difficult in practice: client and server must log their actions
into stable storage, and they must be able to restart the network
connections.

In this paper, we present a middleware that implements the
exactly-once request-response pattern, in presence of network
and endpoints crashes. The main contribution of our work is to
release the programmer from the complex tasks of recovering
from message losses and network crashes.

I. INTRODUCTION

We no longer need to stress the importance of the Internet
for people’s life and for businesses. We can find plenty of
examples where humans interact with web sites, or programs
orchestrate web services to purchase some good or to perform
diverse business activities. These interactions often consist
of the request-response pattern, where the server performs
an action on behalf of the client, sending the result back.
Despite being ubiquitous, making this pattern work reliably
in the presence of faults is everything but simple. In fact, the
client cannot simply invoke the request again, because this
may cause the server to repeat non-idempotent actions, like
making a second reservation for the same person or ordering
the same item twice. Other cases have even more stringent
restrictions that exceed the at most-once semantics, as they
actually require an exactly-once: employers need to make sure
that they issue the paychecks once and only once; the bank
must then ensure that it deposits the money once and only
once; the same for the corresponding withdrawal operation.

Unfortunately, the most widely used technologies cannot
easily ensure exactly-once semantics. Sockets provide the
greatest freedom to the programmer, but the programmer
must bear the costs of recovering from all failures, like TCP
connection crashes. Remote procedure calls may provide some
tolerance to faults, or at least hide TCP connection crashes, but
their invocation semantics is often at-least-once (RPCs [17])
or at-most-once (RMI [16]). HTTP does not help much either,
despite being the protocol used for all web-based requests.
Again, programmers must ensure by themselves that HTTP
commands provide at-most-once delivery in non-idempotent
operations. For this, they usually add an identifier to the

request and keep a correspondence between previously seen
identifiers and replies on the server side. This is complex,
error prone, and repetitive, not to mention all the problems
related to the lifetime of the responses in the server. Java
Message Service (JMS) is perhaps the simplest technology to
provide exactly-once-delivery, due to the notion of transaction
available for sending and receiving messages. However, JMS is
not tailored for a request-response kind of interaction, because
its goal is precisely to decouple parties [6].

Another approach is to use distributed transactions. This
ensures that either the client and server agree on the positive
outcome of the action, and then, they take it; or they both give
up. Unfortunately, this solution has a number of drawbacks:
1) it is difficult to use, as it involves a fairly complex
configuration and Application Programming Interface (API);
2) it is heavy, because it involves a coordinator process; and
3) it is slow, due to the several steps involved in protocols like
the two-phase commit.

In this paper, we argue that programmers should resort to
APIs that provide the exactly-once request-response pattern.
Although this kind of pattern occurs repeatedly, writing it
correctly is complex, mainly due to the existence of faults
that may affect the endpoints or the network. To overcome this
problem, we propose and implement a middleware that follows
the request/response/acknowledge-response (RRA) protocol of
Spector [15]. Our middleware unambiguously defines the
boundaries where the client may resend the request or wait,
upon recovering from a crash, without taking any chances of
repeating the operation. For the transport layer, we enable the
user to choose between TCP and a robust socket implementa-
tion, named RSocket [5]. Whereas the latter transparently sup-
ports network crashes, TCP still forces the user to reconnect,
but releases the programmer from manually re-synchronizing
the state. In both cases, we release the programmer from
handling the most complex details of recovering from com-
munication channel failures.

The remainder of the paper is organized as follows: The
second section gives a general review of the related work.
Section III presents the exactly-once pattern. In Section IV we
introduce the middleware that makes this pattern simpler for
the application layer. Section V focuses on the recovery form
failures. Section VI describes the middleware implementation
and API. Next, we evaluate the implementation and conclude
the paper.
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II. RELATED WORK

“Idempotence” means that performing an operation multiple
times will have the same effect as performing it exactly
once [9]. Unfortunately, many operations, such as transferring
money, or buying a ticket are not idempotent, thus requiring
a careful invocation to ensure a single success without repeti-
tions. This section gives a short overview of some techniques
that try to achieve this exactly-once semantics. This is a strong
requirement, because it requires all parties to mask faults. In
a request-response interaction, each request must be executed
exactly once, and the reply must be delivered to the end user.
Most systems only make a best effort at doing this.

In [3], an idempotent messaging protocol is presented that
guarantees both message delivery and message idempotence.
However, it does not handle the endpoints’ failures. Distributed
transactions, with their ACID properties (Atomicity, Consis-
tency, Isolation and Durability), are probably the most effective
mechanisms to ensure that multiple parties actually agree on
the outcome of some interaction. Even in the presence of
faults, distributed transactions offer at-most-once semantics:
the operation either successfully occurs at all endpoints in-
volved, or nothing occurs and everything reverts back to the
initial condition. This is quite close to the definition of the
consensus problem [12], where parties must agree on some
value from the set they propose. Solving these problems in
the general case is impossible [7]. Nevertheless, protocols like
the Two-Phase Commit [2] (2PC) can implement distributed
transactions in some more restricted, but still quite general,
scenarios. 2PC is a heavy and blocking protocol, where all
the parties, typically databases, lock the resources involved,
until parties take the common final decision. However, in this
paper, we are looking for something simpler, because once
it operates on the request, the server can make its own state
visible despite any further actions from the client. This makes
properties like isolation (the ‘I’ in “ACID”) simpler to ensure.

Queued Transaction Processing is another technique to deal
with transactional operations [8]. This can also be accom-
plished with Java Message Service [13]. A client starts a
transaction and enqueues the request at the server’s queue.
Then, the server starts another transaction, dequeues and
processes the request, and enqueues the reply at the client’s
queue. A third transaction is started and the reply is dequeued
and processed by the client. Briefly, this technique involves
two recoverable queues in front of the server and client, and
three distributed commits. Although exactly-once is achieved
by making the user a part of the transaction protocol, this
model still has its own disadvantages: this approach requires a
thick client, which has to be executed on a system that supports
transactions; and it involves the cost of three distributed
commits. In the case of Java Message Service or some other
publish/subscribe technology, a request-response interaction
is somewhat contradictory to the spirit of decoupling parties
involved in the interaction.

Message Logging is another technique used to ensure
exactly-once semantics. This approach is based on logging the
state of the interactions and enabling the retransmission of the
messages. Phoenix/APP [1] and iSAGA [4] are examples of

this technique. Phoenix deals with system failures by logging
the interactions and checkpointing the state. The argument is
that Phoenix assumes a window of opportunity for the client
failure. Exactly-once is achieved only if the client does not
fail during this small window. iSAGA saves the system’s state
in stable storage for every request. This stable storage can
be on the client, server or even on another machine. In this
system there is no description of the user-to-client interaction.
When the client recovers after a crash, there is no guarantees
regarding execution semantics, since the recovered state might,
or might not, be the latest state presented to the user.

EOS [14] also uses a logging mechanism on the client and
server sides, for the web based services to ensure exactly-
once service. It handles scenarios where each request may
wait for the previous reply. This approach does not deal with
connection crashes. It may deadlock when both parties are
alive but the TCP connection crashed.

Our exactly-once request-response pattern is quite close
to the typical Remote Procedure Calls and Remote Method
Invocation paradigms [18], [17], [11], [16], although these
provide at-least-once or at-most-once, because their failure
handling is much simpler than what we propose in this
paper. To extend these approaches, we use a pattern [15] that
guarantees the delivery of the messages even in the presence
of network and endpoint failures. We use a logging mechanism
combined with identified requests and message retransmission
to provide exactly-once semantics.

III. THE EXACTLY-ONCE REQUEST-RESPONSE
INTERACTION PATTERN

A. Direct Client-Server Pattern

The Request-Response interaction between a client and a
server is perhaps the simplest, and yet the most important form
of exchanging data we can find in a distributed system. This
interaction pattern, occurring in many different applications,
operating systems and programming languages, might be used
in a number of flavors depending on the semantics of the
operation invoked: at-least-once, at-most-once or exactly-once.

We start by putting the operations that the client and
server must perform into a sequence. This sequence is based
on the work of Spector [15] and assumes the existence of
stable storage on the client and server sides, to keep process
state in the case of crashes. Despite being important for
the practical implementation, the presence or absence of a
previous handshake, like a TCP connection, is irrelevant for
our discussion at this point. Refer to Figure 1. The client
starts by creating a request message, assigning it a unique
identifier and storing it with its identifier and timestamp (t0).
The timestamp enables the client to resend the request if it
does not receive a reply within some time limit. Next it sends
the message to the server (t1), which receives it (t2). Since the
semantics is exactly-once, we assume that the server cannot
generate the same reply again without corrupting its internal
state, therefore, the server generates the response and saves it
atomically (t3). This is often simple to do, if the server gets its
data from a database, for instance. The application must keep
the identifier to avoid repeating the same operation. Then the
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Figure 1. Exactly-Once Request-Response Pattern

server replies (t4). The client receives the response (t5), saves
it (t6) and acknowledges (t7) the server to enable the server
to delete the response (t8). Finally, the client can delete the
request and the response (t8′ ). The client can use the response
between t6 and t8′ .

With this sequence we can ensure the exactly-once seman-
tics, even if the client or the server crash and later recover. Let
us examine the client actions. The client creates and stores
the request into stable storage, sends it, receives the reply,
acknowledges the server and deletes the request from stable
storage. We do not care for crashes for time t < t0. For t > t8′

the request no longer exists, so we do not care for it either.
The client can safely discard any response arriving after that
point in time. We thus focus on the client actions in case it
crashes for time t0 < t < t8′ .

For time t0 < t < t6, upon recovery, the client cannot
determine where it crashed, so it resends the request. After
t > t6, the client has a copy of the response, so it no longer
needs to resend the request. For t0 < t < t1, the client never
actually sent the request, so it can just send it for the first time
when it recovers. If the crash occurs for time t1 < t < t5, the
client will resend the request, but the server can detect the
duplicate identifier and avoid re-executing the request. If the
client crashes in the interval t5 < t < t6, upon recovery, it
will resend the request as it does not have the corresponding
response in its stable storage. In this case, it is up to the server
to filter duplicate requests and resend the response. For time
t6 < t < t7, the client just picks the response it saved. For time
t7 < t < t8′ , the client will resend an acknowledgement. The
server could then receive an acknowledgment for a response it
no longer has, but it can safely discard the acknowledgment.

Now, let us do a similar analysis for the server. If the server
crashes before t = t3, upon recovery it cannot do anything,
because it no longer has the request. This client must resend
the request after a given timeout in this case. For time t3 < t <
t4, the client will resend the request since it has not received
the response yet. In this case, the server must retrieve the reply
from storage instead of re-executing it. For time t4 < t < t8,
the server cannot know whether or not the reply reached the
client. It must wait for either the acknowledgment from the
client or for a repetition of the request.

B. Demonstration of Correctness

In this section we formally identify the properties of the
exactly-once request-response pattern and demonstrate that
they hold. We assume that the channel does not create, change,
or reorder (First In First Out – FIFO) any messages. We as-
sume that channels, client, and server eventually will be correct
for a sufficiently long time that enables their interaction to
finish. Regarding safety and liveness, we require the following
properties for the exactly-once request-response pattern:

Safety 1 At-most-once execution of requests.
Safety 2 No invention of response.
Safety 3 No duplication of response.
Liveness 1 At-least-once reception of response.
Liveness says that all requests eventually have a response.

This is the “at-least-once” part of the interaction. However,
beside a live behavior, we must ensure some safety properties,
to prevent double execution of the request (Safety 1) or
reception of the message (Safety 3), and to prevent receiving
a response for a request the client never did (Safety 2). Next,
we demonstrate these properties.

a) Safety 1: At-most-once execution of a request: One
request is univocally identified by a number. Therefore, if the
server checks its stable storage for this request’s identifier, it
may not execute the same request twice between t3 and t8. We
must demonstrate that after t8, the server may not execute the
same request again. Once the client sends the acknowledgment
(t7), it will not send the same request again, because it saved
the response in the stable storage at time t = t6. Since we rely
on FIFO channels, the server must not receive any repetition
for the same request after t = t8.

b) Safety 2: No invention of response: This property
derives from the fact the channel does not invent any messages.

c) Safety 3: No duplication of response: This property
depends on the implementation of the client, which must use
the response during the interval t6 < t < t8′ and must
atomically delete the response and finish the task it has to do
with the response at time t = t8′ . In this case, if the client ever
crashes for t < t6, when it restarts it did not use the response.
For time t > t8′ , it is no longer waiting for the response, so it
will discard it (it may receive two or more responses in fact).
For time t6 < t < t8′ , the effect of the response takes place
only once.
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d) Liveness 1: At-least-once reception of response: First,
we assume that the client periodically resends the request if it
does not get any response, e.g., because the channels keep
failing. Assuming these conditions, we need to prove that
the client reaches the point where it saves the response (t6).
Since the client keeps resending the request, and the server
always gives a response to this request (either by executing
the action or getting the response from stable storage), the
property follows from the assumption of correctness of the
channels, client and server for a sufficiently long time.

IV. THE MIDDLEWARE LAYER

A. Description

Apart from generating the request and the response, most
actions that clients and servers perform are repetitive and
might be handed over to library functions. In Figure 2, we
show the result of our approach to factor out client and server
actions from Figure 1. We separate the endpoint applications
in two layers: the application layer takes care of generating
and using the messages, while the middleware layer is par-
tially responsible for message idempotence and guarantees the
delivery of the requests and responses to the application layer.

With middleware, the client no longer resends requests.
Therefore, it does not need to generate identifier or timestamps
for the messages. This is the most important difference for
the client. Once the client returns from sending the request,
in action t1, it does not need to keep re-sending the request,
although the middleware allows this, if the client crashes and
later recovers. The server side has an important simplification
as well: after delivering the response to the middleware, the
application layer may delete the response. This allows the
server to use a typical API with a single blocking point to
receive requests, discarding the need for a second one to
receive the acknowledgments. We describe the details in the
following paragraphs.

The client starts by creating a request message (t0). The
underlying middleware generates a unique identifier for the
message, from its contents (its hash or even the message
itself could serve as identifier). If the client resends the same
message, the middleware can determine if it is still processing
that message or if it is new, and, at the same time, releases the
application from the burden of managing message identifiers1.
The middleware saves the message, together with the identifier
and a timestamp (t1). Next, the client-side middleware sends
the message to the server middleware (t2), which receives
and delivers it to the server application (t3). The server
middleware must not send a new request for the same identifier
before the application replies (something that could happen
if the client sends the same request twice or more). Up to
t = t5 this goes on unchanged. However, to enable the server
application layer to delete all data related to the request, the
server middleware must save the response at t = t5′ . The
server middleware replies to the client middleware (t6), which

1A shortcoming of this approach is that the client cannot generate a
new request with the same data before acknowledging the previous one.
Nevertheless, this limitation can be trivially solved by adding some salt to
change the message.

receives (t7) and saves the response (t8). This will enable
the server side to delete the response (t11′ ), once the client
middleware acknowledges the reply (t9′ ), before or after the
middleware delivers the response to the client. The remaining
actions of the client are the same as in Figure 1.

If the client crashes between t0 < t < t10, it will resend the
request after resuming. After that point, either it still has the
response or it no longer has the request (after t > t12), so it
no further interacts with the middleware. In the interval t1 <
t < t8, the client middleware already saved the request, so it
can resend the request by itself. However, the application layer
may also resend the request. This is not a problem because
the identifier will be the same and the middleware is able
to filter the duplication. If the crash happens in the interval
t8 < t < t10, the client middleware still has the response and
does not need to resend the request to the server. On the server
side, if a repetition of the request arrives during the interval
t5 < t < t11′ , the middleware itself will provide the reply.
Before that point, the server application layer itself must keep
the response and corresponding identifier to filter duplicates.

B. Exactly-Once Properties
a) Safety 1 (At-most once execution of a request):

Assume that a repeated request arrives after t > t5′ at the
server application layer. Then, since the server middleware
stores the response until t = t11′′ , the client middleware must
have resent the request after acknowledging it, because the
channel is FIFO. However, since the client middleware saved
the request at time t = t8 and deletes it at t = t11′ , the
originator of the repetition must be the client application layer
instead. But this is contradictory to the fact that after t = t9
the client cannot have repeated the request, because it already
saved the response, before deleting everything at t = t12.

b) Safety 2 & 3 (No invention of response and no
duplication of response): These are very similar to the case
of Figure 1, which we demonstrated before.

c) Liveness 1 (At-least-once reception of response):
We used the Spin model checker [10] to formally verify
the liveness claims of our approach. Model checking is a
method for verifying whether a specification is fulfilled by a
model. A specification is a set of properties which a system is
expected to satisfy, and a model is a formal description of the
system’s behavior, written in a modeling language, intended
to preserve as much detail as necessary for the verification.
Model checking tools such as Spin take a model and its
specification as input. Their output is either an indication
that the model is correct, or a case in which the correctness
properties fail to hold.

The Spin model checker accepts a formal modeling lan-
guage called Promela. This language is appropriate to model
distributed software systems. Inter-process communication can
be specified using message channels, which can be either
synchronous or asynchronous. We used asynchronous channels
to model the communication between the client middleware
and the server middleware. Synchronous channels were used
to model the call-return interactions between the client appli-
cation and the client middleware, as well as between the server
application and the server middleware.
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Figure 2. Exactly-Once Request-Response Pattern With Middleware Layer

We modeled a system consisting of four processes, namely
the client- and server-side applications and the corresponding
middleware instances. An additional process was constructed
in order to model failures. Two kinds of failure are considered:
lost messages between the two middleware processes, and
crashes of either client or server applications. Lost messages
were modeled by snatching messages from the channels be-
tween client and server middleware. Crashes of the client and
the server were modeled by resetting the client- or the server-
side (including the application and the middleware) to the
initial state. Only the content of the stable storage is assumed
to be preserved after a crash.

The interaction among client application, client middle-
ware, server middleware, and server application was modeled
according to the specification of our approach. The model
describes the behavior of the system for a single request. Given
that multiple requests have no influence on one another and
that all tiers are able to distinguish between different requests,
this abstraction allows us to reduce the state-space needed to
model the system.

Our analysis using model checking focused on the system’s
liveness. Given that the communication channel between the
client and the server is asynchronous and that any messages
may be lost, liveness can only be guaranteed under the assump-
tion that eventually there is a fault-free period of execution.
Moreover, as processes may crash, one must assume that these
will also eventually remain fault-free for some period of the
execution. To model this assumption, we allow the failure-
injecting process to terminate its execution, and specify that
a response is eventually received by the client if there are
no more failures. In linear temporal logic (LTL) the specified
property is the following:

�(faultfree→ ♦terminates)

The formula should be interpreted as: whenever the system
becomes fault-free (i.e., the failure injector ends its execution)

the client will eventually receive the response and therefore
terminate the execution of a request. The symbol “faultfree”
was defined as the failure injector ending its execution and
the symbol “terminates” was defined as the client application
reaching its final statement.

The correctness of the model with respect to the liveness
claim was checked using Spin version 6.1.0. The formula is
found to be correct by the verifier in 2 hundredths of a second,
for a system totaling 5.8×103 states and 2.2×104 transitions
(with partial order reduction enabled). This increases our con-
fidence in the correctness of our approach regarding liveness.

V. RECOVERY FROM CRASHES

Difficulties in ensuring the exactly-once semantics come
from the unreliable and faulty nature of the endpoints and
network environment. As we demonstrated before, if processes
have access to stable storage, they can recover from failures
and use our middleware to ensure the exactly-once semantics.
In this section, we go through the recovery process in the
connection, client and server.

Reliable Channel: As we mentioned before, the channel
must provide some guarantees to the exactly-once pattern,
namely FIFO delivery, no invention and no change of mes-
sages. The TCP protocol provides all of these guarantees.
However, TCP cannot provide a liveness guarantee, because
connections do not recover from crashes. This leaves the
burden of rolling back applications to a coherent state to the
programmers. In our approach, when a plain TCP connection
fails, the middleware returns an exception to the application.
Since the client-side middleware relies on a timeout to resend
requests that lack a response, it imposes no special request on
the application layer for re-synchronizing client and server.
After a TCP crash, the programmer just needs to provide a
new connection between the same endpoints. This, we believe,
is one of our most interesting contributions, because this is a
very error-prone task.
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Figure 3. Recovery From Server Crash

We go one step further: to address the reconnection problem
entirely, we use a technology that abstracts away the com-
munication channel problems: Robust Socket or RSocket [5].
It offers end-to-end reliability, by hiding TCP connection
crashes from the application layer. It transparently takes care of
buffering and resending messages after recovery from failures.
We thus have two options: either the application takes care of
reconnecting by itself, or it hands everything to the Robust
Socket implementation. As we shall show experimentally,
there is a tradeoff involved due to the lower overheads of TCP
and possibly greater control offered to the programmer.

Server Failure: When a server crashes, the client-side mid-
dleware must take the initiative of recovering a connection and
resending the requests. The client keeps trying to reconnect
periodically until the server recovers, either explicitly if using
TCP or automatically with RSocket. After recovery, the server
looks for failed connections in its stable storage and provides
information of those connections to the middleware.

Refer to Figure 3. The state of the communication before
the server crashes is the following: requests 1 and 2 (req1 and
req2 in the figure) are sent and replied and their replies are
delivered to the application layer; req3 is processed by the
server application and is given to the middleware for sending
but the server crashed before sending the reply to the client;
req4 and req5 are sent to the server but the server crashed
before receiving the requests. Once interaction is resumed,
the client middleware resends req3, req4, and req5 since they
were not replied within the expected time. Then, the server
middleware sends the reply of req3 from its recovered state and
delivers req4 and req5 to the server application for processing.
The server treats the remaining requests in a standard way.

Client Failure: When the client restarts after a crash, it
checks its log files for failed connections. Once it recovers the
state of the failed connections, it asks the client middleware
to recover the failed connection’s state from its stable storage.
The client middleware and the client application resend the
requests with pending replies. Figure 4 demonstrates a simple
scenario with the client failure and recovery. The last state
of the interaction, before the client failure, is the following:
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Figure 4. Recovery From Client Failure

req1, req2, and req3 are sent to the server; req4 is given to
the client middleware but the client crashed before sending the
request to the server; the server already processed req1, req2
and req3; rep1 and rep2 are delivered to the client application,
but rep3 could not be sent because the client crashed. The
client recovers after a while and resends the pending requests.
The req3 and req4 are sent by the client middleware. The client
application may also resend req4, because it is not replied yet,
but the middleware will ignore it, since it is duplicated. On
the server side, the server middleware sends rep3 and delivers
the req4 to the server application for processing. The client
and server continue interacting normally.

VI. IMPLEMENTATION

A. Main Options

We used Java to implement the exactly-once middleware
pattern as a library. We tried to keep several potential sources
of overhead under control: 1) the load on the network caused
by messages and their headers; 2) memory footprint of the
middleware, including message buffers; 3) the load imposed
by the logging operations of the applications. To reduce the
overhead of middleware messaging, and memory usage, we
used some straightforward techniques, like piggybacking the
acknowledgements in the requests, and immediately deleting
unnecessary data from buffers. To reduce the load imposed by
the middleware logging system, we used the following tech-
nique. A timer is scheduled to periodically log the complete
state of the middleware (with all information regarding the
messages). As the middleware state may change during two
consecutive logging times, the middleware keeps any occurring
change (e.g., removing a message, changing the timestamp
of the message when it is retransmitted) in a distinct file.
In case the middleware needs to recover the last state, after
some failure, it will retrieve the whole (periodic) state of the
middleware, plus the partial updates that occurred afterwards.
The logger deletes all these partial updates, as well as the
previous periodic version, whenever it writes a new one.
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Table I
MIDDLEWARE API

Middleware API
ClientMiddleware(), ServerMiddleware()
addConnection(socket)
removeConnection(socket)
MsgProperties read(socket, message)
int write(socket, message)
acknowledge(socket, messageID)
recover()

Logger API
logRequest(socket, inputdata)
deleteRequest(socket, inputdata)
logResponse(socket, responseID, outdata)
deleteResponse(socket, responseID)

B. The Exactly-Once Middleware API

In Table I, we show the main methods of the Middleware
and Logger API. We remove class references whenever possi-
ble to simplify presentation. The Middleware API provides
the following operations to the applications: creating the
middleware, adding and deleting a connection to/from the
middleware, writing and reading to/from the middleware and
acknowledging (for the client only). Creation of a middleware
object is asymmetric for the two peers. The server creates
a ServerMiddleware object, whereas the client creates
the middleware by instantiating a new ClientMiddleware
object. Despite using different classes, client and server use
symmetric operations most of the time.

Once initialized, both client and server can delegate any
new or existing connections to the middleware using the
addConnection method. TCP, and RSocket are supported
in the middleware. Afterwards, the client and server can
interact, using read, write and acknowledge methods.
Since the middleware might be handling several connections
simultaneously, the application must specify the socket they
are using for each operation. Once terminated, the application
can remove the connection using removeConnection.

The write operation either returns the identifier of the
message to the application or -1 to inform the application of
a message duplication. With the read operation, an object
MsgProperties is returned to the application as well as the
message itself. This object encapsulates the properties of the
message, including the message identifier and message size. A
connection can be removed from the middleware layer using
the remove operation. To recover a connection after a crash,
we must use the recover method. For simplicity we do not
include its parameters here.

We also provide a Logger class with the facilities we
described in Section VI-A. This logger class offers methods
to log the requests, the responses, and to delete them. The
idea is to release the application developer from the need to
efficiently implement these functionalities. With the help of
the Logger class, the application can go through the steps
of Figure 2, although some servers may rely on mechanisms
like database transactions, to keep their state coherent.

VII. EVALUATION OF THE MIDDLEWARE

A. Experimental Setup

To examine the performance and for comparative purposes,
we examined the latency and throughput, with and without
middleware for TCP and RSocket. We also compared our
middleware with Java RMI, because it is a popular technology,
which offers at-most-once semantics. To test the core function-
alities of the middleware we emulated connection, client and
server failures. In all the experiments, we monitored memory
and CPU usage.

The operations provided by the servers are named “Echo”,
“Invoke” and “Invoke2”. The Echo operation receives a String
object and returns the object back to the client without any
changes. Invoke receives an Empty object, reads a name and
an age from a file, and sends a new object with a name and an
age back to the client. Invoke2 receives an Exchange object,
writes its name and age into a file, reads a new name and
age from a file, makes a new object with the new name and
the new age, and sends it back to the client. We performed
a baseline evaluation to understand the typical execution time
of these operations and observed that, on average and for a
total of 100 repetitions, Echo takes 0.13 ms to execute, Invoke
takes 0.34 ms, and Invoke2 0.55 ms.

To examine the latency, we send a request to the server
and calculate the time taken to receive the reply from the
server. To examine the throughput, we use 1000 requests and
consider the time it takes until the client gets the last reply.
To minimize environmental effects on the experiments and
possible warm-up periods, we repeated the tests 100 times
and ignored the first 10 results for latency and the first 20 for
throughput. To evaluate the middleware core functionality, we
designed a set of tests that emulate the connection, client and
server failure. We use Oracle’s JConsole, to monitor memory
and CPU usage of the client and server. The client sends a
number of requests to the server with the rate of 100 messages
per second, taking almost 5 minutes in a fault free execution.
The failure occurs at minute 2 and takes one minute. After
recovery from the failures, the client and server continue
communication normally.

We ran the client on a Mac OS X, version 10.6.7, with a
2.4GHz Intel Core 2 Duo processor, 4GB of RAM and 3MB
of cache. The server ran Linux version 2.6.34.8, with a 2.8
GHz Intel processor, 12 GB of of RAM and 8 MB of cache.
Both client and server were in the same local network.

B. Fault-Free Experiments

The goal of the fault-free experiments is to set the perfor-
mance figures under normal circumstances. We used one client
and 10 simultaneous clients for the purpose. We show all the
results in Table II.

Results show that plain TCP is usually the fastest protocol,
except (by little) for the Echo operation with one client, the
fastest operation. Although TCP’s throughput with one client
is somewhat higher than RMI’s, it is not much higher with
ten clients. For the Invoke2 operation it is even worse than
RMI. We believe that this is caused by the overhead of the
multiple threads handling the TCP connections on the server



8

Table II
LATENCY AND THROUGHPUT WITH AND WITHOUT MIDDLEWARE

side: we create one thread for each new connection, whereas
RMI uses a thread pool. Creating a new thread would be more
appropriate if the operations are relatively long, but for short
operations, a thread pool is more efficient.

Since RSocket is implemented over TCP, we were expecting
worse performance from this technology. In fact, we observed
that latency in RSocket is unreasonably high, unlike through-
put, which is relatively close to that of TCP. We discovered that
the reason for the poor latency comes from Nagle’s algorithm,
which is impossible to switch off in RSocket.

To better observe the degradation of performance caused
by the middleware, in Figure 5 we show latency, throughput,
and the degradation (in percentage) caused by the middleware.
The middleware causes a sensible overhead on latency and
throughput, compared to plain TCP. We could say that this
is expected, due to the logging operations of the exactly-
once semantics. On the other hand, since RSocket has a high
latency, the overhead caused by the middleware is insignificant
(Figure 5 (1) and (2)). We cannot achieve the same results for
throughput. Although our results show that the middleware
has some overhead on the latency and throughput, we believe
that this overhead may be negligible in many real applications.
Whenever the processing time of the server increases, as with
the Invoke2 operation, latency and throughput degradation
soften, thus becoming less important.

In Figure 6 we show results in another way, including the
comparison between the middleware and RMI. We show the
standard deviation as bars in the respective columns. Although
RMI shows worse latency than plain TCP in most settings
(refer to Table II), it has better latency than the middleware
with both plain TCP and RSocket (refer to Figure 6 (1) and
(2)). The interesting thing is that our middleware handled more
requests per second from a single client, but not with ten
clients (Figures 6 (3) and (4)). This shows that the middleware
does not get in the way of this particular item of performance
as it does for latency, but again, we have the effect of the
server thread pool pushing for RMI with 10 clients.
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Figure 5. Latency and Throughput Degradation Caused by Middleware

C. Failure and Recovery

In this section we evaluate the middleware and RSocket in
an emulated faulty environment. We defined three scenarios:
connection failure, client failure, and server failure. We force
these failures to the system at minute 2 until minute 3, and
monitor the memory and CPU usage of the client and server
during the tests.

Refer to Figure 7. The four columns are the client memory
usage, the client CPU usage, the server memory usage, and
the server CPU usage. The memory usage plots include
instantaneous values as well as a more stable progressive
average, which includes all past values2. Each of the five
rows of the figure displays the results of a different test:

2The n-th instance is
(∑n

i=1 di
)
/n, where di is the i-th instance of data.
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Figure 6. Latency and Throughput Comparison with RMI

with raw RSocket; with middleware and RSocket in a fault
free run, with connection failure, with client failure, and with
server failure. Comparing the first two rows, plain RSocket and
RSocket plus middleware, we observe that the middleware’s
overhead on the memory is 7.21% (about 0.76 Mb extra
memory) and on CPU usage is 66.10% (about 1.95% extra
CPU usage). On the server side, the overhead on the memory
is 44.11% (about 0.45 Mb extra memory) and on the CPU is
18.87% (about 0.60% extra CPU). In the third row of the figure
we show the results of a connection failure. When a connection
fails, both client and server stop doing processing related to
that connection. Client’s RSocket keeps trying to make a new
connection. Client’s CPU usage, during the failure, shows this
fact as well. Since RSocket uses exponential back-off strategy
to increase the delay between two consecutive reconnection

attempts, reconnection and recovery does not occur exactly at
minute 3. Client heap memory starts filling smoothly until the
new connection is created. On the server side, the figure does
not show any clearly visible event related to the memory usage,
although CPU usage decreases until the new connection is
created. The results with client failure are shown in the fourth
row of the figure. The client memory usage drops to zero after
the crash and fills up when the client recovers. After the client
restarts, it reads the log files and recovers the state of the failed
connection. As the figure shows CPU usage shows a peak for
starting and recovering. While the normal starting time for
the client was 55 ms, it took 85 ms to start and recover the
connection’s state. The next peak in the client side is caused
by the middleware logging system. Server does not show any
sensible effect on the memory during the client failure, but
the CPU usage decreases until the new connection comes. The
fifth row in the figure shows the server failure scenario. During
the failure, the client periodically keeps trying to reconnect, as
RSocket cannot handle this. We defined 5 seconds for the delay
between two consecutive attempts. When the server recovers
after the failure, it reads the log files to recover the state of the
failed connections. It takes a large CPU usage as the figure
shows. While the normal starting time for the server was 23
ms, it took 37 ms to recover from the failure. Client also uses
more CPU to reconnect to the server and resend the requests
pending for the reply.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we presented an exactly-once middleware
that releases the programmer from most of the complications
deriving from network crashes (including those caused by end-
point crashes). Our middleware supports two types of sockets:
TCP Java Socket or Robust Socket [5] (RSocket). These so-
lutions represent a compromise: the RSocket implementation
transparently recovers from network crashes, but offers worse
performance, in part due to an incomplete implementation. On
the contrary, the TCP solution does not recover transparently
and forces the programmer to manually reconnect. However,
even in this case, we take care of re-synchronizing the state
between client and server, thus releasing the programmer
from most of the burden of this operation. Furthermore, the
standard TCP sockets still enable all the normal options, such
as deactivating Nagle’s algorithm, something that is currently
not possible with the RSocket.

Our experiments show the feasibility of our approach. For
example, performance results with TCP are in line with
and sometimes better than with RMI, a standard, well-
matured technology that offers at-most-once semantics. We
also showed that our middleware has a small impact in terms
of memory and CPU costs. Recovery time from crashes mainly
depends on the policy adopted by the underlying sockets. In
the case of Robust Sockets, this is an exponential back-off, but
a TCP implementation might adopt some other more active
(thus costly) approach.

For these reasons, we argue that our exactly-once pattern
provides clear advantages to programmers: it departs as little
as possible from the ubiquitous and very simple at-most-once
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Figure 7. Memory and CPU usage with Middleware and RSocket under Connection, Client and Server Failure

request-response, it turns connection crash recovery nearly or
completely transparent, and it does not compromise perfor-
mance. An interesting future direction would be to make the
pattern independent from a specific programming language
and make it available system-wide.
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