
Replication for Dependability on Virtualized Cloud
Environments∗

Filipe Araujo
University of Coimbra,

Portugal
filipius@uc.pt

Raul Barbosa
University of Coimbra,

Portugal
rbarbosa@dei.uc.pt

António Casimiro
University of Lisbon, Portugal

casim@di.fc.ul.pt

ABSTRACT
Execution of critical services traditionally requires multi-
ple distinct replicas, supported by independent network and
hardware. To operate properly, these services often depend
on the correctness of a fraction of replicas, usually over 2/3
or 1/2. Defying the ideal situation, economical reasons may
tempt users to replicate critical services onto a single multi-
tenant cloud infrastructure. Since this may expose users to
correlated failures, we assess the risks for two kinds of ma-
jorities: a conventional one, related to the number of repli-
cas, regardless of the machines where they run; and a second
one, related to the physical machines where the replicas run.
This latter case may exist in multi-tenant virtualized envi-
ronments only. We evaluate crash-stop and Byzantine faults
that may affect virtual machines or physical machines. Con-
trary to what one might expect, we conclude that replicas
do not need to be evenly distributed by a fixed number of
physical machines. On the contrary, we found cases where
they should be as unbalanced as possible. We try to system-
atically identify the best defense for each kind of fault and
majority to conserve.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Fault toler-
ance

General Terms
Reliability,Security

Keywords
Cloud computing, Fault-Tolerance, Dependability, Virtual-
ization

∗This work has been supported by the project CMU-
PT/RNQ/0015/2009, TRONE — Trustworthy and Resilient
Operations in a Network Environment.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC2012, December 3, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1608-8/12/12 ...$15.00.

1. INTRODUCTION
To reduce costs, companies increasingly outsource infor-

mation technology to cloud providers. However, with this
movement, they lose much of the control they could exert
on their most critical services. Popular strategies like repli-
cation may not work well on the cloud, because providers
may take advantage of virtualization techniques [8, 7, 5, 9,
13] to concentrate some of (or all) the replicas in the same
physical machine (PM). We could think of a cluster of ap-
plication servers, responding to HTTP requests, or a remote
storage service for instance [3, 6, 2].

Common sense will tell us that one should not use a vir-
tualized infrastructure to run replicas of the same service,
because a single fault could tear down many replicas at
once. Ideally, each new replica should run on a different
PM, preferably at distant physical locations, served by dif-
ferent networks, using diverse software, operating systems,
and so on. However, in this paper we assume exactly the
opposite: for economical reasons, clients will resort to the
same cloud provider and the cloud provider may end up us-
ing virtualized resources to place these replicas, sometimes
using different PMs, other times, inside the same PM. Tak-
ing this as the initial assumption, we qualitatively try to
mitigate the problems that such option raises, giving a sin-
gle defense to the cloud provider: the distribution of the
VMs by the PMs it has available. Depending on the service,
the defender may care for the number of PMs or the number
of VMs that stand after each fault. In particular, motivated
by many consensus-based algorithms, including Byzantine
ones, we count the number of attacks that are necessary be-
fore the service loses the majority of machines, physical or
virtual.

We also assume that the attacker is limited (otherwise,
the defense would be helpless). We evaluate two kinds of
faults: crash-stop faults, where virtual machines (VMs) or
physical machines (PMs) stop due to some hardware or soft-
ware fault; and intentional faults, where some malicious user
may hire a service for the single sake of attacking it. In the
latter case, we assume that the attack to a single process or
VM compromises the VM, the PM where it runs, all other
co-located VMs, and any service in the PM as well. Note
that the attack or crash of a PM could start on a VM, but
we do not really take that detail into account. We focus on
the effect and not on the cause.

While intuition suggests that we should always balance
the VMs among the PMs, after a deeper analysis we con-
clude that this is not always the case. Depending on the
kind of attack and majority to keep, the distribution of VMs

might be irrelevant or should even be as unbalanced as pos-
sible given the same number of PMs. In some cases the
defender should concentrate the VMs as much as possible:
one VM for each but the last PM, and all the other VMs
on the last PM. While this is the best way of confining an
attacker to the smallest possible number of PMs, we also
show that this does not have any impact on the number of
correct VMs, whenever faults on a VM do not affect other
co-located VMs.

What we would like to know is the best way to distribute v
VMs by m PMs (v > m). The goal may be to ensure that a
majority of v VMs or m PMs is correct, to enable operation
of some (Byzantine) fault-tolerance protocol, like the ones
of Correia et al. [15] or Castro and Liskov [14]. Hence, the
main contribution of this paper is to define the appropriate
strategy to defend a majority from different sorts of faults,
including Byzantine. This strategy can be to evenly balance
the VMs, to unevenly balance them or, in some cases, there
is no best strategy. We think that our study can be useful
both for the cloud provider and for the client. For the cloud
provider we try to make the limits of the system clearer.
This may help the provider to create more precise and safer
SLAs. Clients may resort to this study to learn how to
distribute their facilities by different cloud providers.

The rest of the paper is organized as follows. Section 2
points to related work. Section 3 presents our assumptions.
In Section 4 we do some theoretical analysis regarding the
distribution of VMs. Since there is a long and established
field using the terms “balls” (VMs) and “urns” (PMs), we
often keep these terms. In Section 5 we extend the analysis
of the previous section and run Monte Carlo simulations,
whenever we are not aware of closed formulas that may help
us to find the appropriate distributions. In Section 6 we
discuss the best distribution strategies and in Section 7 we
conclude the paper.

2. RELATED WORK
Replication is a well-know technique to tolerate faults in

distributed computing systems. Although many authors fo-
cus on data replication (e.g. [21]), we consider replication
of applications instead. Replication can follow a primary-
backup approach [12], where the primary owns a centralized
control of the group; or an active replication, also known as
“state-machine approach” [17], where all replicas are similar
and control is decentralized. A case worth mentioning that is
specifically oriented toward the cloud is Vertical Paxos [20],
intended for primary-backup replication. Authors consider
the case where the number of replicas is small and grows
only as necessary to overcome faulty servers.

However, to hide replication from the clients, replication
usually entails very expensive forms of consistency [18]. Some
authors argue that clouds may not scale well with such
strongly coupled groups of replicas [11]. A more scalable
and common use for clouds may consist of stateless servers
that do not try to coordinate. Popular technologies, like
JBoss and GlassFish [4, 1] support a “cluster mode”, where
a load balancer may distribute requests among the avail-
able machines. Depending on the applications, consistency
may be pushed back to the (non-replicated) database level,
or may be entirely avoided. In such settings, the role of the
cloud may be to dynamically grow or shrink the server farm,
based on demand.

Regardless of the consistency required, keeping a large

fraction of operational machines (virtual or physical), possi-
bly a majority, is usually a very important problem. Hence,
we believe our work applies to the different scenarios we
enumerated in this Section.

3. MODEL
In this paper we deal with crash-stop and Byzantine faults.

We initially assume that malicious users have limited power,
due to the money they need to hire services, their inability
to pick the right targets, or due to the computational re-
sources necessary for a successful attack. We believe that
this adequately reflects the fact that real services may have
web-based (or other) interfaces requesting money to let the
users in. In particular, we assume that attackers are unable
to determine all the cloud provider resources and perform se-
lective attacks to the running services, once they are inside
the provider’s network. This is the focus of other research
work [16]. Hence, we consider that the attacker must go
through the cloud provider to access other cloud provider
resources, following an apparently normal behavior. Never-
theless, in Section 6 we consider broader classes of attacks.

We consider that the cloud has m PMs. Each of the m
machines may run one or more of the v processes that pro-
vide some service. We assume that each process runs on its
own VM. To make our analysis clearer, we often consider
a balls and urns problem: the urn is a PM; the VMs (ei-
ther guest or host) are the balls. VM failures correspond
to drawing a ball from an urn. In some cases, the attacker
will put the ball again in the same urn, sometimes he or she
will simply remove the ball. One should notice that this is
not really the attacker’s choice, but a feature of the service.
Consider a cluster of HTTP servers running in the cloud.
Subsequent requests to the service may end up in the same
application server. This would be a case without removal —
the attacker may find the same HTTP server on the next
attack, or “ball” in the “urns and balls” model. Unlike this
if he asks for an extra replica (e.g., an entire VM), then we
consider a removal — the attacker cannot find the same VM
again.

When a VM crashes, we assume that this does not affect
other VMs or the hosting PM, as long as other co-located
VMs remain active. In the Byzantine case, we assume that
as soon as an attacker takes over a VM, the entire PM, along
with its VMs, become compromised, and the cloud provider
must no longer rely on them. Depending on the assumption
and on the service, we may want to ensure a majority of cor-
rect VM or PM replicas. In fact, some consensus algorithms,
as the one in [15], use special hardware devices, such as a
Trusted Platform Module (TPM), to improve the tolerance
to Byzantine nodes. While appropriate when there is a one-
to-one correspondence between machines and hardware, the
existence of multiple VMs sharing the same hardware raises
a problem to these algorithms, because they use the notion
of round and the TPM may only sign a single message per
round. It will thus not work with more than one VM. On
the other hand, demanding one TPM per VM seems unrea-
sonable as this would defeat the purpose of virtualizing the
infrastructure. It is therefore a natural step to virtualize
the TPM itself, as in vTPM [10]. Other possibilities exist
as well: e.g., a single proxy per PM could represent all the
co-located VMs. The point is that whenever a PM owns a
single function, device or process that is shared by all the
VMs, it becomes important to ensure a majority of correct

PMs.
Overall, we have crash-stop and Byzantine faults; we also

consider Byzantine faults where the attacker can pick his or
her targets (3 kinds of faults); faults may occur at the VM
or PM level (2 levels); and we may want to preserve VM
or PM majority (2 majorities). This makes for a total of
3 × 2 × 2 = 12 cases of interest that we discuss along the
paper and wrap up in Section 6.

4. THEORETICAL ANALYSIS

4.1 Independent VM failures
We start our theoretical analysis by considering that faults

are independent: the failure of a VM does not affect any
other co-located VM. This may fit a crash-stop fault. We
also assume that to participate in some replicated protocol,
the PM needs to have at least one operational VM, which
is to say that the PM becomes unusable as soon as the last
VM fails. I.e., Given the failure of n ≤ v VMs, we can
calculate the probability that a PM with vi VMs fails. We
compute this value in Equation 1, for vi < n ≤ v, using the
Hypergeometric distribution. Pfi(n) is the probability that
PM i fails, after all its vi VMs have failed.

Pfi(n) =

(
vi
vi

)(
v−vi
n−vi

)(
v
n

)
=

n× (n− 1)× . . . (n− vi + 1)

v × (v − 1)× . . . (v − vi + 1)
(1)

Since this function is convex, the expected number of failed
PMs is a minimum when Pf1 = Pf2 = . . . = Pfm . This
results from Jensen’s inequality [19, Exercise (3.1)]. This
means that if the VMs fail independently of each other, one
should uniformly distribute them by the PMs.

4.2 VM failure contaminates other VMs
We now consider Byzantine attacks, where a malicious

user may take over all the co-located VMs, once he or she
successfully attacks the first one. In mathematical terms,
we can treat this problem as an urns and balls problem,
and use known results, such as [19]. Urns represent a PM,
while balls represent the VMs (or processes). To distinguish
between correct and compromised VMs we may assign colors
to balls: white balls represent correct machines, whereas
black balls represent compromised machines. The objective
of our analysis in this section is to show that there is a proper
way of initially distributing white balls, which minimizes the
number of urns that end up having black balls as a result
of malicious actions successively changing the color of balls
from white to black. This corresponds to letting the cloud
provider select a distribution of VMs by the PMs. We care
about the number of urns that have no black balls, which
we denote by the random variable X. P (X ≥ k) is the
probability that k or more urns have no black balls.

Theorem 1. Assume that we have v white balls distributed
by 1 < m < v urns, such that each urn has at least one ball.
Assume that the attacker works in successive turns, picking
one ball at a time from a urn, and always putting back a
black ball in the same urn. The attacker does not select the
ball or the urn. ∀ k ∈ {1, . . . ,m}, P (X ≥ k) is maximized
when m− 1 urns have 1 ball, and the remaining urn has the
remaining v −m + 1 balls.

1 1... 1 1... v-m
+1

>1

b1-1 b2-1 b|O|
-1

...

1 1... 1 1...

A
im

ag
in

ar
y

B

v-m
+1 ...=

m urns

1

1

1 b1>1... b2>1 b|O|
>1

... >1

or
ig

in
al

B 1

urns in set O

sp
lit

 u
rn

s

Figure 1: Distributions of balls by urns in settings
A and B

Proof. Refer to Figure 1. Note that white urns have
only 1 ball, gray urns have at least 1, but less than v−m+1
balls, and black urns have v−m+ 1 balls. Consider setting
A, where only 1 urn has more than 1 ball. I.e., m − 1 urns
have 1 ball, whereas the last urn in the figure has v−m+ 1
balls. Setting B represents any other case, with the same
number of urns, m, but with a different distribution of balls.
Let us match pair-wise the urns in setting A with the urns
in setting B (original), starting by the 1-ball urns (on the
left side of the figure). After this first set of urns, we define
another set O, with the urns that have more than 1 ball in
B, but only one ball in A. This definition excludes the first
urns that have 1 ball in A and B, as well as the last urn of
A, which has more than 1 ball. Note that 1 ≤ |O| ≤ m− 1.

We now resort to an artificial division of set O in B. We
split each one of the |O| urns in B into two other urns: one
with 1 ball, and the other with the remaining balls. This
makes for a total of m− 1 urns with only 1 ball, just like in
setting A. The remaining v − m + 1 balls are spread over
|O| + 1 urns (in gray in the “imaginary B”), each having
one or more balls. In the rest of our reasoning, we should
refer to settings A and “imaginary B”, with m and m + |O|
urns, respectively. In both cases there are m − 1 urns with
only 1 ball. We first observe that these urns have exactly
the same probability of having a black ball. What about
the singe black and |O| + 1 gray urns in A and “imaginary
B”, respectively? Since the number of balls is the same,
v−m+ 1, the probability of having one or more black balls
is exactly the same in both settings. However, these black
balls only “contaminate” (or exist) in a single urn in setting
A, whereas in “imaginary B” they may spread over multiple
urns. As a consequence, P (X ≥ k) in setting A must be the
same or greater than in setting B.

To calculate P (X ≥ k), we can use a result from [19,
Equation (3.5)], which we restate here:

P (X ≥ k) =

(k)∑
a

(
1−

k∑
j=1

paj

)n

−

−

(
k

k − 1

)
(k+1)∑

a

(
1−

k+1∑
j=1

paj

)n

+

+

(
k + 1

k − 1

)
(k+2)∑

a

(
1−

k+2∑
j=1

paj

)n

−

. . .

+ (−1)m−k

(
m− 1

k − 1

)
m∑

j=1

pj
n (2)

The m urns define a set of integers {1, 2, . . . ,m}. The
variable pj is the probability that we assign a black ball to
urn j. From this set, we define subsets with k elements

{a1, a2, . . . , ak}.
∑(k)

a denotes a summation over all these
subsets. Thus, there are

(
m
k

)
terms in this sum. For a bet-

ter understanding of this formula, we should realize that

summation
∑(k)

a concerns the probability of having k urns
without black balls when n black balls have been dropped in
the urns. The summation that follows in the formula con-
siders the probability of having k + 1 empty for the same n
balls and so on.

4.3 Keeping a Majority of Virtual Machines
The next question we consider is the impact of machine

failures on the number of VMs (or processes) that stay alive
in a correct state. In many cases, this number might be
more important than the number of different PMs where the
replicas run. One may ask whether concentrating many pro-
cesses in the same (or few) machine(s) could reduce the av-
erage number of processes that survive (other) PM crashes.
Interestingly, the answer is no. If we assume that all PMs
have the same characteristics, at any given time t, the aver-
age number of VMs running is the same, independently of
their distribution by the same set of PMs. I.e., if processes
themselves do not fail, we have:

E[Z(t)] =

m∑
i=1

vi · P [Yi(t) = 1] = P [Y (t) = 1]v (3)

where Z(t) is a random variable that represents the num-
ber of VMs that are running at time t. Variable vi is the
number of VMs running in machine i, Yi(t) is a random vari-
able that assumes the value 0 if machine i is off at time t or
1 if the machine is on. Since we assume that this probability
is the same for all machines, we can remove the subscript
and simply write P [Y (t) = 1]. Equation 3 shows that the
distribution of VMs (or processes) by the PMs is not rele-
vant from the point of view of the average. However, one
should notice that other metrics may be relevant as well:
on the few occasions when the most loaded PM fails, much
fewer replicas will be available. I.e., the unbalanced setting
will most of the times keep a few more processes running,
but sometimes, it will have much less.

5. EXPERIMENTAL EVALUATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
[X

 >
=

 3
]

Number of attacks

Unbalanced (60%) w/out removal
Balanced w/out removal

Unbalanced (60%) w/ removal
Balanced w/ removal

Figure 2: Probability of conserving majority for 5
physical machines

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60

P
[X

 >
=

 1
1
]

Number of attacks

Unbalanced (60%)
Balanced

Figure 3: Probability of conserving majority for 21
physical machines

Since we cannot evaluate all the interesting scenarios us-
ing analytical expressions, in this section we partially resort
to simulation. To evaluate the likelihood of keeping a ma-
jority of correct PMs, we start with m = 5 PMs and v = 10
VMs in Figure 2. We considered four cases: in one of them,
all the machines (urns) have the same probability of receiv-
ing an attack (black ball) and this probability remains con-
stant. We call this case “balanced without removal”. We
also consider the case where a single machine has a prob-
ability of 60% of receiving an attack, while the remaining
40% probability is equally distributed among the remaining
machines. This corresponds to running 6 VMs in a single
PM , while the remaining 4 VMs run in the other 4 PMs, in a
one-to-one correspondence. To this case we call “unbalanced
(60%) without removal”. We also consider removals of the
VMs once the attacker dominates them. This corresponds
to a scenario where the attacker is successively requesting
for some instance of a service from a limited set. Each time
it gets a new instance, the attacker will not get the same,
but a new one (e.g., a new VM). These are the two cases
with removal.

Still in Figure 2, in the plots without removal, we use
Equation 2 to compute the probability that at most 2 out of
5 urns have black balls, as the number of attacks grows. We
can see a clear difference between the balanced and unbal-
anced cases. The chances of keeping a majority significantly

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30

R
o
u
n
d
s
 u

n
ti
l
m

a
jo

ri
ty

 i
s
 l
o
s
t
w

it
h
 p

ro
b
a
b
.
>

 5
0
%

Number of physical machines

Unbalanced (60%)
Balanced

Figure 4: Evaluation of the rounds the attacker
needs until it probabilistically gets the majority as
a function of the number of physical machines

improve for the latter case. For instance, after 5 attacks,
there is still more than 40% chances of conserving the major-
ity in the unbalanced case, while in the balanced case, this
probability is below 10%. To plot the lines with removal
we resorted to Monte Carlo simulation. As we expected,
removal makes it easier for the attacker to reach a larger
number of different PMs, thus negatively affecting the prob-
ability of keeping a majority of correct PMs. The four plots
of the figure actually depict two extreme pairs of cases: the
one without removal approximates a scenario where we have
a very large number of VMs, or where the same VM can be
handed to the attacker. The pair of lines with removal cor-
responds to the other extreme case, where we have a small
number of VMs (10) for the available PMs (5).

Next, in Figure 3, we try a larger number of PMs, m = 21,
to compare against the smaller set of 5. For this larger
set, the advantage of unbalancing the distribution of VMs
is even more visible in the case without removal, given by
Equation 2. For the balanced option, after a little more than
20 attacks, there is nearly no chance that the majority of the
PMs is still sane. This takes more than 60 attacks in the
case of the unbalanced scenario.

We can now determine the number of attacks that are
necessary until the attacker (probabilistically) holds the ma-
jority of the machines. We do this evaluation in Figure 4,
for the balanced and unbalanced (60%) cases, without re-
moval, for a varying number of PMs. In both cases, the
growth seems to be approximately linear, but the slope is
much higher in the unbalanced case, thus making it much
more difficult to break.

Finally, in Figure 5 we evaluate the unbalance factor. We
use 11 machines and make the balance change from 1/11
(balanced) to 1− 1/11 u 91% (most unbalanced) in steps of
1/11. For all these unbalanced factors, we plot the number
of attacks until the attacker gets the majority of machines
with probability greater than 50%. There is no removal.

6. PLACEMENT STRATEGIES OF THE DE-
FENSE

We now try to identify the best strategy to distribute the
VMs by the PMs. Should the defender use a balanced ap-
proach or an unbalanced one? We consider six sorts of at-
tacks, crash-stop, limited Byzantine and unlimited Byzan-

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1

R
o
u
n
d
s
 u

n
ti
l
m

a
jo

ri
ty

 i
s
 l
o
s
t
w

it
h
 p

ro
b
a
b
.
>

 5
0
%

Unabalance factor

Figure 5: Evaluation of the rounds the attacker
needs until it probabilistically gets the majority as
a function of the unbalance factor

tine, to VMs, or directly to the PMs (in fact, an attack to a
PM could start from a VM), and two different goals, keeping
a majority of PMs or VMs. Based on these twelve combina-
tions, and on our evaluation of Sections 4 and 5, in Table 1
we recommend the best placement for the VMs.

Let us start from the simplest cases: crash-stop faults. In
the first line, which concerns crashes that affect the entire
PM (e.g., some software component that stops all the VMs
or the hypervisor and other relevant services), the distribu-
tion of the VMs is irrelevant to the kind of majority the
defender might want. This is evidently so in the case of a
PM majority, whereas in Section 4.3 we demonstrate that
the same holds for a VM majority. If the crashes occured at
the VM level, and, if these crashes did not affect the PM or
their services, then, again, the distribution of the VMs would
be irrelevant. However, we think that it is more likely that
the PM ceases to be useful for a service once the last VM
residing there crashes. Therefore, we may want to avoid as
much as possible the crash of all the VMs. In Section 4.1 we
showed that balancing the VMs is the best option.

The cases with Byzantine faults are slightly more elabo-
rate. In the “Limited Byzantine” attacks, in lines three and
four of the table, the attacker randomly gets a VM or a
PM when he/she hires a service. He or she cannot pick the
VM/PM that better suits the attack. When the attacker is
provided an entire PM1, the distribution of VMs by the PMs
is not relevant, regardless of the majority the defender wants
to preserve. Since the defender loses the PM, VMs do not
have any role in a majority of PMs, whereas Section 4.3,
once again, applies to the case of a VM majority. There-
fore, in line three, we have a pair of “Irrelevants”. If, on the
other hand, the fault starts on a VM and may extend to
the entire machine (line four), the unbalanced option is the
best to keep a PM majority (Sections 4.2 and 5). However,
unbalancing is negative to keep a majority of VMs, and, if
this is the goal of the defender, he or she should balance the
VMs by the PMs. This does not contradict the findings of
Section 4.3, because in this case the most heavily loaded ma-
chine is more likely to suffer an attack, while in that Section
the probabilities where the same.

The final cases are identical: if the attacker may choose

1Another way of putting this case is to say that the attacker
may reach all PMs with the same probability.

Table 1: Distribution of VMs by PMs as a func-
tion of the fault and the objective to achieve by the
defender

Attack/Objective PM Majority VM Majority

Crash-Stop on PMs Irrelevant Irrelevant
Crash-Stop on VMs Balanced Irrelevant
Lim. Byzantine PMs Irrelevant Irrelevant
Lim. Byzantine VMs Unbalanced Balanced
Unlim. Byzantine PMs Irrelevant Balanced
Unlim. Byzantine VMs Irrelevant Balanced

the resource to attack, he/she may prefer one with many
VMs (lines five and six). Unbalancing is therefore not rele-
vant for a PM majority, but is negative for a VM majority.

7. CONCLUSION
Clouds are changing the surface of information technolo-

gies. However, concentration of resources in the same region,
network, or even machine poses a challenge to designers of
dependable systems. In this paper we evaluated exactly this
problem. We adopted the perspective of the cloud provider
that needs to distribute processes or VMs by a given fixed
set of PMs. Although intuition could suggest that evenly
balancing the VMs would make a more dependable system,
for many scenarios this is not the case: the distribution is
either irrelevant or should be extremely unbalanced.

We think that the reasoning that follows our approach is
to change the defender from the cloud provider to the user
of the service. The user may anticipate himself to the cloud
provider by distrusting it. In this case, the user might be
tempted to hire the services of multiple providers to balance
the VMs or the processes at his own will. In this case, despite
the advantages of building a more robust system based on
competing providers, the user would need to have a broker of
cloud services, with the corresponding increase in complexity
and costs.

8. REFERENCES
[1] GlassFish — Open Source Application Server.

http://glassfish.java.net/. Retrieved on October
4, 2012.

[2] Google App Engine — Google Developers.
https://developers.google.com/appengine/.
Retrieved on August 5, 2012.

[3] Heroku | Cloud Application Platform.
http://www.heroku.com. Retrieved on August 5, 2012.

[4] JBoss Application Server 7 — JBoss Community.
http://www.jboss.org/jbossas. Retrieved on
October 4, 2012.

[5] Papers — Oracle VM VirtualBox.
https://www.virtualbox.org/wiki/Papers.
Retrieved on August 5, 2012.

[6] Ruby On Rails and PHP Cloud Hosting PaaS |
Managed Rails Development | Engine Yard Platform
as a Service. http://www.engineyard.com. Retrieved
on August 5, 2012.

[7] Technical White Papers — VMWare.
http://www.vmware.com/resources/techresources/.
Retrieved on August 5, 2012.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of
virtualization. In Proceedings of the nineteenth ACM
symposium on Operating systems principles, SOSP
’03, pages 164–177, New York, NY, USA, 2003. ACM.

[9] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In Proceedings of the annual conference on
USENIX Annual Technical Conference, ATEC ’05,
pages 41–41, Berkeley, CA, USA, 2005. USENIX
Association.

[10] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman,
Ronald Perez, Reiner Sailer, and Leendert van Doorn.
vtpm: virtualizing the trusted platform module. In
Proceedings of the 15th conference on USENIX
Security Symposium - Volume 15, USENIX-SS’06,
pages 305–320, Berkeley, CA, USA, 2006. USENIX
Association.

[11] Ken Birman, Gregory Chockler, and Robbert van
Renesse. Toward a cloud computing research agenda.
SIGACT News, 40(2):68–80, June 2009.

[12] Navin Budhiraja, Keith Marzullo, Fred B. Schneider,
and Sam Toueg. Distributed systems (2nd ed.).
chapter The primary-backup approach, pages 199–216.
ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 1993.

[13] F.L. Camargos, G. Girard, and B. des Ligneris.
Virtualization of linux servers. In Proceedings of the
Linux Symposium, pages 63–76, July 2008.

[14] Miguel Castro and Barbara Liskov. Practical
byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, November 2002.

[15] Miguel Correia, Giuliana S. Veronese, and Lau Cheuk
Lung. Asynchronous byzantine consensus with 2f+1
processes. In Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pages 475–480, New
York, NY, USA, 2010. ACM.

[16] Y. Deswarte, L. Blain, and J.-C. Fabre. Intrusion
tolerance in distributed computing systems. In
Research in Security and Privacy, 1991. Proceedings.,
1991 IEEE Computer Society Symposium on, pages
110 –121, may 1991.

[17] Rachid Guerraoui and André Schiper. Fault-tolerance
by replication in distributed systems. In In
Proceedings of the Conference of Reliable Software
Technologies, pages 38–57. Springer Verlag, 1996.

[18] Maurice P. Herlihy and Jeannette M. Wing.
Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst.,
12(3):463–492, July 1990.

[19] Norman L. Johnson and Samuel Kotz. Urn Models and
Their Application — An Approach to Modern Discrete
Probability Theory. John Wiley & Sons, Inc., 1977.

[20] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou.
Vertical paxos and primary-backup replication. In
Proceedings of the 28th ACM symposium on Principles
of distributed computing, PODC ’09, pages 312–313,
New York, NY, USA, 2009. ACM.

[21] Cong Wang, Qian Wang, Kui Ren, Ning Cao, and
Wenjing Lou. Toward secure and dependable storage
services in cloud computing. IEEE Trans. Serv.
Comput., 5(2):220–232, January 2012.

