
D
o
c
t
o
r
o
f
P
h
il
o
so

p
h
y
D
isse

r
t
a
t
io
n

J
osé

C
arlos

B
regieiro

R
ib
eiro

2010

Contribuciones a la Mejora
de las Técnicas para Test
de Software Orientado a Objetos
Mediante Programación Genética

Contributions for Improving Genetic Programming-Based Approaches
to the Evolutionary Testing of Object-Oriented Software

José Carlos Bregieiro Ribeiro

Doctor of Philosophy Dissertation
Spain, 2010

U
N
IV

E
R
S
ID

A
D

D
E
E
X
T
R
E
M
A
D
U
R
A

Thesis for the Degree of Doctor of Philosophy

This Thesis was submitted to the University of Extremadura

in accordance with the criteria necessary for the award

of the Doctorate Degree with European Mention.

Organization:

Departamento de Tecnoloǵıa de los Computadores y de las Comunicaciones;

Universidad de Extremadura; Mérida; España

Title:

Contribuciones a la Mejora de las Técnicas para Test de Software Orientado a

Objetos Mediante Programación Genética (Contributions for Improving Genetic

Programming-Based Approaches to the Evolutionary Testing of Object-Oriented

Software)

Author:

José Carlos Bregieiro Ribeiro

Supervisors:

Francisco Fernández de Vega (Universidad de Extremadura, España)

Mário Alberto Zenha-Rela (Universidade de Coimbra, Portugal)

© José Carlos Bregieiro Ribeiro 2010

Dr. D. Francisco Fernández de Vega, profesor titular de la Universidad de

Extremadura, España

CERTIFICA:

que la presente memoria, titulada “Contribuciones a la Mejora de las Técnicas

para Test de Software Orientado a Objetos Mediante Programación Genética”

(“Contributions for Improving Genetic Programming-Based Approaches to the

Evolutionary Testing of Object-Oriented Software”) ha sido realizada por D.

José Carlos Bregieiro Ribeiro bajo mi dirección en el Departamento de Tec-

noloǵıa de los Computadores y de las Comunicaciones de la Universidad de

Extremadura.

Y para que conste, y en cumplimiento de la legislación vigente, firmo la

presente.

Dr. D. Francisco Fernández de Vega

Dr. D. Mário Alberto Zenha-Rela, profesor titular de la Universidade de

Coimbra, Portugal

CERTIFICA:

que la presente memoria, titulada “Contribuciones a la Mejora de las Técnicas

para Test de Software Orientado a Objetos Mediante Programación Genética”

(“Contributions for Improving Genetic Programming-Based Approaches to the

Evolutionary Testing of Object-Oriented Software”) ha sido realizada por D.

José Carlos Bregieiro Ribeiro bajo mi dirección en el Departamento de Tec-

noloǵıa de los Computadores y de las Comunicaciones de la Universidad de

Extremadura.

Y para que conste, y en cumplimiento de la legislación vigente, firmo la

presente.

Dr. D. Mário Alberto Zenha-Rela

To my parents

Contents

Acknowledgements vii

Abstract ix

List of Abbreviations xi

List of Figures xiii

List of Tables xv

List of Listings xix

1 Introduction 1

1.1 Major Contributions . 2

1.2 Thesis Structure . 3

2 Background and Terminology 5

2.1 Object-Orientation . 5

2.1.1 Objects and Classes 8

2.1.2 Encapsulation, Inheritance and Polymorphism 9

2.2 Software Testing . 10

2.2.1 Levels of Testing . 11

2.2.2 Testing Strategies . 14

2.2.3 Static Analysis and Dynamic Analysis 16

2.3 Evolutionary Algorithms . 18

2.3.1 Genetic Programming 21

2.4 Evolutionary Testing . 26

2.4.1 Object-Oriented Evolutionary Testing 28

2.5 Summary . 34

iii

3 Related Work 37

3.1 Object-Oriented Evolutionary Testing Techniques 37

3.1.1 Genetic Algorithms-based Approaches 38

3.1.2 Genetic Programming-based Approaches 41

3.1.3 Other Metaheuristics-based Approaches 45

3.2 Conclusions . 49

4 A Genetic Programming-based Framework for the Evolu-

tionary Testing of Object-Oriented Software 51

4.1 Methodology Overview . 52

4.2 Technical Approach . 53

4.3 Test Object Analysis . 55

4.3.1 Test Object Instrumentation and Control-Flow Graph

Creation . 55

4.3.2 Test Cluster Definition 59

4.3.3 Function Set Generation 62

4.3.4 Evolutionary Search Parameterisation 62

4.4 Test Data Generation . 64

4.4.1 Setting Up The Evolutionary Run 64

4.4.2 Evolving Test Programs 66

4.4.3 Decoding Test Programs 66

4.4.4 Evaluating Test Programs 67

4.5 Summary . 70

5 A Strategy for Evaluating Test Programs for the Evolu-

tionary Testing of Object-Oriented Software 71

5.1 Control-Flow Graph Nodes’ Weights Reevaluation 72

5.2 Evaluation of Feasible Test Cases 73

5.3 Evaluation of Unfeasible Test Cases 73

5.4 Experimental Studies . 74

5.4.1 Probabilities of Operators Study 75

5.4.2 Evaluation Parameters Study 76

5.4.3 Discussion . 76

5.5 Summary . 80

6 Employing Purity Analysis for Reducing the Input Do-

main of Object-Oriented Evolutionary Testing Problems 81

6.1 Purity Analysis . 82

6.1.1 Related Work . 83

6.2 Purified Function Set Generation 85

6.3 Experimental Studies . 88

6.3.1 Input Domain Size Study 91

6.3.2 Test Data Generation Results Study 92

6.3.3 Discussion . 94

6.4 Summary . 95

7 An Adaptive Approach to the Evolutionary Testing of

Object-Oriented Software 97

7.1 Adaptive Evolutionary Algorithms 98

7.2 Adaptive Evolutionary Testing Strategy 99

7.2.1 Constraint Selection Ranking Adaptation Strategy . 103

7.3 Experimental Studies . 105

7.4 Summary . 109

8 Enabling Object Reuse on Genetic Programming-based

Approaches to Object-Oriented Evolutionary Testing 111

8.1 The Object Reuse Operator 113

8.1.1 At-Nodes . 114

8.1.2 Valid Replaced-Destination Node Pairs 116

8.1.3 Replaced-Destination Node Pair Selection 117

8.1.4 Method Call Tree Linearisation 117

8.2 The Reverse Object-Reuse Operator 118

8.3 Experimental Studies . 119

8.3.1 Results and Discussion 120

8.4 Related Work . 121

8.5 Summary . 125

9 Conclusions and Future Work 127

Bibliography 131

A Publications 147

B Example ECJ Parameter and Function Files 151

C Resumen en Español 155

Acknowledgements

I would like to start by expressing my sincere gratitude to my advisors,

Francisco Fernández de Vega and Mário Alberto Zenha-Rela, for giving

me the privilege of working with them and for guiding me towards the

goal. I owe much of my research to their availability, their support, their

enthusiasm.

I also want to thank my colleagues in the Department of Computer

Science in the Polytechnic Institute of Leiria, especially those who shared

my problems and worries.

A special word goes to all my friends; they were the ones who “made

my life happen while I was busy making other plans”.

I would also like to acknowledge the help and contributions of all the

researchers – even those whom I did not have the chance to meet in person

– who have inspired me in this work.

Finally, I would like to take this opportunity for sending a big kiss to

Marta, my mum, my dad, and my brother. I simply cannot think of a way

to express my gratitude in words. I thank them most of all.

vii

Abstract

Software Testing is the process of exercising an application to detect errors

and to verify that it satisfies the specified requirements. It is an expen-

sive process, typically consuming roughly half of the total costs involved

in software development; automating Test Data generation is thus vital to

advance the state-of-the-art in Software Testing. The application of Evolu-

tionary Algorithms to Test Data generation is often referred to as Evolu-

tionary Testing. The goal of Evolutionary Testing is to find a set of Test

Programs which satisfies a particular test criterion. The focus of this work

was put on developing a Genetic Programming-based solution for evolving

Test Data for the structural Unit Testing of Object-Oriented programs.

The technical approach to Object-Oriented Evolutionary Testing pro-

posed involves representing Test Programs using the Strongly-Typed Ge-

netic Programming paradigm. Test Program quality evaluation includes

instrumenting the Test Object, and executing it using the generated Test

Programs with the intention of collecting trace information with which to

derive coverage metrics. The aim is that of efficiently guiding the search

process towards achieving full structural coverage of the program under test.

The foremost objectives of this work were those of defining strategies for

addressing the challenges posed by the Object-Oriented paradigm, and of

proposing methodologies for enhancing the efficiency and the effectiveness

of search-based approaches to Software Testing.

Relevant contributions include:

� the introduction of a novel strategy for Test Program evaluation and

search guidance;

� the presentation of an Input Domain Reduction methodology based

on the concept of Purity Analysis;

ix

� suggesting an adaptive methodology for promoting the introduction

of relevant instructions into the generated Test Programs by means of

Mutation; and

� the proposal of an Object Reuse methodology for Genetic Program-

ming-based approaches to Evolutionary Testing, which allows a single

object instance to be used as a method parameter multiple times.

The advances attained resulted in the development and implementation

of the eCrash Test Data generation tool, which embodies the approach to

Object-Oriented Evolutionary Testing proposed; special attention was paid

to improving the level of automation of both the static Test Object analysis

and the iterative Test Data generation processes.

Keywords: Evolutionary Testing, Object-Orientation, Search-Based Soft-

ware Engineering, Strongly-Typed Genetic Programming, Test Program

Evaluation, Input Domain Reduction, Adaptive Evolutionary Algorithms,

Object Reuse

List of Abbreviations

ADF Automatically Defined Function. .121

API Application Programming Interface . 30

ATOA Automatic Test Object Analysis (eCrash module) 54

CCN Cyclomatic Complexity Number . 119

CFG Control-Flow Graph . 16

CGP Cartesian Genetic Programming . 124

CUT Class Under Test . 29

EA Evolutionary Algorithm. 18

ECJ Evolutionary Computation in Java . 55

EMCDG Extended Method Call Dependence Graph 62

GA Genetic Algorithm . 20

GP Genetic Programming . 21

IP Implicit Parameter (of a method) . 87

JDK Java Development Kit . 30

JML Java Modelling Language . 39

JVM Java Virtual Machine . 7

MCS Method Call Sequence . 29

MCT Method Call Tree . 52

MIO Method Information Object . 67

MUT Method Under Test . 29

OR Object Reuse . 111

PDGP Parallel Distributed Genetic Programming 124

xi

Pn Explicit Parameter n (of a method) . 87

PTC2 Probabilistic Tree Creation 2 . 102

RE Return Value (of a method) . 87

SBSE Search-Based Software Engineering. .26

SBST Search-Based Software Testing . 48

STGP Strongly-Typed Genetic Programming . 26

TOI Test Object Instrumentation (eCrash module).54

TPEM Test Program Evaluation and Management (eCrash module) 54

TPG Test Program Generation (eCrash module) 54

List of Figures

2.1 Compiling and running an application using the Java technology. 8

2.2 The Waterfall Model for Software development. 13

2.3 Testing techniques and types of defects. 15

2.4 Control-Flow Graph for the search method of the Stack class. 17

2.5 Flowchart for the Genetic Programming paradigm. 22

2.6 Example of Genetic Programming subtree Crossover. 24

2.7 Example of Genetic Programming subtree Mutation. 24

2.8 Example interpretation of a Genetic Programming syntax tree. . 25

2.9 Example Method Call Tree. The Method Under Test is the

search method of the Stack class. 32

3.1 Evacon framework overview. 40

3.2 EvoUnit framework overview. 42

3.3 Breeding pipeline used by EvoTest. 44

4.1 Cross-Functional Diagram of the eCrash Framework. 56

4.2 Diagram for the Test Object Analysis process. 57

4.3 Diagram for the Test Data generation process. 65

6.1 EMCDG and purified EMCDG for the Stack class. 90

6.2 Purified Function Set for the Stack class, and entries excluded

from the Purified Function Set 90

6.3 Experimental results for the Input Domain Reduction study: av-

erage percentage of CFG nodes remaining per generation. 94

7.1 Example Method Call Tree and corresponding Test Program,

built using the Function Set defined in Table 7.1. 103

7.2 Experimental Results for the Adaptive Evolutionary Testing study:

average percentage of CFG nodes remaining per generation. . . 109

xiii

8.1 Object Reuse and Reverse Object Reuse operators overview. . . 113

8.2 Example Method Call Tree without Object Reuse; and corre-

sponding Method Call Sequence and Test Program. 115

8.3 Example Method Call Tree with Object Reuse; and correspond-

ing Method Call Sequence and Test Program. 116

8.4 Experimental results for the Object Reuse study: Average per-

centage of CFG nodes remaining, average MCS length, and av-

erage percentage of feasible individuals per generation. 123

List of Tables

2.1 Internet-based determination of popular programming paradigms. 6

2.2 Internet-based determination of popular programming languages. 7

2.3 Relative cost to repair defects when found at different stages of

Software development. 13

4.1 Default constant set to be included in the Test Cluster for the

primitive Java data types. 61

5.1 Experimental results for the Probabilities of Operators study:

percentage of runs attaining full structural coverage, and average

number of generations required to attain full structural coverage. 77

5.2 Experimental results for the Evaluation Parameters study: per-

centage of runs attaining full structural coverage, and average

number of generations required to attain full structural coverage. 78

6.1 Example Test Cluster for the Stack Class. 85

6.2 Parameter Purity Analysis results for the Stack class. 86

6.3 Data Types required by the Public Members of the Stack class. 87

6.4 Data Types provided by the Public Members of the Stack class. 87

6.5 Experimental results for the Input Domain Reduction study:

number of EMCDG edges and Function Set entries with and

without Parameter Purity Analysis. 92

6.6 Experimental results for the Input Domain Reduction study: av-

erage number of generations required to attain full structural

coverage, and percentage of runs attaining full structural coverage. 93

7.1 Example Function Set and Type Set. 103

7.2 Experimental Results for the Adaptive Evolutionary Testing study:

percentage of runs attaining full structural coverage. 108

xv

8.1 Sources of individuals for the Object Reuse experimental study. 119

8.2 Experimental results for the Object Reuse study: percentage of

runs attaining full structual coverage, and average number of

individuals evaluated per run. 122

List of Algorithms

4.1 Methodology overview. 54

4.2 Algorithm for Method Call Tree linearisation in the absence

of At-Nodes. 68

4.3 Algorithm for Test Program synthesis with basis on the Method

Call Sequence. 69

6.1 Input Domain Reduction strategy overview. 85

6.2 Algorithm for EMCDG generation with basis on the Test Clus-

ter. 89

6.3 Algorithm for the generation of the purified EMCDG. 91

6.4 Algorithm for the generation of the purified Function Set with

basis on the purified EMCDG. 91

8.1 Algorithm for Method Call Tree linearisation in the presence

of At-Nodes. 118

xvii

List of Listings

2.1 Source code for the search method of the Stack class. . . . 17

2.2 Bytecode for the search method of the Stack class. 17

2.3 Example Method Call Sequence, resulting from the linearisa-

tion of the Method Call Tree depicted in Figure 2.9. 32

2.4 Example Test Program, synthesised with basis on the Method

Call Sequence depicted in Listing 2.3. 32

3.1 Syntax of chromossomes utilised by eToc. 39

8.1 Programs exemplifying object equality verification in Java. . 112

8.2 Example Test Program employing the Object Pool approach

to Object Reuse. 125

B.1 Example ECJ Parameter File for Stack’s search method. . 151

B.2 Example ECJ Function File for Stack’s search method. . . 154

xix

Chapter 1

Introduction

Software Testing is expensive, typically consuming roughly half of the total

costs involved in software development while adding nothing to the raw func-

tionality of the final product [Bei90]. Yet, it remains the primary method

through which confidence in software is achieved.

Test Data selection and generation deals with locating good Test Data

for a particular test criterion [TCMM02]. In industry, this process is often

performed manually – with the responsibility of assessing the quality of a

given software product falling on the software tester. However, locating suit-

able Test Data can be time-consuming, difficult and expensive; automation

of test data generation is, therefore, vital to advance the state-of-the-art in

Software Testing.

However, automation in this area has been quite limited [McM04], mainly

because the exhaustive enumeration of a program’s input is unfeasible for

any reasonably-sized program, and random methods are unlikely to exercise

“deeper” features of software.

Metaheuristic search techniques, like Evolutionary Algorithms (high-

level frameworks which utilise heuristics, inspired by genetics and natural

selection, in order to find solutions to combinatorial problems at a reason-

able computational cost [BFM97]), are natural candidates to address this

problem, since the input space is typically large but well defined, and test

goal can usually be expressed as a fitness function [Har07a].

The application of Evolutionary Algorithms to Test Data generation

is often referred to as Evolutionary Testing [Ton04] or Search-Based Test

Data Generation [McM04]. Evolutionary Testing is an emerging methodol-

ogy for automatically generating high quality Test Data; approaches have

1

1. Introduction

been proposed that focus on the usage of various metaheuristic strategies, in-

cluding Genetic Algorithms [Ton04, CKP05, DJAR07, IX07, LRW07, IX08,

XTdHS08], Genetic Programming [SG06, See06, WW06a, WW06b, AY07a,

WS07, Wap07, GR08], Ant Colony Optimization [LWL05], Memetic Algo-

rithms [AY07b, Arc08], Estimation of Distribution Algorithms [SAY07], or

Artificial Immune Systems [LR08]. It is, however, a difficult subject, es-

pecially if the aim is to implement an automated solution, viable with a

reasonable amount of computational effort, which is adaptable to a wide

range of Test Objects.

Significant success has been achieved by applying Evolutionary Algo-

rithms to the automatic generation of Test Data for procedural software

[McM04, MA05]. The application of search-based strategies to the Soft-

ware Testing of Object-Oriented Software is, however, fairly recent [Ton04]

and is yet to be investigated comprehensively [Har07b, HMZ09].

The focus of this research was on developing a solution for employing

Evolutionary Algorithms to automate the generation of Test Sets for the

structural Unit Testing of Object-Oriented programs. Our approach in-

volves representing and evolving Test Programs using the Strongly-Typed

Genetic Programming technique [Mon95]. The methodology for evaluating

the quality of Test Cases includes instrumenting the program under test,

and executing it using the generated Test Cases as inputs with the inten-

tion of collecting trace information from which to derive coverage metrics.

The aim is that of efficiently guiding the search process towards achieving

full structural coverage of the program under test.

1.1 Major Contributions

The foremost objectives of the work supporting this Thesis were those

of defining strategies for addressing the challenges posed by the Object-

Oriented paradigm and of proposing methodologies for enhancing the effi-

ciency and the effectiveness of search-based approaches to Software Testing.

The most relevant contributions achieved were the following:

1. presenting a novel strategy for Test Program evaluation and search

guidance. The technique proposed involves allowing unfeasible Test

Cases (i.e., those that terminate prematurely due to a runtime excep-

tion) to be considered at certain stages of the evolutionary search –

namely, once the feasible Test Cases that are being bred cease to be

interesting;

2

1.2. Thesis Structure

2. introducing an Input Domain Reduction methodology, based on the

concept of Purity Analysis, which allows the identification and removal

of entries that are irrelevant to the search problem because they do

not contribute to the definition of relevant test scenarios;

3. proposing an adaptive strategy for enhancing Genetic Programming-

based approaches to automatic Test Data generation. Adaptive Evolu-

tionary Algorithms are distinguished by their dynamic manipulation

of selected parameters during the course of evolving a problem solu-

tion; the main contribution of this study is that of proposing an Adap-

tive Evolutionary Testing methodology for promoting the introduction

of relevant instructions into the generated Test Cases by means of Mu-

tation;

4. defining an Object Reuse methodology for Genetic Programming-based

approaches to Evolutionary Testing. Object Reuse means that one in-

stance can be passed to multiple methods as an argument, or multiple

times to the same method as arguments; in the context of Object-

Oriented Evolutionary Testing, it enables the generation of Test Pro-

grams that exercise structures of the software under test that would

not be reachable otherwise; and

5. presenting the eCrash Test Data generation tool for Object-Oriented

Software. The eCrash tool embodies the approach to Evolutionary

Testing presented in this Thesis; improving the level of performance

and automation of the Software Testing process was a major concern

underlying its development and implementation. Special attention

was put on keeping the interference of the tool’s users on the Test

Object analysis to a minimum, and on mitigating the impact of their

decisions in the Test Data generation process.

1.2 Thesis Structure

Chapter 2 starts by providing background information on the subjects ad-

dressed throughout the remaining of this document, and Chapter 3 reviews

and contextualises related work in the area of Evolutionary Testing. In

Chapter 4, the Evolutionary Testing methodology proposed is overviewed,

and the eCrash automated Test Data generation framework for Object-

Oriented Java software is presented.

3

1. Introduction

In Chapters 5 to 8, this work’s most significant contributions to the area

of Object-Oriented Evolutionary Testing are presented: Chapter 5 describes

a novel Test Program Evaluation and search guidance methodology; Chap-

ter 6 details the Input Domain Reduction technique; Chapter 7 explains the

adaptive Evolutionary Testing strategy; and Chapter 8 depicts the Object

Reuse methodology proposed.

The concluding Chapter presents some final considerations and sets

ground for future work.

4

Chapter 2

Background and Terminology

In Object-Oriented Evolutionary Testing, metaheuristic search techniques

are employed to select or generate Test Data for Object-Oriented software.

This Chapter provides background information on the most relevant aspects

related with this interdisciplinary area; special attention is paid to the sub-

jects of particular interest to our technical approach, which will be presented

and described in Chapter 4.

This Chapter is organised as follows. In the following Section, the

Object-Oriented paradigm is overviewed; Section 2.2 reviews key Software

Testing concepts; Evolutionary Algorithms, and the Genetic Programming

technique in particular, are explored in Section 2.3; and Section 2.4 intro-

duces the reader to the Evolutionary Testing area. Finally, in Section 2.5,

relevant concepts and terminology are summarised.

2.1 Object-Orientation

The use of Object-Oriented technology is not restricted to any particular

language; rather, it applies to a wide spectrum of programming languages,

such as C++ [ES90], Java [Sun03], C# [Wil02] and Visual Basic [Bal02]. In

[BME+07], Booch et. al argue that a language is considered Object-Based

if it directly supports data abstraction and classes; an Object-Oriented lan-

guage is one that is Object-Based but also provides support for encapsula-

tion, inheritance, and polymorphism.

In its basic definition, an object is an entity that contains both data and

behavior. This is the key difference between Object-Oriented and Procedu-

5

2. Background and Terminology

Category Ratings Nov 2009 Delta Nov 2008
Object-Oriented Languages 54.40% -3.20%

Procedural Languages 41.60% 2.80%
Functional Languages 2.80% 0.20%

Logical Languages 1.30% 0.10%

Table 2.1: Internet-Based determination of popular programming
paradigms. Adapted from the TCP-Index website [Ind09] in November
2009.

ral programming methodologies: in Object-Oriented design, the attributes

and behavior are contained within a single object, whereas in Procedural

(or structured) design the attributes and behavior are normally separated,

with data being placed into totally distinct functions or procedures [Wei08].

With the Procedural paradigm, procedures ideally become “black boxes”,

where inputs go in and outputs come out. Also, the data is sometimes

global, so it is easy to modify data that is outside the scope of the code;

this means that access to data is uncontrolled and unpredictable (because

multiple functions may have access to the global data).

Object Orientation is currently the most popular programming paradigm

(Table 2.1). The fundamental ideas of classes and objects first appeared in

Simula [BDMN79], a language for describing systems and for developing

simulations. Simula was first presented in the 1960’s, and introduced the

concepts of encapsulation and inheritance. In the early 1970’s research led

to the presentation of Smalltalk [fITS98]. Smalltalk is a “pure” Object-

Oriented programming language in the sense that the Object-Oriented par-

adigm is enforced: everything is an object (conversely, in C++ it is possible

to use non-objects, and in Java the primitive data types are not implemented

as objects). The unification of Object-Oriented concepts with the C pro-

gramming language [KR88] lead to the C++ programming language [ES90]

in the 1980’s. C++ is largely a superset of C, in that it provides type check-

ing, overloaded functions, and – most importantly – adds Object-Oriented

programming features to C.

In the 1990’s, a group led by James Gosling at Sun Microsystems∗ devel-

oped and released the Java platform. Java is more than just a programming

language; like Smalltalk, it is just as much a runtime environment as it is a

language.

Java has been one of the most popular – if not the most popular – pro-

∗http://www.sun.com/

6

2.1. Object-Orientation

Programming Language Position
Nov-09 Nov-05 Nov-99 Nov-84

Java 1 1 3 -
C 2 2 1 1

PHP 3 4 25 -
C++ 4 3 2 10

(Visual) Basic 5 5 5 4
C# 6 7 23 -

Python 7 8 20 -
Perl 8 6 4 -

JavaScript 9 9 17 -
Ruby 10 24 - -

Table 2.2: Internet-Based Determination of Popular Programming Lan-
guages Throughout Time. Adapted from the TCP-Index website [Ind09]
in November 2009.

gramming languages of the last decade (Table 2.2). The growth has come

not only as a result of the evolution of the language – which made it a

perfect match for the Internet because of its portability and its rich set

of standard functionalities [BME+07] – but also, and perhaps more signif-

icantly, as a consequence of the implementation of its related technologies

such as Enterprise JavaBeans [BMH06], Java Server Pages (JSP) [Ber02],

and Java 2 Micro Edition (J2ME) [Top02].

Like Smalltalk (but unlike C++), Java includes a rich class library

[Sun03] that can be extended. The Java language syntax resembles C++

intentionally, but omits many of its features, such as multiple inheritance,

operator overloading, the use of pointers, and C++’s memory management

scheme. As a platform-independent environment, Java programs can be

somewhat slower than those written in native code. However, advances in

compiler and Virtual Machine technologies are bringing performance close

to that of native code without threatening portability.

In the Java programming language, all source code is first written in

plain text files ending with the .java extension. Those source files are then

compiled into .class files by the javac compiler (Figure 2.1). A .class

file does not contain code that is native to a specific processor; it instead

contains Bytecode – the machine language of the Java Virtual Machine

(JVM) [LY99]. The java launcher tool then runs the application with an

instance of the JVM. Because the JVM is available on many different

operating systems, the same .class files are capable of running on, for

7

2. Background and Terminology

Figure 2.1: Compiling and running an application using the Java technology.
Adapted from [ZHR+06].

example, Microsoft Windows, Linux, or Mac Operating System.

Java Bytecode is an assembly-like language that retains much of the

high-level information about the original source program [VDMW06]. Class

files (i.e., compiled Java programs containing Bytecode information) are

a portable binary representation that contains class related data, such as

information about the variables and constants and the Bytecode instructions

of each method (e.g., Listing 2.1 on page 17).

2.1.1 Objects and Classes

An object is a software bundle of related state and behavior, which is of-

ten used to model the real-world objects. This relation comes from the

fact that software objects – much like real world objects – possess state,

behaviour and identity [BME+07]. An object stores its state in fields (vari-

ables in some programming languages) and exposes its behavior through

methods (functions in some programming languages); methods operate on

an object’s internal state and serve as the primary mechanism for object-

to-object communication. Also, each object can be uniquely distinguished

from every other object – i.e., each object has a unique address in memory.

Bundling code into individual software objects provides a number of

benefits [ZHR+06], including:

� modularity, as the source code for an object can be written and main-

tained independently of the source code for other objects;

� information-hiding, as by interacting only with an object’s methods,

the details of its internal implementation remain hidden from the out-

side world;

� code re-use, because if an object already exists it can be (re-)used

again in another program;

8

2.1. Object-Orientation

� pluggability and debugging ease, since if a particular object turns out

to be problematic, it can simply be removed from an application, and

a different object can plugged as its replacement.

A class is the “blueprint” or “prototype” from which objects are created.

A class describes a set of objects that have identical characteristics (data

elements) and behaviour (functionality) [Eck02]; in Object-Oriented terms,

an object is said to be an instance of a class. A class definition typically

includes: fields, which have a type and a value; methods, which have return

values, parameters, and may throw exceptions; and constructors, which

create new instances of an object for a given class (and have no return

values).

In Java, for example, every object is either a reference or primitive type

[GJSB05]. Reference types all inherit from the java.lang.Object class.

Classes, enumerations, arrays, and interfaces are all reference types; ex-

amples of reference types include java.lang.String, all of the wrapper

classes for primitive types such as java.lang.Double, and the interface

java.io.Serializable. There is a fixed set of primitive types: boolean,

byte, short, int, long, char, float, and double.

2.1.2 Encapsulation, Inheritance and Polymorphism

Hiding internal state and requiring all interaction to be performed through

an object’s methods is known as data Encapsulation – a fundamental prin-

ciple of Object-Oriented programming. The most important reason under-

lying the usage of Encapsulation is that of separating the interface from the

implementation [Eck02]; this allows establishing boundaries within a data

type and hiding its internal mechanism, and prevents client programmers

from accidentally treating the internals of an object as part of the interface

that they should be using.

Object-Oriented programming allows classes to inherit commonly used

state and behavior from other classes. Inheritance expresses this similarity

between classes by using the concept of base classes and derived classes: a

base class contains all of the characteristics and behaviours that are shared

among the classes derived from it. Semantically, inheritance denotes an “is

a” relationship; inheritance thus implies a generalization/specialization hier-

archy, wherein a subclass specialises the more general structure or behavior

of its superclasses.

9

2. Background and Terminology

There is a healthy tension among the principles of encapsulation and in-

heritance [BME+07]. Encapsulation attempts to provide an opaque barrier

behind which methods and state are hidden; inheritance requires opening

this interface to some extent and may allow state as well as methods to

be accessed [Lis87]. Distinct programming languages trade off support for

encapsulation and inheritance in different ways. Java, for example, offers

great flexibility, allowing the definition of private members that are acces-

sible only to the class itself, protected members that are accessible to the

class and its subclasses (and also to other classes belonging to the same

package), and public members which are accessible to all classes.

Polymorphism means “different forms”; it represents a concept in type

theory in which a single name (such as a variable declaration) may denote

objects of many different classes that are related by some common super-

class. Any object denoted by this name is therefore able to respond to some

common set of operations [Tho89]; distinction is expressed through differ-

ences in behavior of the methods that can be called through the base class.

Polymorphism is a condition that exists when the features of dynamic typ-

ing and inheritance interact; although inheritance without polymorphism is

possible, it is certainly not very useful.

2.2 Software Testing

Software Testing is the process of exercising an application to detect errors

and to verify that it satisfies the specified requirements [LW04]. The general

aim of testing is to affirm the quality of software systems by systematically

exercising the software in carefully controlled circumstances [Mar94]. De-

spite advances in formal methods and verification techniques, a program

still needs to be tested before it is used; testing remains the truly effective

means to assure the quality of a software system of non-trivial complexity.

A report [Tas02] issued by the National Institute of Standards and Tech-

nology in 2002† stated that software “bugs”, or errors, are so prevalent and

so detrimental that they cost the United States of America’s economy an

estimated 59.5 billion dollars annually (about 0.6% of the gross domestic

product), with half the costs being supported by software users and the

remainder by software developers/vendors. This study also concluded that,

even though errors cannot be completely removed, more than a third of

these costs could be eliminated by an improved testing infrastructure that

†http://www.nist.gov/public affairs/releases/n02-10.htm

10

2.2. Software Testing

enables earlier and more effective identification and removal of software de-

fects; these are the savings associated with finding an increased percentage

of errors closer to the development stages in which they are introduced.

Recent reports‡ also claim that testing services will grow at a compound

annual growth rate of 9.5% from 2008 to 2013 (faster than most other in-

formation technology services), and are projected to reach 56 billion dollars

by 2013 despite taking a hit from the global economic crisis.

“Test early, test often” is the mantra of experienced programmers; how-

ever, developing conformance testing code can be more time consuming

and expensive than developing the standard or product that will be tested

[Tas02]. Testing is usually regarded as a monotonous and repetitive task,

which does not have a predictable end, and may or may not reveal a defect;

it involves writing code for drivers and stubs which often add up much more

code than the program being tested, and needs to be repeated whenever an

enhancement or change is made to the existing code. In the absence of

any reasonable automation, this is an activity few programmers (if any) en-

joy, and hence is seldom performed sufficiently well [Raj04]. Automating

the testing process is thus key to improve the quality of complex software

systems that are becoming the norm of modern society [Ber07].

2.2.1 Levels of Testing

Software Testing is a broad term encompassing a wide spectrum of different

activities, from the testing of a small piece of code by the developer to

the customer validation of a large information system, to the monitoring at

run-time of a network-centric service-oriented application [Ber07]. Although

testing is involved in every stage of the software life cycle, the testing done

at each level of software development is different in terms of its nature and

objectives [LW04], and normally targets specific types of faults.

The Encyclopedia of Software Engineering [Mar94] describes four ma-

jor levels at which testing is conducted: Unit Testing, Integration Testing,

System Testing and Acceptance Testing.

� Unit Testing tests individual application objects or methods in an

isolated environment. It verifies the smallest unit of the application

to ensure the correct structure and the defined operations, and is often

performed in the scope of Regression Testing in order to certify that

‡http://www.physorg.com/news155992141.html

11

2. Background and Terminology

code modification, bug correction, and any post-production activities

have not introduced any additional bugs into previously tested code.

� Integration Testing is used to evaluate proper functioning of the inte-

grated modules that make up a subsystem. The focus of integration

testing is on cross-functional tests rather than on Unit Tests within

one module.

� System Testing should be executed as soon as an integrated set of

modules has been assembled to form the application; it verifies the

product by testing the application in the integrated system environ-

ment.

� Acceptance Testing is done when the completed system is handed over

from the developers to the customers or users; its purpose is to give

confidence that the system is working rather than to find errors.

Specialised Software Testing stages occur less frequently than general

Software Testing stages and are most common for software with well-specified

criteria. More specialised testing levels include Usability Testing, Stress

Testing, and Performance Testing [LW04].

The historic approach to the software development process, which fo-

cuses on system specification and construction, is often based on the Wa-

terfall Model [Roy87]. Although considered flawed [LB03], a recent survey

ascertained the popularity of this software development process, with a ma-

jority of 35% of managerial and advanced technical respondents indicating

that they use it [NL03]. Figure 2.2 shows how the Waterfall Model separates

software development into distinct phases with minimal feedback loops.

Testing is inherent to every phase of the Waterfall Model. However,

the relative cost of repairing defects increases greatly depending on the

stage of software development in which the defect is found; this is due

to the re-engineering process that must take place in order to fix the error,

which includes unravelling and rewriting the software written to date. Table

2.3 schematises the relation between the stage of software development in

which a defect is found and its repair cost; for example, repairing a defect is

estimated to cost six times more if done in the post-product release phase

instead of in the coding stage.

12

2.2. Software Testing

Figure 2.2: The Waterfall Model for Software Development. Adapted from
[Tas02].

Requirements Early Costumer
Gathering / Coding / Integration and Feedback / Post-Product

Architectural Design Unit Test System Test Beta Test Release
1X 5X 10X 15X 30X

Table 2.3: Relative cost to repair defects when found at different stages of
Software development. X is a normalised unit of cost and can be expressed
terms of person-hours, money, etc.. Adapted from [Tas02].

Unit Testing

Modern software products typically contain millions of lines of code; pre-

cisely locating the source of errors can thus be very resource consuming.

Most errors are introduced at the unit stage [Tas02]; Unit Testing is thus a

key phase in projects that demand high quality and reliability, and plays a

major role in the total testing efforts.

A unit is the smallest testable piece of software – i.e., the smallest com-

ponent that can be compiled or assembled, linked, loaded, and put under

the control of a test harness or driver [Bei90]. Unit Testing is the process

of testing the individual subprograms, subroutines, procedures or methods

in a program; it typically is performed by executing the unit (i.e., the Test

Object) in different scenarios, using a set of relevant and interesting Test

Cases; a Test Set is said to be adequate with respect to a given criterion if

the entirety of Test Cases in this set satisfies the criterion.

The objective of Unit Testing typically involves assessing if a unit satis-

fies its functional specification, or that its implemented structure matches

13

2. Background and Terminology

the intended design structure; and its primary aim is to uncover errors

within a unit, or to gain confidence in its correctness if no errors can be

found [WW06b].

Some of the benefits of Unit Testing are:

� testing parts of a project in isolation, without the need to wait for the

other parts to be available;

� achieving parallelism in testing, by allowing many developers to test

and fix problems simultaneously;

� simplifying debugging, by limiting its scope to a small unit in which

to search for errors;

� testing internal conditions (e.g., exception conditions), that may not

be easily reached by external inputs to the system as a whole;

� detecting and removing defects at a much smaller cost, in comparison

to other (latter) stages of testing in the software development process.

In recent years, Unit Testing has become a much more structured pro-

cess, mostly due to the availability and dissemination of high quality Unit

Testing tools such as JUnit§ for Java and NUnit¶ for the .NET language.

Fully automating the Unit Test generation process, however, is still an open

problem.

2.2.2 Testing Strategies

To gain sufficient confidence that most faults are detected, testing should

ideally be exhaustive; since in practice this is not possible [ABHPW09],

testers resort to test models and coverage/adequacy criteria to define sys-

tematic and effective test strategies that are fault revealing.

Distinct test strategies include Functional (or Black-Box) Testing, and

Structural (or White-Box) Testing [Bei90].

� Functional (or Black-Box) Testing emphasises on the external behav-

ior of the software entity; it is concerned with showing the consistency

between the implementation and its requirements or functional spec-

ification. Typically, it does not require knowledge about the internal

§http://www.junit.org/
¶http://www.nunit.org/

14

2.2. Software Testing

Figure 2.3: Testing techniques and types of defects.

structure of the software under test, and is rather based on input-

output relationships: inputs are fed to the Test Object and outputs

are observed to determine success or failure of Test Cases.

� Structural (or White-Box) Testing focuses on the internal structure of

the software entity; Test Case design is performed with basis on the

program structure. White-box testing strategies aim at generating

Test Cases that cover structural properties of the software under test

(e.g., statements, branches, or conditions).

Not all techniques will pick up all types of defects [Raj04]; using Func-

tional Testing alone as a basis for testing will not reveal any “rogue” code

(i.e., code that is not found in the requirements), and Structural Testing

will not reveal requirements missed in the implementation (Figure 2.3).

Structural Testing

Unit Testing in companies is largely White-box oriented [Run06], mainly

because:

� Structural Testing becomes less feasible as the size of the Test Ob-

ject increases (e.g., when testing entire, large programs, in subsequent

testing processes); and

� subsequent testing processes are oriented toward finding different types

of errors, not necessarily associated with the program’s internal logic

(e.g., failure to meet the users’ requirements) [MS04].

When Structural Testing is performed, the metrics for measuring the

thoroughness of a Test Set are extracted from the structure of the target

15

2. Background and Terminology

object. Traditional structural criteria include structural (e.g. code, state-

ment, branch) coverage and data-flow coverage. The basic idea is to ensure

that all of the control elements in a program are executed by a given Test

Set, providing evidence of the quality of the testing activity. Statement

coverage is widely accepted as the minimum mandatory Structural Unit

Testing requirement [Bei90] (e.g., by the IEEE Unit Test standard [IEE87]

and by IBM [Hir67]).

The evaluation of Test Data suitability using structural criteria generally

requires the definition of an underlying model for program representation

– usually a Control-Flow Graph (CFG). A CFG is a representation, using

graph notation, of all the paths that might be traversed through a program

during its execution [VDMW06]. Each node in the graph represents a state-

ment block (i.e., a straight-line piece of code); directed edges are used to

represent jumps in the control flow.

The CFG can be extracted from a target object’s source code, or even

from compiled code; Java Bytecode instructions, for example, contain enough

information for coverage criteria to be applied at the Bytecode level. In

addition, it can be regarded as an intermediate language, so the analysis

performed at this level can be mapped back to the high-level language that

generated the Bytecode.

Figure 2.4 depicts an example CFG, representing the search method

(Listing 2.1) of the Stack∥ Java class, generated with basis on the method’s

Bytecode (Listing 2.2). Full statement coverage of the search method is

achieved by a Test Set that traverses all the nodes of the corresponding

CFG.

2.2.3 Static Analysis and Dynamic Analysis

The observations needed to assemble the metrics required for the evalua-

tion can be collected by abstracting and modeling the behaviours programs

exhibit during execution, either by static or dynamic analysis techniques

[Ern03].

� Static analysis involves the construction and analysis of an abstract

mathematical model of the system; it focuses on the range of meth-

ods that are used to determine or estimate software quality without

reference to actual executions. Techniques in this area include code

inspections, program analysis, symbolic analysis and model checking.

∥http://java.sun.com/j2se/1.4.2/docs/api/java/util/Stack.html

16

2.2. Software Testing

�
1 public synchronized int search(Object o) {

2 int i = this.lastIndexOf(o);

3 if (i >= 0) {

4 return this.size() - i;

5 }

6 return -1;

7 }
� �
Listing 2.1: Source code for the search method of the Stack class.

�
1 public synchronized int search(Object o)

2
3 max stack = 2,

4 max locals = 3,

5 code length = 19

6
7 0: aload_0

8 1: aload_1

9 2: invokevirtual lastIndexOf(Object)

10 5: istore_2

11 6: iload_2

12 7: iflt #17

13 10: aload_0

14 11: invokevirtual size()

15 14: iload_2

16 15: isub

17 16: ireturn

18 17: iconst_m1

19 18: ireturn

20
21 Local Variables:

22 start_pc=0,len=19,ind=0: Stack this

23 start_pc=0,len=19,ind=1: Object o

24 start_pc=6,len=13,ind=2:int i
� �
Listing 2.2: Bytecode for the search

method of the Stack class.

Figure 2.4: CFG for the search
method of the Stack class.

17

2. Background and Terminology

� Dynamic analysis, in contrast, involves executing the actual Test Ob-

ject and monitoring its behaviour; it deals with specific methods for

ascertaining and/or approximating software quality through actual

executions – i.e. with real data and under real (or simulated) circum-

stances. Techniques in this area include synthesis of inputs, the use of

structurally dictated testing procedures and the automation of testing

environment generation.

If dynamic analysis techniques are employed, the ability to observe pro-

gram execution is paramount. Events that need to be captured range from

simple observations – such as execution of structural entities – to more com-

plex examinations such as thread and object creation, field manipulations,

and object locking behaviour.

Dynamic monitoring of structural entities can be achieved by instru-

menting the Test Object (i.e, adding code probes into a method, which

do not alter its state or behaviour, for the purpose of gathering data to

be utilised by tracing tools), and tracing the structural entities traversed

(i.e, logging information about a program’s execution) [KDR06]. In Java

software, this operation can be effectively performed at the Bytecode level.

2.3 Evolutionary Algorithms

Computing optimal solutions for many problems of industrial and scientific

importance is often difficult and sometimes impossible; automating the Test

Data generation process is a paradigmatic example. Unlike exact methods,

metaheuristics allow solving hard and complex problem instances by deliv-

ering satisfactory solutions in a reasonable time.

Metaheuristic search methods can be defined as upper level general tem-

plates that can be used as guiding strategies in designing underlying heuris-

tics to solve specific optimization problems. There are many metaheuristic

methodologies, and various classification criteria exist, such as [Tal09]:

� Nature Inspired vs. Non-nature Inspired – Examples of metaheuristics

inspired by natural processes include: Evolutionary Algorithms (EAs)

and Artificial Immune Systems [dCT03] from Biology; Particle Swarm

Optimization [KL86] from Social Sciences; and Simulated Annealing

[LA87] from Physics.

� Deterministic vs. Stochastic – A deterministic metaheuristic solves an

optimization problem by making deterministic decisions (e.g., Local

18

2.3. Evolutionary Algorithms

Search, Tabu Search [Glo89]); conversely, in stochastic metaheuris-

tics, some random rules are applied during the search (e.g., Simulated

Annealing, EAs).

� Population-based Search vs. Single Solution-based Search: Single solu-

tion-based algorithms (e.g., Local Search, Simulated Annealing) ma-

nipulate and transform a single solution during the search; in popula-

tion-based algorithms (e.g., Particle Swarm Optimization, EAs) a

whole population of solutions is evolved.

All metaheuristic search methods try to solve problems for which no

reasonable fast algorithms have been developed, and they are especially fit

for optimization problems [dV01]. However, the main point of interest in

the domain of optimization must not be the design of the best algorithm

for all problems – but rather the search for the most adapted algorithm

to a given class of problems and/or instances. In fact, the “No Free Lunch

Theorem” states that the averaged performance of all search algorithms over

all problems is equal [WM97]. That is, if algorithm A performs better than

B for a given problem, there is always another problem where B performs

better than A. The idea is therefore to use the right algorithm for the right

problem.

In designing a metaheuristic two contradictory criteria must be taken

into account: exploration of the search space (diversification) and exploita-

tion of the best solutions found (intensification). In intensification, the

promising regions are explored more thoroughly in the hope to find better

solutions; in diversification, nonexplored regions must be visited to be sure

that all regions of the search space are evenly explored and that the search

is not confined to only a reduced number of regions. In general, basic single-

solution based metaheuristics are more exploitation oriented, whereas basic

population-based metaheuristics are more exploration oriented.

Evolutionary Algorithms are the most studied population-based meta-

heuristics; they are stochastic algorithms, which use simulated evolution

as a search strategy to iteratively evolve candidate solutions, using opera-

tors inspired by genetics and natural selection. They draw their inspiration

from the works of Mendel on heredity [BM09] and from Darwin’s studies

on the evolution of species [Dar95]. The best known algorithms in this

class include Evolution Strategies [Rec65, BS02], Evolutionary Program-

ming [Fog62, Fog99], Genetic Algorithms [Hol62, Gol89] and Genetic Pro-

gramming [Koz92]. Each of these constitutes a different approach; however,

19

2. Background and Terminology

independently of its class, any Evolutionary Algorithm should possess the

following attributes [Mic94]:

� a genetic representation for potential solutions to the problem;

� a way to create an initial population of potential solutions;

� an evaluation function that plays the role of the environment, rating

solutions in terms of their “fitness”;

� genetic operators that alter the composition of children;

� values for various parameters that the algorithm uses (e.g., popula-

tion, size, probabilities of applying genetic operators).

Genetic Algorithms (GAs) are the most well known form of Evolution-

ary Algorithms, having been conceived by John Holland during the late

60’s and early 70’s. The term “Genetic Algorithm” comes from the analogy

between the encoding of candidate solutions as a sequence of simple com-

ponents and the genetic structure of a chromosome; continuing with this

analogy, solutions are often referred to as individuals or chromosomes. The

components of the solution are referred to as genes, with the possible values

for each component being called alleles and their position in the sequence

being the locus. The encoded structure of the solution for manipulation by

the GA is called the genotype, with the decoded structure being known as

the phenotype.

Like other Evolutionary Algorithms, GAs are based on the notion of

competition. They maintain a population of solutions rather than just one

current solution; in consequence, the search is afforded many starting points,

and the chance to sample more of the search space than local searches.

The population is iteratively recombined and mutated to evolve successive

populations, known as generations. Various selection mechanisms can be

used to decide which individuals should be used to create offspring for the

next generation; key to this is the concept of the fitness of individuals.

The idea of selection is to favour the fitter individuals, in the hope of

breeding better offspring; however, too strong a bias towards the best indi-

viduals will result in their dominance of future generations, thus reducing

diversity and increasing the chance of premature convergence on one area

of the search space. Conversely, too weak a strategy will result in too much

exploration, and not enough evolution for the search to make substantial

progress.

20

2.3. Evolutionary Algorithms

Traditional GA breeding operators include Reproduction, Crossover, and

Mutation [Hol92]:

� Reproduction is the process of copying individuals. They are chosen

according to their fitness value;

� Crossover is the procedure of mating the members of the new popula-

tion, in order to create a new set of individuals. As genetic material

is being combined, new genotypes will be produced;

� Mutation modifies the values of one or several genes of an individual.

The most commonly employed method for selecting individuals for breed-

ing is Tournament Selection [PLM08]: a number of individuals are chosen

at random from the population; these are compared with each other and the

best of them is chosen to be the parent. Other common selection methods

include Fitness-Proportionate Selection, Linear Ranking, and the Roulette

Wheel method [Rut08].

2.3.1 Genetic Programming

Genetic Programming (GP) is specialization of GAs usually associated with

the evolution of tree structures; it focuses on automatically creating com-

puter programs by means of evolution [Koz92]. Figure 2.5 provides a

flowchart for the GP paradigm.

In order to optimise a computer program, the notion of suboptimal

programs – rather than programs which are simply right or wrong – must

be allowed [Luk09b]; GP is thus generally interested in the space where there

are many possible programs, but it is not clear which ones outperform the

others and to what degree.

In most GP approaches, the programs are represented using variable-

sized tree genomes. The leaf nodes are called terminals, whereas the non-

leaf nodes are called non-terminals (or functions). Terminals can be inputs

to the program, constants or functions with no arguments; non-terminals

are functions taking at least one argument. The definition of the terminals

and non-terminals depends on the target application.

The Function Set is the set of functions from which the GP system can

choose when constructing trees. GP builds new trees by repeatedly selecting

nodes from a Function Set and putting them together.

The individuals in the initial population are typically randomly gener-

ated. There are various distinct approaches to perform this task; two of the

21

2. Background and Terminology

Figure 2.5: Flowchart for the Genetic Programming paradigm [Koz92]. The
index i refers to an individual in the population of size M. The variable Gen
is the number of the current generation. The variable Run is the number
of the current run, and N is the predefined number of runs.

22

2.3. Evolutionary Algorithms

simplest and earliest are the Full and Grow methods, and a widely used

combination of the two known as Ramped Half-and-Half [PLM08]. In both

the Full and Grow methods, the initial individuals are generated so that

they do not exceed a user specified maximum depth: the Grow method

builds random trees depth-first up to a certain depth; the Full algorithm

forces full trees up to the maximum depth. With Ramped Half-And-Half,

half the initial population is constructed using Full and half using Grow.

GP departs significantly from other evolutionary algorithms in the im-

plementation of the operators for Crossover and Mutation [PLM08]. The

most commonly used form of crossover is Subtree Crossover (Figure 2.6):

given two parents, Subtree Crossover randomly selects a crossover point

(i.e., a node) in each parent tree; then, it creates the offspring by replacing

the subtree rooted at the crossover point in a copy of the first parent with a

copy of the subtree rooted at the crossover point in the second parent. The

most commonly used form of Mutation in GP is Subtree Mutation (Figure

2.7), which randomly selects a mutation point in a tree and substitutes the

subtree rooted there with a randomly generated subtree. Another common

form of mutation is Point Mutation: a random node is selected and the

primitive stored there is replaced with a different random primitive of the

same arity taken from the primitive set; if no other primitives with that

arity exist, nothing happens to that node. The reproduction operator (as

with GAs) simply involves the selection of an individual based on fitness,

and the insertion of a copy of this individual in the next generation.

When optimizing computer programs, the most natural way to evaluate

their fitness is to execute them and assess their behaviour [Luk09b]. Inter-

preting a program tree typically means executing the nodes in the tree in an

order that guarantees that nodes are not executed before the value of their

arguments (if any) is known. This is usually performed by traversing the

tree recursively starting from the root node, and postponing the evaluation

of each node until the values of its children (arguments) are known [PLM08];

this process is illustrated in Figure 2.8.

The specification of the control parameters in a run is a mandatory

preparatory step. There are several parameters; some of the most impor-

tant include the population size, the probabilities of performing the genetic

operations, the minimum and maximum tree sizes, and the stopping criteria.

It is impossible to define general guidelines for setting optimal parameter

values, as these depend greatly on the details of the application. However,

GP is in practice robust, and it is likely that many different parameter

values will work [PLM08].

23

2. Background and Terminology

Figure 2.6: Example of GP subtree crossover. Adapted from [PLM08].

Figure 2.7: Example of GP subtree Mutation. Adapted from [PLM08].

24

2.3. Evolutionary Algorithms

Figure 2.8: Example interpretation of a GP syntax tree (the terminal x is
a variable and has a value of -1). The number to the right of each internal
node represents the result of evaluating the subtree rooted at that node.
Adapted from [PLM08].

Strongly-Typed Genetic Programming

In order for GP to work effectively, most Function Sets are required to have

an important property known as “closure” [Koz94], which enables each tree

member to be able to process all possible argument values, and ensures that

operators will always produce legal offspring.

The closure principle can be broken down into the properties of Type

Consistency and Evaluation Safety [PLM08]:

� Evaluation Safety is required because many commonly used functions

can fail at runtime; an evolved expression might, for example, divide

by zero. Evaluation safety is typically dealt with either by: testing

functions prior to their execution, and returning a default value if a

problem is found; or trapping runtime exceptions and strongly reduc-

ing the fitness of programs that generate errors.

� Type Consistency is the requirement that all functions have return

values of the same type, and that each of their arguments also have

this type; it is required to ensure that the output of any subtree can be

used as one of the inputs to any node. Universal type compatibility en-

25

2. Background and Terminology

sures that Crossover cannot lead to incompatible connections between

nodes, and prevents Mutation from producing illegal programs.

An implicit assumption underlying Type Consistency is that all combi-

nations of structures are equally likely to be useful; in many cases, however,

it is known in advance that there are constraints on the structure of the

potential solutions. What’s more, the nonexistence of types may lead to

the generation of syntactically incorrect parse trees; specifically, non-typed

GP approaches are unsuitable for representing Object-Oriented programs

[HSW96], because any element can be a child node in a parse tree for any

other element without having conflicting data types.

There are various distinct approaches to constraining the syntax of

the evolved expression trees in GP. The most common are simple struc-

ture enforcement, grammar-based constraints, and Strongly-Typed Genetic

Programming (STGP). STGP is arguably the most natural approach to

incorporate types and their constraints into a GP system [PLM08], since

constraints are often expressed using a type system.

In STGP [Mon93], variables, constants, arguments and returned values

can be of any data type, with the provision that the data type for each such

value is specified beforehand in the Function Set. This allows the initializa-

tion process and the genetic operators to only generate syntactically correct

parse trees; if using a typed mechanism when applying tree construction,

Mutation or Crossover, the types specify which nodes can be used as a child

of a node and which nodes can be exchanged between two individuals.

The STGP search space is the set of all legal parse trees – i.e., all of

the functions have the correct number of parameters of the correct type

– and is thus particularly suited for representing the Object-Oriented pro-

grams, as it enables the reduction of the search space to the set of compilable

(i.e., formally feasible [Wap07]) programs, by allowing the definition of con-

straints that eliminate invalid combinations of operations. What’s more,

STGP has already been extended to support more complex type systems,

including simple generics [Mon95], inheritance [HSW96], and polymorphism

[Ols94, Yu01a].

2.4 Evolutionary Testing

Search-Based Software Engineering (SBSE) seeks to reformulate Software

Engineering problems as search-based optimisation problems. It has been

26

2.4. Evolutionary Testing

applied to a wide variety of Software Engineering areas, including require-

ments engineering, project planning and cost estimation, automated main-

tenance, service-oriented software engineering, compiler optimization and

quality assessment [Har07b]. Most of the overall literature (an estimated

59% [HMZ09]) in the SBSE area is, however, concerned with Software Test-

ing related applications.

The application of Evolutionary Algorithms to Test Data generation or

selection is often referred to as Evolutionary Testing [Ton04, WW06b] or

Search-Based Test Data Generation [McM04]. Evolutionary Testing con-

sists of exploring the space of Test Programs by using metaheuristic tech-

niques that direct the search towards the potentially most promising areas

of the input space [Ber07]; its foremost objective is usually that of searching

for a set of Test Programs that satisfies a predefined test criterion.

An adequate Evolutionary Testing strategy must generate and select,

in a systematic manner and at a reasonable computational cost, only those

Test Programs that are relevant and are expected to be fault revealing. The

search objective must be defined numerically – i.e., the Test Data generation

process must be transformed into an optimization problem – and suitable

fitness functions, that provide guidance to the search by telling how good

each candidate solution is, must be defined [Har07b].

The effectiveness of a Test Data generation technique is closely related

to the quality of the resulting Test Set; the generated Test Programs should

ideally achieve full structural coverage of the Test Object and/or meet the

specified functional requirements, depending on the testing strategy selected.

Conversely, a technique’s efficiency is related to the speed of the technique

to converge towards the test objective; it is generally measured either to

assess whether it can be used in practice or to compare two methodologies.

Some common efficiency measures used in the Evolutionary Testing domain

include the number of iterations or fitness evaluations required to find the

best solution, the time spent performing the search, and the size of the

resulting Test Set [ABHPW08].

Evolutionary Algorithms have already been applied with significant suc-

cess to the search for Test Data; Xanthakis el al. [XES+92] presented the

first application of heuristic optimization techniques to Test Data genera-

tion in 1992. However, research has been mainly geared towards generat-

ing Test Data for procedural software, and traditional methods – despite

their effectiveness and efficiency – cannot be applied without adaptation to

Object-Oriented systems.

The application of search-based strategies to Unit Testing of Object-

27

2. Background and Terminology

Oriented programs is, in fact, fairly recent – the first approach was presented

in 2004 by Tonella [Ton04] – and is yet to be investigated comprehensively

[HHL+07]. This is mostly because Object-Oriented Evolutionary Testing is

particularly challenging: in an Object-Oriented system, the basic test unit

is a class instead of a subprogram, and testing should hence focus on classes

and objects; and while a Test Program for procedural software typically

consists of a sequence of input values to be passed to a procedure upon

execution, Test Programs for class methods must also account for the state

of the objects involved in the methods’ calls. It is, in fact, a difficult subject,

especially if the aim is to implement an automated solution, viable with a

reasonable amount of computational effort, which is adaptable to a wide

range of Test Objects; even though several approaches have been studied

to address this problem, a system that is able to generate an optimum set

of Unit Tests for any generic Test Object is yet to be developed [AY08b].

2.4.1 Object-Oriented Evolutionary Testing

Software Testing can benefit from Object-Oriented technology – for instance,

by capitalising on the fact that a superclass has already been tested, and by

decreasing the effort to test derived classes, which reduces the cost of test-

ing in comparison with a flat class structure. However, the myth that the

enhanced modularity and reuse brought forward by the Object-Oriented

programming paradigm could prevent the need for testing has long been

rejected [Ber07]. In fact, the Object-Oriented paradigm poses several hin-

drances to testing due to some aspects of its very nature [BS94]:

� Encapsulation – in the presence of encapsulation, the only way to ob-

serve the state of an object is through its operations; there is, therefore,

a fundamental problem of observability.

� Inheritance – inheritance opens the issue of retesting: should opera-

tions inherited from ancestor classes be retested in the context of the

descendant class?

� Polymorphism – polymorphism and dynamic binding call for new cov-

erage models, and induce difficulties because they introduce undecid-

ability in program-based testing. Moreover, erroneous casting (type

conversions) are also prone to happen in polymorphic contexts and

can lead non-easily detectable to errors.

28

2.4. Evolutionary Testing

The hidden state, in particular, poses a serious barrier to the Object-

Oriented Software Testing. This issue – usually referred to as the State

Problem [MH03] – is related with the fact that, due to the encapsulation

principle of the Object-Oriented paradigm, the state of an object is accessi-

ble only through an interface of public methods. As such:

� the only way to change the state of an object is through the execution

of a series of method calls (i.e., it is not possible to directly manipulate

the object’s attributes);

� and the only way to observe the state of an object is through its

operations, which hinders the task of accurately measuring the quality

of a candidate Test Program.

The term Object-Oriented Evolutionary Testing usually refers to the

search-based Unit Test generation for Object-Oriented Software [HMZ09],

and involves the search for Unit Test programs that define interesting state

scenarios for the objects involved in the call to the Method Under Test

(MUT). During Test Program execution, all participating objects must be

created and put into particular states by calling several instance methods

on these objects. The search space thus encompasses the set of all possible

inputs – and their states – to the public methods of a particular Class Under

Test (CUT), including the implicit parameter (i.e., the this parameter) and

all the explicit parameters.

A Test Program for Object-Oriented software typically consists of a

Method Call Sequence (MCS), which represents the test scenario. In general,

a MCS is a sequence of method calls, constructor calls and value attributions,

when assuming that no decision or repetition structures are present [Wap07].

Given that each MCS usually focuses on the execution of one particular

method (the MUT), at least one method call must refer to that method –

in general, the last element of the sequence. Also, as was made clear by the

previous examples, it is usually not possible to test a single class in isolation;

other data types may be necessary for calling the CUT’s public methods.

The set of classes which are relevant for testing a particular class is called

the Test Cluster. In summary, a Unit Test for Object-Oriented programs

usually requires [WL05]:

� at least, an instance of the CUT;

29

2. Background and Terminology

� additional objects, which are required (as parameters) for the instan-

tiation of the CUT and for the invocation of the MUT – and for the

creation of these additional objects, more objects may be required;

� putting the participating objects into particular states, in order for the

test scenario to be processed in the desired way – and, consequently,

method calls must be issued for these objects.

Let us consider the search method of the Stack class of Java Develop-

ment Kit (JDK) 1.4 (Listing 2.1 on page 17) as an example. The Stack

container class represents a last-in-first-out stack of objects, which extends

the class Vector∗∗ with five operations (push, pop, empty, peek and search)

that allow a vector to be treated as a stack; the search method returns the

1-based position (i.e., the distance from the top) where an object is on the

stack, with the equalsmethod being used to compare the Object†† instance

provided as a parameter to the items in the stack.

The behaviour of the search method differs depending on both the state

of the stack on which the method call is issued (i.e., empty or containing

elements) and on the properties of the Object instance passed to the method

as an argument (i.e., the stack may either contain it or not). If White-Box

criteria are considered, and in order to achieve full structural coverage of

the search MUT (i.e., in order to traverse all the nodes, edges or branches

of a CFG representing the method, e.g., the one depicted in Figure 2.4 on

page 17), a Unit Test generation framework must be able to generate a Test

Set encompassing all of the aforementioned state scenarios.

Modifying and “tuning” the state of the Stack and Object instances,

however, is not trivial. The state of the stack can only be modified by call-

ing one of the 5 public methods made available by its public Application

Programming Interface (API), and these methods have method call depen-

dencies themselves (e.g., an Object instance must be created and passed to

the push method in order to issue a method call).

What’s more, some of these methods are not state-changing (namely

empty, peek, and search itself), an could therefore be safely discarded

because they provide no aid to the search; a systematic approach to per-

form this task will be described in Chapter 6. Also, the search for Object

instances in a stack is problematic because Object’s equals method imple-

ments the most discriminating possible equivalence relation: two Object

∗∗http://java.sun.com/j2se/1.4.2/docs/api/java/util/Vector.html
††http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Object.html

30

2.4. Evolutionary Testing

references are only considered equal if they both refer to exact same object.

Therefore, in order to successfully find an Object instance in a Stack, the

Test Data generation framework should be able to reuse object instances; a

methodology for implementing this feature on GP-based Evolutionary Test-

ing frameworks is detailed in Chapter 8.

Listing 2.4 depicts an example Test Program for Object-Oriented soft-

ware; the MUT is the search method of the Stack class. In this program,

instructions 1, 3 and 5 instantiate new objects, whereas instructions 2 and

4 aim to change the state of the stack0 instance variable that will be used,

as the implicit parameter, in the call to the MUT at instruction 6.

It should be noted that syntactically correct and compilable Test Pro-

grams may still abort prematurely, if a runtime exception is thrown during

execution [WW06a]. In the example Test Program shown in Listing 2.4,

instruction 2 will throw a runtime exception (an EmptyStackException‡‡,

to be precise), rendering the Test Program unfeasible; when this happens,

it is not possible to assess the quality of the Test Case because the final

instruction (i.e., the call to the MUT) is not reached. Test Programs can

thus be separated in two classes:

� feasible Test Programs are effectively executed, and terminate with a

call to the MUT;

� unfeasible Test Programs terminate prematurely because a runtime

exception is thrown by an instruction of the MCS.

Unfeasible Test Programs should be penalised when searching for an

adequate Test Set; however, if unfeasible Test Cases are blindly discarded,

the definition of complex Test Programs will be discouraged because, in

general, longer and more intricate Test Programs are more prone to throw

runtime exceptions. A Test Program evaluation strategy which handles

this issue will be presented in Chapter 5; also, in Chapter 7, an adaptive

strategy for favouring the selection of instructions that do not throw runtime

exceptions (among other metrics) will be explored.

Test Data generation by means of Evolutionary Algorithms requires the

definition of a suitable representation of Object-Oriented Test Programs;

however, it is still a very young field of study, and no conclusions have been

reached on deciding what is the best search algorithm that should be ap-

plied to it. Neverteless, nature-inspired algorithms seem to perform better

‡‡http://java.sun.com/j2se/1.4.2/docs/api/java/util/EmptyStackException.html

31

2. Background and Terminology

Figure 2.9: Example Method Call Tree. The Method Under Test is the
search method of the Stack class.

�
1 0.0.0.0 Stack ()

2 0.0.0 Stack.peek() [0.0.0.0 Stack]

3 0.0.1 Object ()

4 0.0 Stack.push(Object) [0.0.0 Stack.peek(), 0.0.1 Object ()]

5 0.1 Object ()

6 0 Stack.search(Object) [0.0 Stack.push(Object), 0.1 Object ()]� �
Listing 2.3: Example Method Call Sequence, resulting from the linearisation
of the Method Call Tree depicted in Figure 2.9.

�
1 Stack stack1 = new Stack ();

2 stack1.peek ();

3 Object object2 = new Object ();

4 stack1.push(object2);

5 Object object3 = new Object ();

6 stack1.search(object3);� �
Listing 2.4: Example Test Program, synthesised with basis on the Method
Call Sequence depicted in Listing 2.3.

32

2.4. Evolutionary Testing

than “traditional” techniques (e.g., based on symbolic execution and state

matching) because they seem able to solve more complex test problems in

less time [AY08b]. Existing evolutionary approaches to Test Data genera-

tion have been mainly focused on the usage of GAs and GP (cf. Chapter 3),

even though experiments have also been performed with basis on another

metaheuristics (e.g., Ant Colony Optimization, Hill Climbing, Simulated

Annealing and Memetic Algorithms). Among these, GP emerges as a nat-

ural candidate to address Object-Oriented Evolutionary Testing problems

for various reasons, which include:

� GP is usually associated with the evolution of tree structures (con-

versely, GAs typically evolve binary or real number strings). It is

thus particularly suited for representing and evolving Test Programs,

which may be represented as Method Call Trees (cf. Chapter 4).

� There are a number of typing mechanisms available for GP – most

notably STGP [Mon95] – which facilitate the encoding of Object-

Oriented programs.

� A GP tree can vary in length throughout the run, thus allowing ex-

perimenting with different sized Test Programs; on the other hand,

in traditional GAs, the length of the binary string is typically fixed

before the solution procedure begins [SD07].

� Because GP evolves active structures the solutions can be executed

without post-processing, while GAs typically operate passive struc-

tures (e.g, binary strings) which require post-processing [SD07].

� In STGP, the Function Set defines the constraints involved in the

construction of the solutions – i.e., it contains the set of instructions

from which the algorithm can choose when building Test Programs –

and is possible to systematically define the Function Set solely with

basis on Test Cluster information, and to automate the analysis and

parameterisation processes (cf. Chapter 4).

The following Chapter will be devoted to presenting related work in the

area of Search-Based Test Data Generation, with the emphasis being put on

Object-Oriented Evolutionary Testing; next, our own GP-based approach

to subject will be presented; and in subsequent Chapters, several methodolo-

gies for enhancing the performance of Evolutionary Testing methodologies

will be proposed and discussed.

33

2. Background and Terminology

2.5 Summary

Software Testing is the process of exercising an application to detect errors

and to verify that it satisfies the specified requirements. When performing

Unit Testing, the goal is to warrant the robustness of the smallest units

– the Test Objects – by testing them in an isolated environment. Unit

Testing is performed by executing the Test Objects in different scenarios

using relevant and interesting Test Programs (or Test Cases); a Test Set

is said to be adequate with respect to a given criterion if the entirety of

Test Cases in this set satisfies this criterion. A Unit Test Case for Object-

Oriented software consists of a MCS, which defines the test scenario. During

Test Program execution, all participating objects are created and put into

particular states through a series of method calls. Each Test Case focuses

on the execution of one particular public method – the MUT.

Most work in testing has been done with “procedure-oriented” software

in mind; nevertheless, traditional methods cannot be applied without adap-

tation to Object-Oriented systems. For Object-Oriented programs, classes

and objects are typically considered to be the smallest units that can be

tested in isolation. An object stores its state in fields and exposes its be-

haviour through methods. Hiding internal state and requiring all interaction

to be performed through an object’s methods is known as data encapsula-

tion – a fundamental principle of Object-Oriented programming.

Evolutionary Algorithms use simulated evolution as a search strategy to

evolve candidate solutions for a given problem, using operators inspired by

genetics and natural selection. GP, in particular, is a specialization of GAs

usually associated with the evolution of tree structures; it focuses on auto-

matically creating computer programs by means of evolution, and is thus

especially suited for representing and evolving Test Programs. The nodes

of a GP tree are usually not typed – i.e., all the functions are able to accept

every conceivable argument. Non-typed GP approaches are, however, un-

suitable for representing Test Programs for Object-Oriented software; con-

versely, STGP allows the definition of types for the variables, constants,

arguments and returned values. The only restriction is that the data type

for each element must be specified beforehand in the Function Set. This

causes the initialization process and the various genetic operations to only

construct syntactically correct trees.

The application of Evolutionary Algorithms to Test Data generation is

often referred to in the literature as Evolutionary Testing. The goal of Evolu-

tionary Testing problems is to find a set of Test Cases that satisfies a certain

34

2.5. Summary

test criterion – such as full structural coverage of the Test Object. The test

objective must be defined numerically and suitable fitness functions, that

provide guidance to the search by telling how good each candidate solution

is, must be defined. The search space is the set of possible inputs to the

Test Object; in the particular case of Object-Oriented programs, the input

domain encompasses the parameters of the Test Object’s public methods.

As such, the goal of the evolutionary search is to find Test Programs that

define interesting state scenarios for the variables which will be passed, as

arguments, in the call to the MUT. One of the most pressing challenges

faced by researchers in the Evolutionary Testing area is the State Problem,

which occurs with objects that exhibit state-like qualities by storing infor-

mation in fields that are protected from external manipulation – and that

can only be accessed through the public methods that expose the classes’

internals and grant the access to the objects’ state.

Defining a Test Set that achieves full structural coverage may, in fact,

involve the generation of complex and intricate Test Cases in order to define

elaborate state scenarios, and requires the definition of carefully fine-tuned

methodologies that promote the traversal of problematic structures and

difficult control-flow paths.

35

Chapter 3

Related Work

Metaheuristics have already been applied with significant success to the

generation of Test Data; in this Chapter, related work on Evolutionary

Testing is explored. The focus is put on evolutionary approaches for the

structural Unit Testing of Object-Oriented programs. Firstly, GA-based

techniques are described. A discussion on methodologies which employ the

GP technique follows. Finally, special attention is paid to approaches with

employ other metaheuristic strategies.

3.1 Object-Oriented Evolutionary Testing

Techniques

Miller and Spooner are typically considered the first to combine the re-

sults of actual executions of a program with a search technique in 1976;

in [MS76], numerical maximisation is utilised as a technique for generating

floating-point Test Data. Xanthakis et al. [XES+92], in 1992, were the first

to apply Evolutionary Algorithms to generate structural Test Data; GAs

were employed to generate Test Data for structures not covered by Random

Search.

However, research has been mainly geared towards generating Test Data

for Procedural Software. The first approach to the field of Object-Oriented

Evolutionary Testing was presented by Tonella in 2004 [Ton04].

37

3. Related Work

3.1.1 Genetic Algorithms-based Approaches

In [Ton04], a technique for automatically generating input sequences for

the structural Unit Testing of Java classes by means of GAs was proposed.

Possible solutions are represented as chromosomes, which consist of the

input values to use in Test Program execution; the creation of objects is

also accounted for (Listing 3.1). Because the GA performs on chromosomes

with a specific organization, the standard Crossover and Mutation operators

cannot be applied; special Mutation operators (for replacing input values,

changing constructors, and inserting/removing method invocations) and a

one-point Crossover operator are defined. A population of Test Cases is

evolved in order to increase a measure of fitness accounting for their ability

to satisfy a branch coverage criterion; new Test Programs are generated

as long as there are targets to be covered or a maximum execution time

is reached. The eToc framework for the Evolutionary Testing of Object-

Oriented software was implemented and made available∗ as a result of this

research. Experimental studies were performed on the StringTokenizer, Bit-

Set, HashMap, LinkedList, Stack and TreeSet JDK 1.4 classes; full branch

coverage was not achieved in all of them, but the only branches remaining

corresponded to non-traversable portions of code. Even though several Evo-

lutionary Testing-related problems were not addressed on this work (e.g.,

the usage of universal Evolutionary Algorithms, encapsulation, complex

state problems, Test Program feasibility, search guidance, MCS minimi-

sation), it was able to prove the applicability of Evolutionary Algorithms

to Test Data generation.

Tonella’s research inspired Object-Oriented Evolutionary Testing litera-

ture; several approaches built on his experiments with GAs in the following

years.

In [WL05] the focus was put on defining a grammar-based encoding for

Test Programs which enabled the application of any given universal Evolu-

tionary Algorithms (e.g., Hill Climbing [RNC+96] or Simulated Annealing

[LA87]) to Object-Oriented Evolutionary Testing; unlike Tonella’s previous

approach, this methodology allows an effortless change of the evolutionary

strategy employed. Objective functions based on the distance-oriented ap-

proach, which guide the evolutionary search in cases of conditions which

are hard to meet by random, are also defined. However, the technique

proposed permits the generation of individuals which cannot be decoded

into Test Programs without errors; this hindrance is circumvented by the

∗http://star.itc.it/etoc/

38

3.1. Object-Oriented Evolutionary Testing Techniques

�
1 <chromosome > ::= <actions > @ <values >

2 <actions > ::= <action > {: <actions >}?

3 <action > ::= $id = constructor ({<parameters >}?)

4 | $id = class # null

5 | $id . method ({<parameters >}?)

6 <parameters > ::= <parameter > {, <parameters >}?

7 <parameter > ::= builtin -type {<generator >}?

8 | $id

9 <generator > ::= [low ; up]

10 | [genClass]

11 <values > ::= <value > {, <values >}?

12 <value > ::= integer

13 | real

14 | boolean

15 | string� �
Listing 3.1: Syntax of chromossomes utilised by eToc [Ton04].

definition of a fitness function which penalises invalid sequences. Experi-

ments were performed on a custom-made Java class (StateCounter); even

though coverage metrics were not provided, relevant results included the

observation that the number of inconvertible individuals visibly decreased

constantly over the generations.

Cheon et al. [CKP05] proposed combining the Java Modelling Language

(JML) [LBR06] and GAs in order to automate Test Data generation for

Java programs. JML is used both as a tool for describing test oracles and

as a basis for generating Test Data; each class to be tested is assumed

to be annotated with JML assertions. A proof-of-concept tool is briefly

described with basis on a custom-made example. In [CK06a], a specification-

based fitness function for evaluating boolean methods of Object-Oriented

programs was presented, with an example being provided for illustration

and experimentation purposes. The evolutionary search’s efficiency was

reported to improve from 300% up to 800% as a result of application of the

fitness function.

Inkumsah and Xie [IX07] introduced a technique which merges Concolic

Testing (a combination of concrete and symbolic testing techniques [Sen07])

and Evolutionary Testing; this approach was implemented into the Evacon

framework, which integrated Tonella’s eToc Evolutionary Testing tool and

the jCUTE [SA06] Concolic Testing tool (which tests Java classes using the

dynamic symbolic execution technique). Evolutionary Testing is used to

search for desirable method sequences, while Concolic Testing is employed

39

3. Related Work

Figure 3.1: Evacon framework overview [IX08].

to generate desirable method arguments. The inclusion of Concolic Testing

into the process was supported by the perception that typical Evolution-

ary Testing tools do not use program structure or semantic knowledge to

directly guide test generation, nor provide effective support for generating

desirable primitive method arguments. Empirical studies were conducted

on 6 Java classes taken from the standard library, with the results showing

that the tests generated using Evacon achieved higher branch coverage than

Evolutionary Testing or Concolic Testing alone.

The Evacon tool is described with further detail in [IX08]. Additionally,

Evacon is empirically compared to eToc, jCUTE [SA06], JUnit Factory†

(an industrial test generation tool developed by AgitarLabs), and Randoop

[PE07] (a Random Testing tool). Evacon is reported to achieve higher

branch coverage than any of the aforementioned tools for the 13 Java classes

tested. Figure 3.1 shows an overview of Evacon, which includes 4 compo-

nents: Evolutionary Testing, symbolic execution, argument transformation

(for bridging from Evolutionary Testing to symbolic execution), and chro-

mosome construction (for bridging from symbolic execution to Evolutionary

Testing). In a short position paper [XTdHS08], Evacon’s authors briefly de-

scribe an additional tool for the generation of method sequences with a

demand-driven mechanism and a heuristic-guided mechanism, which is in-

corporated into Pex [Til08] (a White-Box Test Data generation framework

for .NET‡).

In [DJAR07], Dharsana et. al briefly describe a GA-based tool for gener-

ating Test Cases for Java Programs. Experiments were performed on binary

tree, linkedlist, bubble sort (the source of the classes is not provided), and

two custom-made programs, but no details were provided on the setup or

†http://www.junitfactory.com
‡http://research.microsoft.com/en-us/projects/pex/

40

3.1. Object-Oriented Evolutionary Testing Techniques

results.

The work of Ferrer et. al [FCA09] proposes dealing with the inheritance

feature of Object-Oriented programs by focusing on the Java instanceof

operator. The main motivation is that of providing guidance for an au-

tomatic Test Case generator in the presence of conditions containing the

aforementioned operator, and is supported by the fact that it appears in

2700 of the 13000 classes of the JDK 1.6 class hierarchy. Two Mutation

operators, that change the solutions based on a distance measure which

computes the branch distance in the presence of the instanceof operator,

were proposed, and included in the GA-based “Evolutionary Solver” de-

scribed. Experiments were performed on nine custom-made Test Programs,

each consisting of one method with six conditions; the Mutation operators

proposed were reported to behave well when used in place of a simpler

mutation operator, and when compared to Random Search. Future plans

involve combining the approach proposed with other Evolutionary Testing

approaches, and experimenting with real-world software.

3.1.2 Genetic Programming-based Approaches

The first GP-based approaches to Object-Oriented Evolutionary Testing

were presented in 2006 by Wappler and Wegener [WW06b, WW06a], and

Seesing and Gross [SG06, See06].

The encoding of potential solutions using the STGP technique was first

proposed in [WW06b]. Test Programs are represented as STGP trees, which

are able to express the call dependencies of the methods that are relevant

for a given Test Object. In contrast with previous approaches in this area,

neither repair of individuals nor penalty mechanisms are required in order to

achieve sequence validity; the usage of STGP preserves validity throughout

the entire search process (i.e, only compilable Test Programs are generated

by tree builders and genetic operators). To account for polymorphic rela-

tionships which exist due to inheritance relations, the STGP types used by

the Function Set are specified in correspondence to the type hierarchy of the

Test Cluster classes: the Function Set is derived from the signatures of the

methods of the Test Cluster classes, and the Type Set is derived from the in-

heritance relations of the Test Cluster classes. Runtime exceptions are dealt

with by means of a distance-based fitness function. Experiments were per-

formed on four JDK 1.3 classes (Stack, BitSet, BoolStack, ObjectVector),

with full structural coverage being achieved in all cases.

41

3. Related Work

Figure 3.2: EvoUnit framework overview [WW06a].

In [WW06a], Wappler and Wegener extended their previous work and fo-

cused on dealing with unfeasible Test Programs; unlike previous approaches,

the search is guided in case of uncaught runtime exceptions. They propose

a minimising distance-based fitness function in order to assess and differ-

entiate the Test Programs generated during the evolutionary search, which

rates them according to their distance to the given test goal (i.e., the pro-

gram element to be covered); the aim of each individual search is therefore

to generate a Test Program that covers a particular branch of the CUT.

This fitness function makes use of a distance metric that is based on the

number of non-executed methods of a Test Program if a runtime exception

occurs. The EvoUnit framework (Figure 3.2), which implements the con-

cepts proposed in [WW06b, WW06a], is also described; unfortunately the

tool is proprietary and is thus not openly available. Experiments were per-

formed on a custom-made Test Cluster (Controller and Config), with full

branch coverage being achieved.

Wappler et. al suggest an improvement of their Evolutionary Testing

approach in [WS07], which particularly addresses the test of non-public

methods. The existing objective functions are extended by an additional

component that accounts for encapsulation; candidate Test Programs are

42

3.1. Object-Oriented Evolutionary Testing Techniques

rewarded if they cover calls to specific non-public methods. Experiments

performed of 6 Java classes taken from the JDK 1.4, the Quilt project 0.6a5§,

and JFreeChart 1.0.1¶ yield better branch coverage for non-public methods

in comparison with Random Search and their previous approach.

In his Ph.D. Thesis [Wap07], Wappler provides a thorough explanation

of his approach to automatic test generation for Object-Oriented software,

and compares it to other testing techniques (e.g., symbolic execution [Kin76]

and constraint solving [Tsa93]). An empirical investigation also demon-

strated the effectiveness of the methodology; it outperformed random test-

ing and two commercial test sequence generators (CodePro∥ and Jtest∗∗)

when being allocated the same resources. Limitations on the current stage

of development of the approach were also pinpointed: the efficiency level of

the approach decreases as the Test Cluster (and, in consequence, the Func-

tion Set) increases in size; and the test sequences might include unnecessary

method calls.

Our approach to Object-Oriented Evolutionary Testing is also STGP-

based and, as such, builds on the work of Wappler et. al. We have fo-

cused our studies on automating both the Test Object analysis [RdVZR07,

RZdV07a] and the Test Data generation [RZdV07a, Rib08] processes, and

on presenting novel contributions for search guidance [RZdV07b, RZRdV08a,

RZRFdV09], Input Domain Reduction [RZRdV08b, RZRFdV09], Adaptive

Evolutionary Testing [RZRdV10a] and Object Reuse [RZRdV10b]. These

topics (and relevant related work) will be discussed in the following Chap-

ters.

Seesing and Gross proposed a distinct typed GP mechanism for creat-

ing Test Data for Object-Oriented systems; in [SG06], the advantages of

employing a tree-shaped data structure (which can be mapped instantly to

the abstract syntax trees commonly used in computer languages) for repre-

senting Test Programs is discussed, and the proposed GP methodology is

compared to previous GA-based approaches (namely, [Ton04, WL05]). A

custom-made encoding of Object-Oriented Test Programs is presented, and

Mutation operators for method introduction, method removal, and variable

introduction are described. Experiments were performed on 5 Java Classes:

BitSet, HashMap, TreeMap, XMLElement and StringTokenizer. The re-

sults demonstrated the advantage of GP over Random Search, with much

§http://quilt.sourceforge.net/
¶http://www.jfree.org/jfreechart/
∥http://www.instantiations.com/codepro/

∗∗http://www.parasoft.com/jsp/products/jtest.jsp

43

3. Related Work

Figure 3.3: Breeding pipeline used by EvoTest [See06].

higher structural coverage being achieved. In his Master Thesis [See06],

Seesing elaborates on the approach and describes the EvoTest Test Case

generation and Sofware analysis framework (Figure 3.3).

A GP-based Object-Oriented Evolutionary Testing methodology was

also presented in [GR08], which is in the line of the work developed by

Seesing et. al. The encoding and decoding of Test Program into changeable

data structures are discussed, and experiments are performed on 5 classes

of the open source Java project HTMLParser††. The approach is reported

to behave well when compared to Random Testing.

Arcuri and Yao employed STGP in a different scenario. [AY07a] intro-

duces the idea of employing co-evolution [Hil90] for automatically generating

Object-Oriented programs from their specification; STGP is used to evolve

these programs and, at the same time, the specifications are exploited in

order to co-evolve a set of Unit Tests. More specifically, given a specifica-

tion of a program, the goal is to evolve a program that satisfies it; at each

step of the evolutionary process, each program is evaluated against a set of

Unit Tests that also depends on the specification. The more Unit Tests a

††http://htmlparser.sourceforge.net/

44

3.1. Object-Oriented Evolutionary Testing Techniques

program is able to pass, the higher its fitness will be; similarly, Unit Tests

are rewarded on how many programs they make fail. The experiments per-

formed on 4 array-related problems (sorting, searching for the highest value,

searching for the highest occurrence and testing whether all the elements

are identical) achieved successful results. In [Arc08, AY08a] the authors

elaborate on the topic and provide further details on the approach and

corresponding tool, and on [AWCY08] they present a related co-evolution

approach to optimising software, which also involves Multi-Objective Op-

timisation [YH07]; still, and even though it is argued that it possible to

apply the methodology proposed to any problem that can be defined with

a formal specification, its application to the Object-Oriented software was

not the subject of the latter study.

Even thought the GP technique is clearly applicable to the Evolutionary

Testing of Procedural Software, it has not been explored in the published

formulations of the problem [HMZ09]. Other studies within the scope of

SBSE have, however, investigated its use: Evett et al. [EKdCA98] employed

GP for software quality prediction; Burges and Lefley [BL05] applied GP

to the estimation of a software project effort; and Katz and Peled [KP08a,

KP08b] provided a Model Checking-based GP approach for verification and

synthesis from specification.

3.1.3 Other Metaheuristics-based Approaches

Even thought the majority of the Object-Oriented Evolutionary Testing

literature is devoted to the study of either GAs or GP, there are several

studies that focus on distinct evolutionary techniques. In fact, as stated

in [AY07c], other metaheuristic techniques have the potential to achieve

promising results in this area.

An approach which employed a hybrid of Ant Colony Optimization

[DS04] and Multi-Agent GAs [ZLXJ03] was the subject of [LWL05]. The

focus was on the generation of the shortest MCS for a given test goal, under

the constraint of state dependent behaviour and without violating encapsu-

lation. This hybrid algorithm (called Ant PathFinder) was reported to yield

encouraging results on the experiments performed on the CalendarScheduler

class (a data structure included in the discrete event simulator NS2 2.26)

and on Red-Black Tree [CLRS01].

Sagarna et. al [SAY07] addressed the Object-Oriented Evolutionary

Testing problem using Estimation of Distribution Algorithms [LL02]. Esti-

mation of Distribution Algorithms only differ from GAs in the procedure

45

3. Related Work

to generate new individuals; instead of using the typical breeding operators,

Estimation of Distribution Algorithms perform this task by sampling a prob-

ability distribution previously built from the set of selected individuals. The

focus was put on generating Test Data for container classes; experiments

were performed on Vector, LinkedList and Hashtable, extracted from JDK

1.4. Relevant conclusions include the observations that the positions at

which methods are called in the Test Program are (considering the particu-

lar conditions of the approach) independent of each other, and that coverage

grows as the length of the MCS increases.

In [LR08] Liaskos et. al investigated whether the properties of the

Clonal Selection algorithm [dCZ02] (memory, combination of local and

global search) could help tackling the hindrances posed by Object-Oriented

Evolutionary Testing. Clonal Selection is one of the most popular population-

based Artificial Immune Systems algorithms [dCT03] (computational sys-

tems inspired by theoretical immunology and observed immune functions).

Despite employing Mutation to generate new populations, and unlike GAs,

Clonal Selection performs Mutation on the selected solutions with a rate

that is inversely proportionate to their fitness, and does not use crossover;

also, high quality solutions are stored for future use, leading to a faster

immune response. The encoding of solutions is identical to the one used by

the GAs (Test Cases are encoded as chromosomes); the goal is to minimise

the distance between “receptors” (i.e., the executed paths in the CFG) and

“antigens” (i.e., the test targets). Comparative experiments were performed

on 6 Java classes (those used in [Ton04]) to assess the behavior of the hy-

bridisation of a GA with both Artificial Immune Systems and Local Search.

The results suggested that hybridised approaches usually outperform the

GA; however, there are scenarios for which the hybridisation with Local

Search is more suited than the more sophisticated Clonal Selection algo-

rithm. This paper extended the authors’ previous works ([LRW07, LR07]),

which also to addressed the problem of automated testing with data-flow as

the adopted coverage criterion.

Most of the research of Arcuri et. al in the Object-Oriented Evolutionary

Testing area is related with investigating the application of distinct search

algorithms to the Test Data generation for container classes (i.e., classes

designed to store any arbitrary type of data). This is precisely the topic

of [AY07b]. Hill Climbing, GAs and Memetic Algorithms [Mos89] were the

evolutionary approaches used and compared (extending their previous work

presented in [AY07d]). While GAs are global metaheuristics and Hill Climb-

ing is a local search metaheuristic, Memetic Algorithms can approximately

46

3.1. Object-Oriented Evolutionary Testing Techniques

be described as a population-based metaheuristics in which, whenever an

offspring is generated, a local search is applied to it until it reaches a local

optimum. Novel branch distances for handling disjunctions and conjunc-

tions of predicates, new search operators, and a way to reduce the search

space for Object-Oriented software were also presented. The test criterion

was White-Box Testing, with the goal being to achieve branch coverage.

Case studies were conducted on the Stack, Vector, LinkedList, Hashtable

and TreeMap classes of JDK 1.4, which showed that the Memetic Algorithm

outperforms the other algorithms; also, the novel search operators and the

search space reduction technique were able to increase its performance.

In [AY08b], the authors elaborate on their previous studies, and focused

on the difficulties of testing Object-Oriented container classes with meta-

heuristic search algorithms. It is stressed out that container classes are par-

ticularly important given that, even if a testing tool is designed for handling

a generic program, container classes are often used as benchmarks. Rele-

vant contributions include Input Domain Reduction [HHL+07] and Testabil-

ity Transformation [HHH+04] techniques, and addressing the MCS length

minimisation problem. The performance of five search algorithms (Random

Search, Hill Climbing, Simulated Annealing, GAs and Memetic Algorithms)

was compared on 7 container classes (Vector, Stack, LinkedList, Hashtable

and TreeMap from the JDK 1.4; and BinTree and BinomialHeap from JPF

[VPP06]). The experimental studies revealed TreeMap (an implementation

of Red-Black Tree) as the most difficult Container to test, with Memetic

Algorithms arising as the best technique for the problem; also interestingly,

Hill Climbing performed better than GAs (local Search algorithms are gen-

erally supposed to behave worse in these situations [WBS01]), and Random

Search behaved poorly especially on more complicated problems.

In [Arc09b], Arcuri carries out a set of theoretical analyses regarding the

usage of metaheuristic search techniques in Software Testing. The focus is

on assessing if (and why) a search algorithm is effective on a Software Testing

problem. This work compares four distinct search algorithms: Random

Search, Hill Climbing, (1+1) Evolutionary Algorithm, and GA. For this

purpose, the put and remove methods of the TreeMap Java class were

selected as Test Objects, and a White-Box scenario, in which the full branch

coverage was sought, was considered. For the sake of simplicity, only integer

objects were used, the same object was used for both as the key and inserted

object, and insertion/removal of null objects was not considered. Also,

constraints were put on the input ranges and on the number of method

calls in the test sequences. The results yielded by this study indicated

47

3. Related Work

that a simple (1+1) Evolutionary Algorithm performs better than a fairly

tuned GA – in contradiction with the current trend, in which population

algorithms are very common. Also, in this case, even Random Search was

able to give optimal solutions in a reasonable time when constraints were

used. As future work, the author mentioned the importance of extending

the analyses to scenarios in which no constraints are defined.

In this Ph.D. Thesis [Arc09a], Arcuri compiles and elaborates on his

previous proposals. Relevant contributions to the SBSE area include theo-

retical analyses of search algorithms applied to Test Data generation (and,

in particular, to Object-Oriented Evolutionary Testing), and methodolo-

gies for automatic refinement (i.e., automating implementation with basis

on a formal specification), fault correction (i.e., automatically evolving the

input program to make it able to pass a set of Test Cases), improving

non-functional criteria (e.g., execution time and power consumption), and

reverse engineering (i.e., automatically deriving source code from Bytecode

or assembly code).

Although it is possible to generate inputs for certain classes of programs

using search-based techniques, the problem of automatically determining

whether the corresponding outputs are correct also remains a significant

problem; one that is not limited to Evolutionary Testing, but is orthogo-

nal to the entire field of Software Testing. This is because an “oracle” (i.e,

a mechanism for checking that the output of a program is correct given

some input), is seldom available. Davis and Weyuker [DW81] proposed

the use of a “pseudo-oracle” to alleviate this problem. A pseudo-oracle is

a program that has been produced to perform the same task as its origi-

nal counterpart. The two programs, the original and its pseudo-oracle, are

run using the same input and their respective outputs compared; any dis-

crepancy may represent a failure on the part of the original program or its

pseudo-oracle. Recently, McMinn [McM09] introduced testability transfor-

mations (i.e., techniques that change a program in order to make it more

“testable”) to automatically generate pseudo-oracles from certain classes of

Object-Oriented programs. In [Ton04], the oracle problem is handled by

manually adding assertions; Tonella reported that the test suites produced

by the Evolutionary Testing method proposed were quite compact, and that

augmenting them with assertions would thus be expected to require a minor

effort.

Interesting review articles on the topic of SBSE (and Search-Based Soft-

ware Testing (SBST) in particular) include [McM04, MA05, ABHPW09,

HMZ09].

48

3.2. Conclusions

In [McM04], McMinn surveys the use of metaheuristic search techniques

for the automatic generation of Test Data. Because the work on SBST had,

thus far, been largely restricted to programs of a procedural nature, these

are the main subject of this review. Topics include structural and functional

testing, the testing of grey-box properties (e.g., safety constraints), and

non-functional properties (e.g., worst-case execution time); possible future

directions of research for each of individual area are also discussed.

Mantere and Alender [MA05] focus their review on the application of

GA-based optimization methods to Software Testing; they stress out that

all the researchers in this area report good (or, at least, encouraging) results

regarding their use; in fact, if a GA does not seem to outpower Random

Search, it is probably poorly implemented. Nevertheless, it is also suggested

that, despite being robust, the effectiveness of GAs tends to depend on

implementation details (e.g., on how the problem is encoded).

Ali et. al present a systematic review on the way SBST techniques have

been empirically assessed in [ABHPW09]. Contributions include guidelines

on how to conduct empirical studies in SBST, the observation that stud-

ies need to, more systematically and rigorously, account for the random

variation in the results generated by any metaheuristic algorithm, and the

verification that it is impossible to assess how a metaheuristic technique per-

forms in absolute terms – to be able to conclude on its usefulness, a proposed

technique needs to be compared with simpler and existing alternatives to

determine whether it brings any advantage.

Harman, Mansouri and Zhang [HMZ09] provide a thorough index and

classification of SBSE-related literature, supported by an online repository‡‡

of SBSE publications maintained by Zhang. Local search, Simulated An-

nealing, GAs and GP are identified as the most widely used optimisation

and search techniques; this paper also reveals that nearly two thirds of the

overall SBSE literature are concerned with Software Engineering applica-

tions relating to Software Testing, with structural Test Data generation

being the most studied sub-topic.

3.2 Conclusions

An analysis of the related work on Object-Oriented Evolutionary Testing

described above allows drawing some conclusions.

‡‡http://www.sebase.org/sbse/publications/

49

3. Related Work

Firstly, nearly all studies have been developed with basis on the pro-

gram’s structure, with the objective being that of attaining a coverage cri-

terion (usually statement or branch); only [CK06b, AY07a] consider the

program’s specification.

Also, Java is always the programming language of choice for the pur-

poses of implementation and experimentation (with the exception being

[XTdHS08]).

Various Test Objects are considered in the experiments described; how-

ever, nearly all works (and, in particular, those that do not use custom-made

classes) employ container classes (e.g., Stack, BitSet, Vector, TreeMap) as a

basis for their studies, and these are typically extracted from the JDK 1.4.

Finally, the frameworks developed are seldom freely available for other

researchers to experiment and compare their approaches; the only exception

known to the authors is Tonella’s eToc tool. As such, comparisons are

usually performed against Random Search (e.g., [SG06, WS07, GR08]). As

stated in [AY07c], the lack of a common benchmark, which can be used

by researchers to test and compare their techniques, makes it difficult to

evaluate the performance of a novel technique against existing ones and

poses a significant hindrance to the Evolutionary Testing area.

50

Chapter 4

A Genetic Programming-based

Framework for the Evolutionary

Testing of Object-Oriented

Software

In Evolutionary Testing, metaheuristic search techniques are used to select

and produce high-quality Test Data. The focus of this research was put on

employing GP for evolving and generating Test Data for the structural Unit

Testing of Object-Oriented Java programs.

The decision of addressing the Unit Test generation problem is sup-

ported by the observation that most errors are introduced during the unit

stage (cf. Section 2.2.1); a tool for automating Unit Testing would greatly

improve this – largely informal and often human-dependant – process, and

have a direct impact on the quality and reliability of the implemented sys-

tems. Structural adequacy criteria was the testing strategy selected, not

only because the Unit Testing process is traditionally White-Box oriented

(cf. Section 2.2.2), but also because a formal specification of the Test Ob-

jects is seldom available. Java was the programming language of choice,

both for implementing the eCrash Test Data generation tool and for ex-

perimentation purposes; this option has to do with the fact that Java is

currently the most ubiquitous Object-Oriented language (cf. Section 2.1).

Finally, GP was the evolutionary paradigm employed for evolving Test Data;

it is arguably the most natural way to evolve Object-Oriented programs (cf.

Section 2.3.1), and its characteristics allow automating both the Test Object

51

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

analysis and the Test Data generation processes (as will be demonstrated

in the remaining of this Chapter).

Significant contributions to the state-of-the-art of the Object-Oriented

Evolutionary Testing area were achieved as a result of this research; these

will be described in Chapters 5 to 8. The main objectives of the present

Chapter are those of providing an overview of Evolutionary Testing method-

ology proposed, and of presenting the eCrash Test Data generation frame-

work for Object-Oriented Java software.

This Chapter is organised as follows. In the next Section, the Evolution-

ary Testing methodology proposed is overviewed, and the decisions made

regarding the development and implementation of the technical approach

to the problem are explained. In Section 4.2, the eCrash tool, which embod-

ies the technical approach to automatic Test Data generation proposed, is

outlined. Section 4.3 details the Test Object analysis stage and, in Section

4.4, the Test Data generation procedure is explained; special emphasis will

be put on the techniques utilised for automating these processes. Finally,

in Section 4.5, the concepts presented in this Chapter are summarised.

4.1 Methodology Overview

Our approach to Object-Oriented Evolutionary Testing involves encoding

potential solutions (i.e., Unit Test Cases) as STGP [Mon95] individuals;

STGP is particularly suited for representing and evolving Object-Oriented

programs, which may be represented as Method Call Trees (MCTs). A

MCT consists of method nodes, each of which represents a method that

will later appear in the decoded Test Program; it is rooted, with the root

node representing the MUT. In formal terms, it can be defined as follows:

Definition 4.1.1 ([Wap07]). A method call tree Ψ, defined by the tuple

(NM , E), is an acyclic directed graph, where NM is the set of nodes repre-

senting the test cluster methods, and E ⊆ NM ×NM is the set of the edges

connecting the method nodes.

With STGP, types are defined a priori in the Function Set and define

the constraints involved in MCT construction; in other words, the Function

Set contains the set of instructions from which the algorithm can choose

when building the MCSs that compose Test Programs. This feature en-

ables the initialization process and the various genetic operations to only

construct syntactically correct MCTs, thus restraining the search-space to

52

4.2. Technical Approach

the set of compilable Test Programs. The Function Set is defined completely

automatically based solely on Test Cluster (i.e, the transitive set of classes

which are relevant for testing the CUT) information.

In order for a Test Program to be executed, the genotype (i.e, the MCT)

must be decoded into the phenotype (i.e., the Test Program); this can be

achieved by linearising the tree by means of a depth-first traversal algorithm.

The example MCT depicted in the Figure 2.9 on page 32 encodes the Test

Program contained on Listing 2.4 on the same page. The MUT is the search

method of the Stack class – which corresponds to the root node of the MCT.

The root node’s parameters are provided by its children, the push method

and the Object constructor, with the former having it parameters provided

by the peek method and Object constructor, and so on.

The quality of a particular Test Program is related with the CFG nodes

of the MUT which are the targets of the evolutionary search at a given stage

of the search process. Test Cases that exercise less explored (or unexplored)

CFG nodes and paths are favoured, with the objective of attaining the

primary goal of the Test Data generation process – finding a set of Test

Cases that achieves full structural coverage of the Test Object. Whenever

a Test Program exercises a CFG node, that node is marked as “hit”; the

search stops when there are no CFG nodes left to be covered or after a

predefined number of generations.

Test Program quality evaluation involves the Test Object’s instrumen-

tation (i.e., insertion of additional code into the program in order to collect

information about program behavior during execution). Instrumentation

and CFG analysis are performed statically, before the Test Data genera-

tion process takes place; execution flow analysis and fitness evaluation are

performed dynamically.

The algorithm depicted in Figure 4.1 summarises the Evolutionary Test-

ing methodology evolutionary approach to automatic Test Program gener-

ation proposed. These concepts were implemented into the eCrash auto-

mated Test Data generation framework.

4.2 Technical Approach

The eCrash tool embodies the approach to Evolutionary Testing of Object-

Oriented programs proposed; Figure 4.1 provides an overview of this frame-

work and of the way in which its components interoperate. eCrash is com-

posed by the following main modules:

53

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

Algorithm 4.1: Methodology overview.
Data: class under test, test cluster
Result: test set

foreach class under test do
instrument for structural tracing;
create control-flow graphs;
generate function set;
parameterise evolutionary run;
foreach method under test do

initialize weight of control-flow graph nodes;
initialize constraint selection rankings;
generate random population;
repeat

if generation > 0 then
adapt constraint selection rankings;
select individuals for reproduction;
apply mutation and crossover operators;
apply object reuse operator;
generate new population;

foreach individual do
linearise method call tree;
synthesise test program;
compile and execute test program;
if test program is feasible then

trace control-flow graph nodes hit;
if new control-flow graph nodes are hit then

mark new control-flow graph nodes as hit;
include test program in test set;

evaluate fitness of individual;

until stopping criteria are met ;

� Test Object Instrumentation (TOI) Module: executes the tasks of

building the CFG and instrumenting the Test Object.

� Automatic Test Object Analysis (ATOA) Module: performs the Test

Object analysis; it’s main tasks are those of defining the Test Cluster,

generating the Function Set and parameterising the Test Program

generation process.

� Test Program Generation (TPG) Module: iteratively evolves potential

solutions to the problem with basis on the GP paradigm.

� Test Program Evaluation and Management (TPEM) Module: synthe-

sises, executes and evaluates Test Programs dynamically, and selects

the Test Programs to be included into the Test Set.

54

4.3. Test Object Analysis

Test Object analysis is performed offline – i.e., before Test Data genera-

tion takes place. As a result of this process, the TPEM Module is provided

with the instrumented Test Object and the CFGs, which are required for

assessing the quality of the generated Test Programs; and the TPG Module

is provided the Parameter and Function Files, which contain all the informa-

tion necessary for the Evolutionary Computation in Java (ECJ) component

[Luk09a] of this module to iteratively evolve Test Cases. The outputs of

the TPG and TPEM modules include: the Test Set, which may be provided

to an external Unit Testing Framework (e.g., jUnit); and several statistics

about the Test Data generation process, e.g. the level of coverage attained,

the number of Test Programs generated, and the time spent performing the

task. The static Test Object analysis process is detailed in Section 4.3, and

the dynamic Test Data generation process is described in Section 4.4.

4.3 Test Object Analysis

This Section details the Test Object analysis phase: the following Subsec-

tion starts by describing the CFG building and Test Object instrumentation

procedures; next, the Test Cluster Definition stage is detailed; and finally,

the Function Set generation and Evolutionary Search parameterisation pro-

cesses are overviewed. The diagram depicted in Figure 4.2 summarises the

entire Test Object Analysis process.

4.3.1 Test Object Instrumentation and CFG Creation

In order for the Test Data Generation process to take place, a preliminary

analysis of the Test Object must be performed. Specifically, a CFG provid-

ing a representation of the MUTs must be created and the CUT must be

instrumented. This will allow evaluating the quality of the generated Test

Programs: dynamic analysis requires executing each Test Program, and

tracing the CFG nodes exercised in order to gather coverage data.

The CFG building, instrumentation and event tracing processes are per-

formed statically with the aid of Sofya∗, a Java Bytecode analysis framework

that is particularly suited for developing dynamic analysis tools [KDR07].

The Sofya package provides implementations and tools for the construction

of various kinds of graphs – most notably CFGs – and native capabilities for

dispatching event streams of specified program observations, which include

∗http://sofya.unl.edu/

55

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

Figure 4.1: Cross-Functional Diagram of the eCrash Framework.

56

4.3. Test Object Analysis

Figure 4.2: Diagram for the Test Object Analysis process.

57

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

instrumentators, event dispatchers, and event selection filters for semantic

and structural event streams. Additionally, it contains tools to perform

various analyses using the outputs generated by its components (statistics,

coverage reports, ...) and to visualise the trace files produced by the execu-

tions of instrumented programs.

In the context of the eCrash tool, Sofya is employed to instrument classes

for structural event dispatch. Basic Block instrumentation enables the ob-

servations of the Basic Instruction and Call blocks exercised as a result of

the Test Object’s execution.

Probe insertion and CFG computation are performed at the Java Byte-

code level. Given that the target object’s source code is often unavailable,

working at the Bytecode level allows broadening the scope of applicability

of Software Testing tools; they can be used, for instance, to perform struc-

tural testing on third-party components [VDMW06]. Also, Bytecode can

be seen as an intermediate language, so the analysis performed at this level

can be mapped back to the original high-level language that generated the

Bytecode.

The CFG building procedure involves grouping Bytecode instructions

into a smaller set of Basic Instruction blocks and Call blocks, with the inten-

tion of simplifying the representation of the Test Object’s control flow. Basic

Instruction blocks encompass regular Bytecode instructions, including the

decision and branching instructions that can influence control flow (namely,

Bytecode instructions if, goto, jsr, switch, return, ret, throw, sumthrow and

exit [LY99]). Call blocks represent Bytecode instructions that cause con-

trol flow to be transferred to another method; they contain the high-level

information needed to identify the method being called.

Additionally, other types of nodes which represent virtual operations are

defined: Entry nodes, Exit nodes, and Return nodes. These virtual nodes

encompass no Bytecode instructions; they are used to represent certain

control flow hypothesis. Call blocks transfer control flow to the CFG of

another method; the method called, in turn, can return normally or with

an exception. In order to differentiate these situations, Return nodes are

created. They follow Call nodes, and are traversed when the called method

returns regularly; if the called method returns with an exception, either the

exception is dealt with internally or control flow jumps to an Exit node that

causes the method to return with an exception itself. Exit nodes follow other

nodes that can cause the method to return; a different Exit node is created

for each return scenario (including return and throws Bytecode instructions)

and method call instructions that may return an exception. Entry nodes

58

4.3. Test Object Analysis

identify the starting point of the CFG; they simply indicate the method’s

entry point.

Let us consider the example CFG depicted in Figure 2.4 on page 17,

which was built according to the methodology described above and repre-

sents the search method of the Stack class. Attaining full structural cov-

erage involves traversing the CFG nodes 4, 7, 8 (Basic Instruction blocks)

and 2, 5 (Call blocks). Additionally, other types of blocks, which represent

virtual operations are defined: an Entry block (block 1), Exit blocks (blocks

9, 10, 11), and Return blocks (blocks 3, 6).

4.3.2 Test Cluster Definition

It is not possible to test the operations of a class in isolation, as they in-

teract with each other by modifying the state of the object which invokes

them; testing a single class thus also involves those classes that appear as

parameter types in the signatures CUT’s methods. The transitive set of

classes which are relevant for testing a particular class is called the Test

Cluster for this class.

A call to the search method of the Stack class (Listing 2.1 on page 17),

for example, requires both a Stack instance and an Object instance to be

previously created. As such, the Object class must be present in the Test

Cluster.

A Test Cluster may be formally defined as follows:

Definition 4.3.1 ([Wap07]). Let C be the set of all classes and ◃ be the

class association relation so that ci ◃ cj with ci, cj ∈ C means that class

ci is either a superclass of class cj, or ci is associated to cj by a general

association relation. Furthermore, let ◃+ be the transitive closure of the

class association relation ◃. Then,

C = {ci|ci ◃+ ct} (4.1)

where ci, ct ∈ C is the test cluster C of the class under test ct.

The selection of the classes and members which compose the Test Cluster

is largely human-dependant. However, the ATOA module of the eCrash

framework assists the user on this task, by statically examining the data

types by means of the Reflection API† [ZHR+06] and automating all the

systematic procedures – e.g., it provides the user with all the concrete classes

†http://java.sun.com/javase/6/docs/api/java/lang/reflect/package-summary.html

59

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

that instantiate the parameters of interface or abstract types (as suggested

by Tonella in [Ton04]). A description of the Test Cluster definition process

implemented in eCrash follows.

The first task required of eCrash’s user is that of selecting one or more

jar files‡ containing all the classes which participating in the analysis; the

set of classes to be included in the Test Cluster will be selected among these

(and methods, constructors and constants likewise). Also, a non-abstract

class must specified as the CUT.

Next, the default Test Cluster is automatically defined; the current

methodology for performing this task involves adding the following members

to the Test Cluster:

� the CUT;

� all the public methods and constructors of the CUT;

� all the data types (both reference and primitive) appearing as param-

eter’s in the CUT’s methods;

� the default constructors (i.e., constructors with no explicit parameters)

of all the reference data types, if available;

� the default constant set for each of the primitive Java data types

(Table 4.1), which includes acceptable and boundary values and is

used to sample the search space in accordance to the methodology

proposed in [KJS98].

Table 6.1 on page 85 depicts the default Test Cluster (in accordance to

the methodology described above) for the Stack class.

After the default Test Cluster has been defined, the user is given the

option of extending the default Test Cluster; the Block Diagram for this

process is included in Figure 4.2 on page 57. The user may either start by

choosing to include any of the classes (and a number of its public methods

and constructors) loaded from the jars selected at the beginning, or select

a data type already included in the Test Cluster. If the user’s choice is the

latter, he is provided the following options, depending on the kind of data

type selected:

� Primitive Data Type: the user is given the option of inserting a valid

value;

‡Archive of Java classes or libraries.

60

4.3. Test Object Analysis

Primitive Default
Data Type Constant Set

boolean true, false
byte -1, 0, 1, Byte.MAX VALUE, Byte.MIN VALUE
char ’a’, ’0’, ’ !’, Character.MAX VALUE, Character.MIN VALUE
double -0.5d, 0.0d, 0.5d, Double.MAX VALUE, Double.MIN VALUE
float -0.5f, 0.0f, 0.5f, Float.MAX VALUE, Float.MIN VALUE
int -1, 0, 1, Integer.MAX VALUE, Integer.MIN VALUE
long -1L, 0L, 1L, Long.MAX VALUE, Long.MIN VALUE
short -1, 0, 1, Short.MA VALUE, Short.MIN VALUE

Table 4.1: Default constant set to be included in the Test Cluster for the
primitive Java data types.

� Class Data Type: the set of all know subclasses is ascertained by

means of Reflection and presented to the user; this set includes all

the non-abstract classes, existing in the set of all loaded classes, that

extend (directly or transitively) the selected class. Then, the user may

select to include any of these classes (and any of its public methods

and constructors) in the Test Cluster;

� Interface Data Type: the set of all know implementing classes is as-

certained by means of Reflection and presented to the user; this set

includes all the non-abstract classes, existing in the set of all loaded

classes, that implement (directly or transitively) the interface selected.

Then, the user may select to include any of these classes (and any of

its public methods and constructors) in the Test Cluster;

� Array Data Type: the data type of the array component is ascertained

by means of Reflection, and depending on the kind of data type (prim-

itive, class or interface), one of the procedures described above follows.

Finally, the user is asked if the null constant for reference data types

is to be included into the Test Cluster, and required to specify the possible

array dimensionalities (if none are provided, the default values 0, 1 and 2

are used).

After the Test Cluster is defined, the ATOA module proceeds to auto-

matically generate the Function Set and, finally, all the configuration files

required by ECJ to evolve Test Programs.

61

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

4.3.3 Function Set Generation

The Object-Oriented Evolutionary Testing methodology proposed involves

encoding and evolving candidate Test Programs as STGP trees; each STGP

tree must subscribe to a Function Set which defines the STGP nodes legally

permitted in the tree. The Function Set can be generated completely auto-

matically based solely on Test Cluster information, by means of a process

which involves an Input Domain Reduction procedure.

The Input Domain Reduction methodology proposed is based on the

concept of Purity Analysis [SR04], and is able to prevent the insertion of

entries that are irrelevant to the search problem into the Function Set, there-

fore decreasing the number of distinct Test Programs that can possibly be

created while searching for a particular test scenario.

The first task of the Function Set Generation process is that of modelling

the call dependencies of the data types and members existing in the Test

Cluster; an Extended Method Call Dependence Graph (EMCDG) [WW06b]

is employed for this purpose. An EMCDG is a bipartite, directed graph

with two types of nodes: member nodes represent methods, constructors, or

constants; and data type nodes represent classes, interfaces, primitive types,

and arrays. A link between a member node and a data type node means

that the method can only be called if an instance of the linked data type

is created in advance; a link between a data type node and a member node

means that an instance of the class is created or delivered by the linked

member.

The EMCDG can be defined automatically based solely on the Test

Cluster information; likewise, the Function Set can be completely derived

from the EMCDG. A thorough and illustrated explanation of the whole

Function Set Generation process is available in Section 6.2, as part of the

description of the Input Domain Reduction strategy proposed. An example

EMCDG and the corresponding Function Set for the search method of the

Stack class are shown in Figure 6.1 and Table 6.2 (page 90), respectively.

4.3.4 Evolutionary Search Parameterisation

As was aforementioned, the ECJ framework is utilised by eCrash’s Test

Program Generation module for evolving potential solutions for a given

Evolutionary Testing problem. ECJ is a research package that incorporates

several Universal Evolutionary Algorithms, and includes built-in support

for STGP. It is highly flexible, having nearly all classes and their settings

62

4.3. Test Object Analysis

being dynamically determined at runtime. Even though parameters can

be defined programatically, they rarely are; typically, a hierarchical set of

parameter files are defined to set up the Evolutionary Algorithm’s configu-

ration, with Function Files being utilised to store the information contained

by a particular Function Set entry and, consequently, the data which will

be contained in the STGP trees’ nodes.

ECJ relies heavily on Parameter and Function files for nearly every con-

ceivable configuration setting§ and, as such, Function Set information must

be parameterised accordingly.

The ATOA module of the eCrash framework automates the generation

of problem-specific Parameter and Function Files: the former parameterise

Function Set information, whereas the latter are built with basis on the

corresponding member (constructor, method, or constant) information.

Listings B.1 and B.2 in Appendix B depict, respectively, example Pa-

rameter and Function files generated by eCrash as a result of the analysis

of the search method of the Stack class.

The Parameter File is divided into 3 sections: General Parameters,

Test Object Specific Parameters, and MUT Specific Parameters. The Gen-

eral Parameters mostly encompass Evolutionary Algorithms configurations

(such as termination criteria, population size, evolutionary operators, selec-

tion strategy, and tree builders); these are usually defined and tweaked by

the user (e.g., depending on the resources available or in order to experiment

with different breeding strategies). The Test Object Specific Parameters en-

compass all problem-related configurations, and include the definition of

atomic types, set types, and GP node constraints; these are defined auto-

matically solely with basis on Function Set information. The MUT Specific

Parameters section is basically used to define the root node of the STGP

tree – which must necessarily be the MUT.

Function Files encode all the information that will be included into the

MCTs’ nodes, which will subsequently be used to decode the STGP tree

into the Test Program (by means of the process described in Section 4.4.3).

Relevant information includes the type of node (contructor, method, or

constant), the member’s parameters data types, and the return value data

type. Each node constraint defined in the Node Constraints subsection of

the Test Object Specific section of the Parameter File must be associated

with a distinct Function File.

§http://cs.gmu.edu/ eclab/projects/ecj/docs/parameters.html

63

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

4.4 Test Data Generation

This Section details the Test Data generation phase: the following Sub-

section starts by describing the preparatory steps which precede the evolu-

tionary run; in Subsection 4.4.2, the iterative process by means of which

candidate solutions to the problem are created is explained; the process of

transforming the individuals’ genotypes (i.e, the MCTs) into the phenotypes

(i.e, the Test Programs) is detailed in Subsection 4.4.3; and Subsection 4.4.4

overviews the methodology utilised for ascertaining the quality of Test Pro-

grams and computing the corresponding individuals’ fitness. The diagram

depicted in Figure 4.3 summarises the whole Test Data Generation process

as implemented into the eCrash tool.

4.4.1 Setting Up The Evolutionary Run

The main goal of each evolutionary run is to find a set of Test Programs

that achieves full structural coverage of the CFG representing a particular

MUT; as such, before commencing the evolutionary process, a list of the

CFG nodes remaining – which initially includes all the CFG nodes – is

created.

At this point, the CFG nodes’ weights must also be initialised. As will

be described in Section 4.4.4, the issue of steering the search towards the

traversal of interesting CFG nodes and paths was addressed by assigning

weights to the CFG nodes, which are re-evaluated every generation. At

the beginning, all CFG nodes are assigned a predefined weight value, in

accordance to the strategy detailed in Chapter 5.

The final step preceding the creation of the initial population of can-

didate solutions is that of initialising the contraints’ selection probabilities.

This particular parameter is related with the Adaptive Evolutionary Testing

strategy detailed in Chapter 7, which promotes the introduction of relevant

instructions into the generated Test Programs by means of Mutation; the

instructions from which the GP’s tree building algorithm can choose are

ranked, with their rankings being updated every generation in accordance

to the feedback obtained from the individuals evaluated in the preceding

generation. The initial constraints’ selection probabilities must be defined

in the Parameter Files (e.g., line 119 of Listing B.1); the current strategy is

that of defining equal initial selection probabilities to all the constraints.

64

4.4. Test Data Generation

Figure 4.3: Diagram for the Test Data generation process.

65

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

4.4.2 Evolving Test Programs

Test Programs are evolved while there are CFG nodes left to be covered, or

until a predefined number of generations is reached; the maximum number

of generations, and the population size likewise, must have been defined in

the Parameter File (e.g., lines 9 and 14 of Listing B.1).

Each individual must be decoded into the corresponding Test Program,

compiled and executed, so as to allow verifying if it should be included into

the Test Set; whenever a Test Case “hits” an unexercised CFG node, that

node is removed from the CFG Nodes Remaining list, and the Test Case

is added to the Test Set. Also, the fitness of individuals (of which their

probability of being selected for breeding depends) is assessed differently

depending on the individuals feasibility; nevertheless, it requires the Test

Program’s execution.

The initial population is composed by individuals created randomly by

means of the selected tree building algorithm (e.g., Full and Grow). Subse-

quent populations are formed by individuals originated from those existing

in the preceding population, which may either be cloned directly (if the Re-

production operator is used for breeding individuals) or altered before being

copied (e.g., if the Mutation of Crossover operators are applied). Distinct

probabilities of selecting the breeding operators may also be defined.

Individuals may also be bread using the Object Reuse operator, which

is an important component of the Object Reuse methodology detailed in

Chapter 8. In short, the Object Reuse operator enables the introduction

of “At-Nodes” into existing trees; At-Nodes are custom-made STGP nodes

that “point to” other nodes, thus effectively enabling the creation of edges

to nodes that are already part of the tree, and allowing the reuse of sub-

trees. The objective is that of permitting a single object instance to be

passed to multiple methods as an argument (or multiple times to the same

method as arguments), thus enabling the traversal of structural entities in

the CFG that would not be reachable otherwise.

4.4.3 Decoding Test Programs

Test Program quality evaluation involves the MUT’s instrumentation and

posterior execution using the generated Test Programs, with the intention of

collecting trace information with which to derive coverage metrics. Decod-

ing an MCT (i.e, the genotype) into the Test Program (i.e., the phenotype)

for execution is a two step process which involves: the linearisation of the

66

4.4. Test Data Generation

MCT, so as to obtain the MCS; and the translation of the MCS into the

Test Program. Therefore:

� the MCS corresponds to the internal representation of the Test Pro-

gram; specifically, it corresponds to the linearised MCT. Listing 2.3

on page 32 depicts a MCS obtained from the linearisation of the MCT

depicted in Figure 2.9 (on the same page);

� the Test Program corresponds the syntactically correct, compilable,

and executable version of the MCS, according to the programming

language of choice (currently, only Java is supported by eCrash). List-

ing 2.4 on page 32 contains the Java Test Program synthesised from

the MCS shown in Listing 2.3.

Algorithm 4.2 details the depth-first transversal algorithm utilised to

linearise the STGP trees. It should be noted that this algorithm is solely

intended to decode those MCTs that do not result from the application of

the Object Reuse Operator; the methodology for MCT linearisation in the

presence of At-Nodes will be detailed in Chapter 8 as part of the description

of the Object Reuse strategy.

The Test Program’s source-code synthesis is performed by translating

MCSs into Test Programs using the information contained in each MCS

entry. Specifically, each MCS entry contains a Method Information Object

(MIO), which encloses: the method signature data necessary for the Test

Program’s source code to be assembled, i.e. the information contained in

the Function Files, such as a method’s name and class, parameter types and

return type (e.g., Listing B.2 in Appendix B); and references to other MIOs

providing the parameters (if any) for that method. The Test Program thus

corresponds to a syntactically correct translation of the MCS. Algorithm

4.3 depicts the Test Program synthesis procedure.

4.4.4 Evaluating Test Programs

The quality of a particular Test Program is related to the CFG nodes of the

MUT which are the targets of the evolutionary search at the current stage

of the search process; Test Cases that exercise less explored CFG nodes and

paths are favoured, with the objective of finding a set of Test Cases that

achieves full structural coverage of the Test Object.

The issue of steering the search towards the traversal of interesting CFG

nodes and paths was addressed by assigning weights to the CFG nodes; the

67

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

Algorithm 4.2: Algorithm for Method Call Tree linearisation in the
absence of At-Nodes.
Data: Method Call Tree
Result: Method Call Sequence

Global Variables:
Current Node ← Root Node;
Previous MIO ← null;
MCS ← empty sequence;

begin Function linearizeMCT(Current Node)
if Current Node ̸= Root Node then

Previous MIO ← get MIO from from Parent Node of Current Node;

Current MIO ← get MIO from Current Node;
if Previous MIO ̸= null then

add Current MIO to Parameter Providers List of Previous MIO;

Child Nodes List ← get Child Nodes List from Current Node;
foreach Child Node in Child Nodes List do

call linearizeMCT(Child Node);

add Current MIO to MCS;

higher the weight of a given node, the higher the cost of exercising it, and

hence the higher the cost of traversing the corresponding control-flow path.

Additionally, the weights of CFG nodes are re-evaluated at the beginning of

every generation; nodes which have been recurrently traversed in previous

generations and/or lead to uninteresting paths are penalised.

At the beginning of each generation the weight of each CFG node is

multiplied by: a weight decrease constant value α, so as to decrease the

weight of all CFG nodes indiscriminately; a hit count factor, which worsens

the weight of recurrently hit CFG nodes; and a path factor, which improves

the weight of nodes that lead to interesting nodes and belong to interesting

paths. For feasible Test Cases, the fitness is evaluated as being the average

weight of the nodes exercised. This computation is performed with basis

on the trace information; relevant data includes the “Hit List” – i.e. the

set of traversed CFG nodes. For unfeasible Test Cases, the fitness of the

individual is calculated in terms of the distance between the index of the

method call that threw the exception and the MCS’s length; the higher

the percentage of instructions executed, the higher the individual’s quality.

Also, an unfeasible penalty constant value β is added to the final fitness

value, so as to penalise unfeasibility.

The Test Program evaluation strategy utilised will be thoroughly de-

scribed in Chapter 5.

68

4.4. Test Data Generation

Algorithm 4.3: Algorithm for Test Program synthesis with basis on
the Method Call Sequence.
Data: Method Call Sequence
Result: Test Program

counter ← 1;
variableName ← null;

foreach MIO in MCS do
variableName = dataTypeName + counter ;

if MIO contains a CONSTANT then
i ← dataTypeName + " " + variableName + " = " + constant + ";";

else if MIO contains a CONSTRUCTOR then
i ← dataTypeName + " " + variableName + " = new " +
dataTypeName + "(" + providersList.associatedItemInfos + ");";

else if MIO contains a METHOD then
if method returns an array then

i ← dataTypeName + "[] " + variableName + " = " +
providersList[0].associatedItemInfo + "." + methodName + "(" +
providersList[1..SIZE-1].associatedItemInfos + ");";

else if method returns void then
i ← providersList[0] + "." + methodName + "(" +
providersList[1..SIZE-1].associatedItemInfos + ");";

else if method returns a primitive or reference data type then
i ← dataTypeName + " " + variableName + " = " +
providersList[0] + "." + methodName + "(" +
providersList[1..SIZE-1].associatedItemInfos + ");";

else if MIO contains an ARRAY then
i ← dataTypeName + "[]" + variableName + " = []{" +
providersList + "};";

if associatedItem is RE then
associatedItemInfo ← variableName;

else if associatedItem is IP then
associatedItemInfo ← providersList[0].associatedItemInfo;

else if associatedItem is Pρ, ρ ∈ [1..SIZE − 1] then
associatedItemInfo ← providersList[ρ].associatedItemInfo;

counter ← counter + 1;
testProgram ← testProgram + i + LINEBREAK;

69

4. A Genetic Programming-based Framework for the
Evolutionary Testing of Object-Oriented Software

4.5 Summary

This Chapter described a technical approach for automating the generation

of Unit Test Data for Object-Oriented software. The concepts presented

were implemented into the eCrash tool.

eCrash is a Java-based prototype Test Data generation tool; it was de-

veloped during the course of the research presented in this Thesis to support

the integration of research steps. Achieving the highest level of automation

possible was a primary concern, and always underlied its development and

implementation; as was mentioned in Section 2.2, the lack of automation is

one of the major problems faced by Software Testers today, and a major hin-

drance which still prevents Object-Oriented software from being adequately

tested and validated.

The Object-Oriented Evolutionary Testing approach proposed involves

encoding and evolving potential solutions to the problem (i.e., Test Pro-

grams) as STGP trees. When evaluating Test Programs, whenever a CFG

node is exercised, that node is removed from the Remaining Nodes list, and

the Test Program is added to the Test Set; the search stops when there are

no CFG nodes left to be covered or after a predefined number of generations.

For representing and evolving Test Data, the ECJ package [Luk09a] is used.

Test Object instrumentation and CFG generation are performed stati-

cally with the aid of the Sofya framework [KDR07]. The definition of the

Function Set must also precede the Test Data generation phase, as each

MCT subscribes to a Function Set which defines the STGP nodes legally

permitted in the tree. The Function Set is computed automatically with

basis on the Test Cluster.

In the following Chapters, significant contributions for enhancing both

the efficiency and the effectiveness of Object-Evolutionary Testing approaches

will be thoroughly described; additional information on the procedures de-

scribed in the preceding Sections will also be provided.

70

Chapter 5

A Strategy for Evaluating

Test Programs for the

Evolutionary Testing of

Object-Oriented Software

Metaheuristic algorithms require a numerical formulation of the test goal,

from which a fitness function can be derived. The purpose of the fitness

function is to guide the search into promising, unevaluated areas of the

search space.

With the evaluation methodology proposed, the quality of a particular

Test Program is related to the CFG nodes of the MUT which are the targets

of the evolutionary search at the current stage of the search process; Test

Programs that exercise less explored (or unexplored) CFG nodes and paths

must be favoured.

However, the execution of Test Programs may abort prematurely if a

runtime exception is thrown during execution (cf. Section 2.4.1). When this

happens, it is not possible to trace the structural entities transversed in the

MUT because the final instruction of the Test Program is not reached. Test

Programs that fall into this class are referred to as unfeasible Test Programs

– as opposed to feasible Test Programs, which are effectively executed and

terminate with a call to the MUT.

As a general rule, longer and more intricate Test Programs are more

prone to throw runtime exceptions; however, complex MCSs are often needed

71

5. A Strategy for Evaluating Test Programs for the
Evolutionary Testing of Object-Oriented Software

for defining elaborate state scenarios and transversing certain problem nodes

[SAY07]. If unfeasible sequences are blindly penalised, the definition of com-

plex Test Cases will be discouraged.

This Chapter presents a strategy for evaluating the quality of both feasi-

ble and unfeasible Test Programs. With the proposed approach, unfeasible

Test Cases are considered at certain stages of the evolutionary search thus

promoting diversity and enhancing the possibility of achieving full coverage.

The following Section starts by describing the CFG node’s reevaluation

strategy. Sections 5.2 and 5.3 explain how the fitness of feasible and unfea-

sible Test Programs, respectively, are calculated. The experimental studies

performed with the objective of validating the Test Program Evaluation

methodology proposed are detailed and discussed in Section 5.4. Finally,

Section 5.5 summarises the concepts addressed in this Chapter.

5.1 CFG Nodes’ Weights Reevaluation

The issue of steering the search towards the traversal of interesting CFG

nodes and paths was address by assigning weights to the CFG nodes; the

higher the weight of a given node the higher the cost of exercising it, and

hence the higher the cost of transversing the corresponding control-flow

path.

Let each CFG node n ∈ N represent a linear sequence of computations of

the MUT. Then, each CFG edge eij represents the transfer of the execution

control of the program from node ni to the node nj; conversely, nj is a

successor node of ni if an edge eij between the nodes ni and nj exists. The

set of successor nodes of ni is defined as Nni
s , Nni

s ⊂ N .

The weight of traversing node ni is identified asWni. At the beginning of

the evolutionary search the weights of nodes are initialized with a predefined

value Winit.

The CFG nodes’ weights are reevaluated every generation according to

Equation 5.1.

Wni = (αWni)

(
hitCni

|T |
+ 1

)(∑
x∈Nni

s
Wx

|Nni
s | × Winit

2

)
(5.1)

The hitCni parameter is the “Hit Count”, and contains the number of

times a particular CFG node was exercised by the Test Programs of the

previous generation. T represents the set of Test Cases produced in the

previous generation, with |T | being its cardinality.

72

5.2. Evaluation of Feasible Test Cases

The constant value α, α ∈]0, 1] is the weight decrease constant.

In summary, each generation the weight of a given node is multiplied

by:

� the weight decrease constant value α, so as to decrease the weight of

all CFG nodes indiscriminately;

� the hit count factor, which worsens the weight of recurrently hit CFG

nodes;

� the path factor, which improves the weight of nodes that lead to inter-

esting nodes and belong to interesting paths.

After being reevaluated, the weights of all the nodes are normalised to

the nodes’ initial weight Wni in accordance to Equation 5.2.

Wni =
Wni ×Winit

Wmax

(5.2)

Wmax corresponds to the maximum value for the weight existing in N .

5.2 Evaluation of Feasible Test Cases

For feasible Test Cases, the fitness is computed with basis on their trace

information; relevant trace information includes the “Hit List” – i.e., the

set Ht, Ht ⊆ N of traversed CFG nodes. The fitness of feasible Test Cases

is, thus, evaluated as follows:

Fitnessfeasible(t) =

∑
h∈Ht

Wh

|Ht|
(5.3)

This strategy causes the fitness of feasible Test Programs that exercise

recurrently traversed structures to fluctuate throughout the search process;

frequently hit nodes will have their weight increased, thus worsening the

fitness of the Test Cases that exercise them.

5.3 Evaluation of Unfeasible Test Cases

For unfeasible Test Cases, the fitness of the individual is calculated in terms

of the distance between the runtime exception index exIndt (i.e., the po-

sition of the method call that threw the exception) and the MCS length

seqLent.

73

5. A Strategy for Evaluating Test Programs for the
Evolutionary Testing of Object-Oriented Software

Also, an unfeasible penalty constant value β is added to the final fitness

value, so as to penalise unfeasibility.

Fitnessunfeasible(t) = β +
(seqLent − exIndt)× 100

seqLent

(5.4)

With this methodology, and depending on the value of β and on the

fitness of feasible Test Cases, unfeasible Test Cases may be selected for

breeding at certain points of the evolutionary search, thus favouring the

diversity and complexity of MCSs.

5.4 Experimental Studies

In this Section, the empirical studies implemented with the objectives of val-

idating and observing the impact of our Test Program Evaluation strategy

are described and discussed.

The Java Stack and BitSet classes (JDK 1.4) were used as Test Objects.

The rationale for employing these classes is related with the fact that they

represent “real-world” problems and, being container classes, possess the

interesting property of containing explicit state, which is only controlled

through a series of method calls [AY07b]. Additionally, they have been

used in several other case studies described in literature (cf. Chapter 3),

providing an adequate testbed in the lack of common benchmark cluster

that can be used to test and compare different techniques.

The main objectives of these experiments were those of:

� analysing the impact of distinct configurations for the probabilities of

the evolutionary operators Mutation, Reproduction and Crossover;

� assessing the effect of setting different values for the Test Case evalu-

ation parameters – the weight decrease constant α (Equation 5.1) and

the unfeasible penalty constant β (Equation 5.4).

For evolving Test Cases, ECJ was configured using a single population

of 5 individuals. The MUTs’ CFG nodes were initialised with a weight

Wni of 200. The search stopped if an ideal individual was found or after

200 generations. For the generation of individuals a multi-breeding pipeline

was used, which stored 3 child sources; each time an individual had to be

produced, one of those sources was selected with a predefined probability.

The available breeding pipelines were the following:

74

5.4. Experimental Studies

� a Reproduction pipeline, which simply makes a copy of the individuals

it receives from its source;

� a Crossover pipeline, which performs a strongly-typed version of Sub-

tree Crossover [Koz92] – two individuals are selected, a single tree is

chosen in each such that the two trees have the same constraints, a

random node is chosen in each tree such that the two nodes have the

same return type, and finally the swap is performed;

� and a Mutation pipeline, which implements a strongly-typed version

of Point Mutation [Koz92] – an individual is selected, a random node

is selected, and the subtree rooted at that node is replaced by a new

valid tree.

The selection method employed was Tournament Selection with a size

of 2, which means that first 2 individuals are chosen at random from the

population, and then the one with the best fitness is selected.

5.4.1 Probabilities of Operators Study

This particular experiment was performed with the intention of assessing

the impact of the evolutionary operators’ probabilities on the Test Case

generation process. In order to do so, 4 distinct parametrizations of the

multi-breeding pipeline were defined, having:

1. a high probability of selecting the Mutation pipeline;

2. a high probability of selecting the Crossover pipeline;

3. a high probability of selecting the Reproduction pipeline;

4. equal probabilities of selecting either pipeline.

For each of the above multi-breeding pipeline parametrisations, 20 runs

were executed for the Stack’s methods, and 10 runs were executed for the

BitSet’s methods.

The weight decrease constant α was set to 0.9, and the unfeasible penalty

constant β was defined as 150. It should be noted that the definition of these

values was heuristic, as no experiments had been performed that allowed a

fundamented choice; these were conducted later, and are described in the

following Section.

75

5. A Strategy for Evaluating Test Programs for the
Evolutionary Testing of Object-Oriented Software

Table 5.1 summarises the results obtained. The statistics show that the

strategy of assigning balanced selection probabilities (Reproduction: 0.33,

Crossover: 0.33, Mutation: 0.34) to the available breeding pipelines yields

the best results. For the Stack class, this configuration was the only one in

which full coverage was achieved in all of the runs (in, at most, 200 genera-

tions), and it was also the best in terms of the average number of generations

required to attain it; for the BitSet class, it was the only configuration in

which full coverage was attained at least once for all the MUTs. The worst

results were obtained using the parametrisation in which the reproduction

breeding pipeline was given the highest probability of selection.

5.4.2 Evaluation Parameters Study

In this case study, different combinations of values for the α and β param-

eters were studied, with the intention of analysing the impact of the Test

Program evaluation parameters on the evolutionary search. The following

values were used:

� α – 0.1, 0.5, and 0.9;

� β – 0, 150, and 300.

The probabilities of choosing the 3 breeding pipelines were chosen in

accordance to the results yielded by the experiment described in Subsection

5.4.1 – i.e., the probabilities for Reproduction, Crossover and Mutation were

set to 0.33, 0.33 and 0.34, respectively. The other configurations remained

unaltered. All the 9 combinations of the α and β values were employed;

20 runs were executed for each of the Stack’s MUTs, and 5 runs where

executed for the BitSet’s methods.

The results obtained are summarised in Table 5.2. The statistics clearly

show that the best configuration for the Test Case evaluation parameters is

that of assigning a value of 150 to β and a value of 0.5 to α.

5.4.3 Discussion

Search-based Test Data Generation is a challenging research topic; key to

the definition of a good strategy is the configuration of parameters so as

to find a good balance between the intensification and the diversification of

the search. With the approach proposed, the evaluation parameters α and

76

5.4. Experimental Studies

r:
0
.1

c:
0
.1

m
:0
.8

r:
0
.8

c:
0
.1

m
:0
.1

r:
0
.1

c:
0
.8

m
:0
.1

r:
0
.3

c:
0
.3

m
:0
.3

#
g

%
f

#
g

%
f

#
g

%
f

#
g

%
f

S
t
a
c
k

em
p
ty

1
0
,2

1
0
0
%

1
1
,2

1
0
0
%

1
7
,5

1
0
0
%

4
,5

1
0
0
%

p
ee
k

6
,6

1
0
0
%

1
0
,7

1
0
0
%

9
,4

1
0
0
%

2
,8

1
0
0
%

p
o
p

6
,5

1
0
0
%

8
,9

1
0
0
%

8
,6

1
0
0
%

2
,8

1
0
0
%

p
u
sh

2
0
,6

1
0
0
%

1
6
,4

5
7
%

3
7
,2

9
5
%

2
,5

1
0
0
%

se
a
rc
h

4
8
,9

9
5
%

4
8
,2

5
7
%

9
8
,8

8
2
%

1
8
,7

1
0
0
%

B
i
t
S
e
t

h
a
sh
C
o
d
e

1
,4

1
0
0
%

2
,0

1
0
0
%

1
,3

1
0
0
%

1
,4

1
0
0
%

cl
ea
r(
in
t)

6
5
,3

1
0
0
%

1
5
4
,8

4
0
%

1
4
0
,8

5
0
%

9
2
,1

9
0
%

cl
ea
r(
)

7
,2

1
0
0
%

3
1
,2

1
0
0
%

2
8
,6

1
0
0
%

1
2
,6

1
0
0
%

cl
ea
r(
in
t,
in
t)

1
8
1
,5

2
0
%

-
0
%

-
0
%

1
7
5
,4

3
0
%

to
S
tr
in
g

7
,6

1
0
0
%

2
9
,6

1
0
0
%

3
2
,0

1
0
0
%

8
,6

1
0
0
%

is
E
m
p
ty

7
,6

1
0
0
%

5
2
,4

1
0
0
%

3
2
,0

1
0
0
%

8
,6

1
0
0
%

le
n
g
th

4
1
,4

1
0
0
%

1
2
5
,4

6
0
%

1
2
6
,2

7
0
%

4
9
,2

1
0
0
%

g
et
(i
n
t,
in
t)

-
0
%

-
0
%

-
0
%

1
8
6
,2

3
0
%

g
et
(i
n
t)

5
7
,8

1
0
0
%

1
8
4
,8

3
0
%

1
3
7
,4

8
0
%

7
5
,8

1
0
0
%

si
ze

1
,2

1
0
0
%

2
,0

1
0
0
%

1
,2

1
0
0
%

1
,2

1
0
0
%

se
t(
in
t,
b
o
o
le
a
n
)

2
4
,8

1
0
0
%

2
9
,0

1
0
0
%

3
7
,8

1
0
0
%

2
3
,6

1
0
0
%

se
t(
in
t,
in
t)

4
2
,8

1
0
0
%

1
2
2
,2

1
0
0
%

1
0
9
,0

1
0
0
%

4
4
,8

1
0
0
%

se
t(
in
t,
in
t,
b
o
o
le
a
n
)

3
2
,2

1
0
0
%

6
8
,2

1
0
0
%

9
7
,4

8
0
%

2
5
,0

1
0
0
%

se
t(
in
t)

3
7
,2

1
0
0
%

1
2
7
,0

8
0
%

8
6
,8

1
0
0
%

5
1
,8

1
0
0
%

fl
ip
(i
n
t,
in
t)

8
0
,4

8
0
%

1
8
4
,8

6
0
%

1
6
5
,0

4
0
%

8
9
,8

1
0
0
%

fl
ip
(i
n
t)

7
3
,4

1
0
0
%

1
7
4
,0

4
0
%

1
4
8
,6

6
0
%

7
7
,8

1
0
0
%

a
n
d
N
o
t

3
8
,0

1
0
0
%

-
0
%

1
0
4
,8

1
0
0
%

2
0
,8

1
0
0
%

ca
rd
in
a
li
ty

7
,6

1
0
0
%

5
2
,4

1
0
0
%

3
2
,0

1
0
0
%

8
,6

1
0
0
%

in
te
rs
ec
ts

1
2
7
,8

6
0
%

-
0
%

1
5
0
,6

5
0
%

1
0
7
,4

6
0
%

n
ex
tS
et
B
it

1
0
5
,8

1
0
0
%

1
9
2
,2

2
0
%

1
9
2
,8

2
0
%

1
1
4
,6

6
0
%

x
o
r

8
0
,6

8
0
%

1
2
3
,6

5
0
%

1
3
3
,4

4
0
%

7
0
,3

9
0
%

A
v
e
ra

g
e
s

S
t
a
c
k

1
8
,6

9
9
%

1
9
,1

8
3
%

3
4
,3

9
5
%

6
,3

1
0
0
%

B
i
t
S
e
t

5
1
,1

8
0
%

9
7
,4

5
6
%

9
2
,5

6
5
%

5
9
,3

8
1
%

T
ab

le
5.
1:

E
x
p
er
im

en
ta
l
re
su
lt
s
fo
r
th
e
P
ro
b
ab

il
it
ie
s
of

O
p
er
at
or
s
st
u
d
y
:
p
er
ce
n
ta
ge

of
ru
n
s
at
ta
in
in
g
fu
ll
st
ru
ct
u
ra
l
co
ve
r-

ag
e
(%

f
);
an

d
av
er
ag
e
n
u
m
b
er

of
ge
n
er
at
io
n
s
re
q
u
ir
ed

to
at
ta
in

fu
ll
st
ru
ct
u
ra
l
co
ve
ra
ge

(#
g
);
u
si
n
g
d
iff
er
en
t
co
m
b
in
at
io
n
s

fo
r
th
e
p
ro
b
ab

il
it
ie
s
of

ch
o
os
in
g
th
e
R
ep
ro
d
u
ct
io
n
(r
),
C
ro
ss
ov
er

(c
)
an

d
M
u
ta
ti
on

(m
)
op

er
at
or
s.

77

5. A Strategy for Evaluating Test Programs for the
Evolutionary Testing of Object-Oriented Software

β
0

1
5
0

3
0
0

α
0
.1

0
.5

0
.9

0
.1

0
.5

0
.9

0
.1

0
.5

0
.9

%
f

#
g

%
f

#
g

%
f

#
g

%
f

#
g

%
f

#
g

%
f

#
g

%
f

#
g

%
f

#
g

%
f

#
g

S
t
a
c
k

em
p
ty

1
0
0
%

5
1
0
0
%

6
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
p
ee
k

1
0
0
%

3
1
0
0
%

4
1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
p
o
p

1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
1
0
0
%

2
1
0
0
%

2
1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
1
0
0
%

3
p
u
sh

1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
1
0
0
%

3
1
0
0
%

5
1
0
0
%

5
1
0
0
%

5
se
a
rc
h

1
0
0
%

1
8

1
0
0
%

1
8

1
0
0
%

2
2

1
0
0
%

1
6

1
0
0
%

1
6

1
0
0
%

1
9

1
0
0
%

1
6

1
0
0
%

2
1

1
0
0
%

2
2

B
i
t
S
e
t

h
a
sh
C
o
d
e

1
0
0
%

2
1
0
0
%

2
1
0
0
%

2
1
0
0
%

2
1
0
0
%

2
1
0
0
%

2
1
0
0
%

2
1
0
0
%

2
1
0
0
%

2
cl
ea
r(
in
t)

2
0
%

1
6
3

8
0
%

1
3
3

8
0
%

1
0
7

4
0
%

1
2
6

1
0
0
%

1
2
3

1
0
0
%

1
0
5

4
0
%

1
2
6

1
0
0
%

1
2
2

8
0
%

1
3
5

cl
ea
r(
)

1
0
0
%

1
5

1
0
0
%

8
1
0
0
%

8
1
0
0
%

1
3

1
0
0
%

8
1
0
0
%

8
1
0
0
%

7
1
0
0
%

8
1
0
0
%

8
cl
ea
r(
in
t,
in
t)

0
%

-
0
%

-
0
%

-
0
%

-
4
0
%

1
7
7

0
%

-
0
%

-
4
0
%

1
8
0

2
0
%

1
8
1

to
S
tr
in
g

1
0
0
%

1
4

1
0
0
%

8
1
0
0
%

8
1
0
0
%

1
3

1
0
0
%

8
1
0
0
%

8
1
0
0
%

8
1
0
0
%

8
1
0
0
%

8
is
E
m
p
ty

1
0
0
%

1
0

1
0
0
%

8
1
0
0
%

8
1
0
0
%

1
0

1
0
0
%

8
1
0
0
%

8
1
0
0
%

1
0

1
0
0
%

8
1
0
0
%

8
le
n
g
th

8
0
%

8
8

1
0
0
%

5
9

1
0
0
%

4
9

1
0
0
%

1
0
6

1
0
0
%

6
7

1
0
0
%

4
9

1
0
0
%

1
0
9

1
0
0
%

4
4

1
0
0
%

4
9

g
et
(i
n
t,
in
t)

0
%

-
0
%

-
0
%

-
0
%

-
2
0
%

1
8
8

0
%

-
0
%

-
0
%

-
0
%

-
g
et
(i
n
t)

6
0
%

1
3
6

1
0
0
%

9
7

1
0
0
%

8
7

1
0
0
%

9
6

1
0
0
%

8
3

1
0
0
%

9
6

6
0
%

1
4
6

1
0
0
%

8
6

1
0
0
%

7
0

si
ze

1
0
0
%

1
1
0
0
%

1
1
0
0
%

1
1
0
0
%

1
1
0
0
%

1
1
0
0
%

1
1
0
0
%

1
1
0
0
%

1
1
0
0
%

1
se
t(
in
t,
b
o
o
le
a
n
)

1
0
0
%

7
3

1
0
0
%

1
5

1
0
0
%

1
7

1
0
0
%

7
3

1
0
0
%

1
5

1
0
0
%

1
7

1
0
0
%

7
3

1
0
0
%

1
5

1
0
0
%

1
7

se
t(
in
t,
in
t)

6
0
%

1
3
0

1
0
0
%

4
0

1
0
0
%

6
6

6
0
%

1
2
2

1
0
0
%

4
5

1
0
0
%

6
0

6
0
%

1
2
9

1
0
0
%

4
5

1
0
0
%

5
4

se
t(
in
t,
in
t,
b
o
o
l)

1
0
0
%

6
3

1
0
0
%

2
5

1
0
0
%

2
4

1
0
0
%

4
7

1
0
0
%

2
5

1
0
0
%

2
7

1
0
0
%

4
4

1
0
0
%

2
5

1
0
0
%

2
7

se
t(
in
t)

8
0
%

1
0
6

1
0
0
%

6
8

1
0
0
%

4
2

6
0
%

1
0
8

1
0
0
%

6
2

1
0
0
%

6
0

6
0
%

1
1
3

1
0
0
%

6
2

8
0
%

6
3

fl
ip
(i
n
t,
in
t)

6
0
%

1
4
5

1
0
0
%

6
6

8
0
%

1
1
1

6
0
%

1
2
2

1
0
0
%

9
4

1
0
0
%

9
4

8
0
%

1
3
6

1
0
0
%

7
0

1
0
0
%

9
5

fl
ip
(i
n
t)

2
0
%

1
7
8

6
0
%

1
4
4

8
0
%

1
2
6

4
0
%

1
7
0

1
0
0
%

1
0
2

1
0
0
%

7
9

6
0
%

1
3
9

1
0
0
%

9
7

1
0
0
%

8
2

a
n
d
N
o
t

4
0
%

1
3
7

1
0
0
%

2
1

1
0
0
%

4
7

6
0
%

1
4
7

1
0
0
%

2
1

1
0
0
%

4
7

8
0
%

1
2
5

1
0
0
%

2
1

1
0
0
%

4
7

ca
rd
in
a
li
ty

1
0
0
%

1
5

1
0
0
%

8
1
0
0
%

8
1
0
0
%

9
1
0
0
%

8
1
0
0
%

8
1
0
0
%

1
6

1
0
0
%

8
1
0
0
%

8
in
te
rs
ec
ts

0
%

-
4
0
%

1
4
9

6
0
%

1
7
1

2
0
%

1
7
3

6
0
%

1
4
9

6
0
%

1
4
9

0
%

-
2
0
%

1
9
0

6
0
%

1
8
0

n
ex
tS
et
B
it

2
0
%

1
6
6

8
0
%

1
1
8

6
0
%

1
4
0

4
0
%

1
5
8

6
0
%

1
3
2

6
0
%

1
3
2

4
0
%

1
7
2

6
0
%

1
4
5

6
0
%

1
3
9

x
o
r

0
,8

1
2
4

1
0
0
%

3
4

1
0
0
%

5
1

8
0
%

9
2

1
0
0
%

2
6

1
0
0
%

3
7

6
0
%

8
9

1
0
0
%

3
3

1
0
0
%

3
7

A
v
e
ra

g
e
s

S
t
a
c
k

1
0
0
%

7
1
0
0
%

7
1
0
0
%

8
1
0
0
%

6
1
0
0
%

6
1
0
0
%

6
1
0
0
%

6
1
0
0
%

7
1
0
0
%

8
B
i
t
S
e
t

6
3
%

8
7

8
4
%

5
3

8
4
%

5
7

7
0
%

8
4

9
0
%

6
4

8
7
%

5
2

6
9
%

8
0

8
7
%

5
9

8
6
%

6
0

T
ab

le
5.
2:

E
x
p
er
im

en
ta
l
re
su
lt
s
fo
r
th
e
E
va
lu
at
io
n
P
ar
am

et
er
s
st
u
d
y
:
p
er
ce
n
ta
ge

of
ru
n
s
at
ta
in
in
g
fu
ll
st
ru
ct
u
ra
l
co
ve
ra
ge

(%
f
);
an

d
av
er
ag
e
n
u
m
b
er

of
ge
n
er
at
io
n
s
re
q
u
ir
ed

to
at
ta
in

fu
ll
st
ru
ct
u
ra
l
co
ve
ra
ge

(#
g
);
u
si
n
g
d
iff
er
en
t
co
m
b
in
at
io
n
s
fo
r

th
e
α
an

d
β
p
ar
am

et
er
s.

78

5.4. Experimental Studies

β and the evolutionary operators’ selection probabilities play a central role

in the Test Program generation process.

The main task of the Mutation and Crossover operators is that of diver-

sifying the search, allowing it to browse through a wider area of the search

landscape and to escape local maximums; the task of intensifying the search

and guiding it towards the traversal of unexercised structures is performed

as a result of the strategy of assigning weights to CFG nodes.

Nevertheless, to strong a bias towards the breeding of feasible Test Pro-

grams will hinder the generation of more complex Test Cases, which are

sometimes needed to exercise problem structures in the Test Object; on the

other hand, if feasible Test Cases are not clearly encouraged, the search

process will wander.

This issue was addressed by allowing the fitness of feasible Test Cases

to fluctuate throughout the search process as a result of the impact of the

α and β parameters, in order to allow unfeasible Test Cases to be selected

at certain points of the evolutionary search.

The experiments performed allow drawing a preliminary conclusion: the

assumption made on the Probabilities of Operators case study (Subsec-

tion 5.4.1), in which α = 0.9 was employed as being an adequate value,

was incorrect. Using a value of 0.5 for this evaluation parameter yielded

better results.

On the other hand, it is possible to affirm that the strategy of assigning

the value 150 to the unfeasible penalty constant β yields good results. An

explanation for this behaviour follows.

The worst value a CFG node can have is 200 – since the weights of

CFG nodes are normalised each generation (Equation 5.2). If all the nodes

exercised by a feasible Test Case have the worst possible value – because

they are being recurrently exercised by Test Cases, i.e., because the search

is stuck in a local maximum – the fitness of the corresponding Test Case

will also be 200 (Equation 5.3).

However, for a given unfeasible Test Case t, if exIndt ≤ seqLent

2
and

β = 150, then Fitnessunfeasible(t) ∈ [150, 200], i.e., if the exception index of

a given unfeasible Test Case is lower or equal to half of its MCS length, and

if the value 150 is used for β, then the fitness of that Test Case will belong

to the interval 150 to 200.

This means that, with β = 150, some good unfeasible Test Cases may

be selected for breeding; conversely, if β = 0, all unfeasible Test Cases will

be evaluated with relatively good fitness values, and if β = 300, none of the

unfeasible Test Cases will be evaluated as being interesting. The concept

79

5. A Strategy for Evaluating Test Programs for the
Evolutionary Testing of Object-Oriented Software

of good unfeasible Test Cases, in this context, can thus be verbalized as

being a Test Case in which at least half of the MCS is executed without an

exception being thrown.

Assigning the value β = Winit− 50 is, thus, a good compromise between

the need to penalize unfeasible Test Cases and the need to consider them

at some points of the evolutionary search.

5.5 Summary

The state problem of Object-Oriented programs requires the definition of

carefully fine-tuned methodologies that promote the transversal of prob-

lematic structures and difficult control-flow paths. We proposed tackling

this particular challenge by defining weighted CFG nodes. The direction

of the search is under constant adaptation, as the weight of CFG nodes is

dynamically reevaluated every generation. Also, the fitness of feasible Test

Cases fluctuates throughout the search process; this strategy allows unfeasi-

ble Test Cases to be considered at certain points of the evolutionary search

– once the feasible Test Cases that are being bred cease to be interesting

because they exercise recurrently traversed structures. In conjunction with

the impact of the evolutionary operators, a good compromise between the

intensification and diversification of the search can be achieved.

80

Chapter 6

Employing Purity Analysis for

Reducing the Input Domain of

Object-Oriented Evolutionary

Testing Problems

Object-Oriented Evolutionary Testing problems are hindered by the explo-

sive size of the search space, which encompasses the arguments to the im-

plicit and explicit parameters of the Test Object’s public methods. Recent

surveys [HHL+07] indicate that strategies for reducing the input domain

can greatly increase the performance of this category of search problems.

Input Domain Reduction deals with the removal of irrelevant variables,

with the intention of decreasing the number of distinct Test Programs that

can possibly be created while searching for a particular test scenario; in this

Chapter, a strategy for employing Purity Analysis [SR04, SR05, XPV07]

as a means to reduce the input domain of Object-Oriented programs is

described.

Our Evolutionary Testing approach involves representing Test Programs

using the STGP paradigm; Purity Analysis is particularly useful in this

context because it provides a means to automatically identify and remove

Function Set entries that do not contribute to the definition of interesting

test scenarios.

This Chapter is organised as follows. In the next Section, background

on Purity Analysis and Input Domain Reduction is provided, and related

81

6. Employing Purity Analysis for Reducing the Input
Domain of Object-Oriented Evolutionary Testing Problems

work is contextualised. The Input Domain Reduction methodology, which

involves the generation of a purified Function Set, is detailed in Section 6.2.

Experimental Studies are presented discussed in Section 6.3, and the final

Section summarises the main achievements attained.

6.1 Purity Analysis

Methods in Object-Oriented languages often modify the objects that they

access, including the implicit and explicit parameters. However, some meth-

ods have no externally visible side effects when executed or, at least – and

according to the particular definition – the extent of these side effects is lim-

ited in some way [XPV07]; these are called pure methods. The knowledge

that a method is pure or has no externally visible side effects is especially

important because it guarantees that invocations of the method will not

interfere with other computations.

According to the definition provided by the JML, a pure method is one

which does not [LBR06]:

� perform Input/Output operations;

� write to any pre-existing objects;

� or invoke any impure methods.

This definition allows a method to change the state of newly allocated

objects and/or construct objects and return them as a result.

JML is annotation based, requiring purity information to be provided

manually by users. Salcianu and Rinard have, however, presented a sys-

tematic Purity Analysis methodology [SR05] based on a previous points-to

and escape analysis [WR99]. Their purity definition is similar to the one

specified by JML: a pure method can read from or write to local objects,

and can also create, modify and return new objects not present in the input

state.

More interestingly, their methodology is able to identify important pu-

rity properties even when a method is not pure. Specifically, Salcianu and

Rinard’s approach is able to recognise safe and read-only parameters:

� a parameter is read-only if the method does not write the parameter

or any objects reachable from the parameter;

82

6.1. Purity Analysis

� a parameter is safe if it is read-only, and the method does not create

any new externally visible paths in the heap to objects reachable from

the parameter.

Those parameters that do not fall into these categories are called read-

/write.

This type of analysis on the purity of method parameters will henceforth

be referred to as Parameter Purity Analysis.

Purity Analysis – and Parameter Purity Analysis in particular – is es-

pecially useful in the context of Object-Oriented Evolutionary Testing, as

it provides a means to automatically identify and remove entries that are

irrelevant to the search problem, reducing the size of the set of method calls

from which the algorithm can choose when constructing the MCTs that

encode Test Programs. The following example illustrates this statement.

Listing 2.4 on page 32 depicts a sample Test Program generated auto-

matically by the eCrash tool without using Purity Analysis. The MUT is

the search method of the Stack class; instructions 1, 3 and 5 instantiate

new objects, whereas instructions 2 and 4 aim to change the state of the

stack0 instance variable that will be used, as the implicit parameter, in the

call to the MUT at instruction 6. However, instruction 2 does not actually

change the state of the stack0 instance: the peek method simply looks at

the object at the top of the stack without removing it and without chang-

ing the state of the stack. This instruction does not interfere with other

computations and could, therefore, be safely eliminated without disabling

the possibility of traversing any specific structure in the MUT.

What’s more, irrelevant instructions may render the Test Program un-

feasible by throwing runtime exceptions during execution; the Test Program

mentioned above, for example, throws an EmptyStackException at instruc-

tion 2.

Performing Parameter Purity Analysis on the implicit parameters of

the peek method would allow marking it as being safe. Therefore, this

particular method could be discarded of being a Stack data type providers,

and instructions 2 could be excluded from the set of instructions selectable

by the Test Program generation algorithm.

6.1.1 Related Work

There has been little investigation of the relationship between the size of

the input domain (i.e., the search space) and performance of search-based

83

6. Employing Purity Analysis for Reducing the Input
Domain of Object-Oriented Evolutionary Testing Problems

algorithms; Harman et al. [HHL+07] were the first to characterise and em-

pirically explore the search-space/search-algorithm relationship for search-

based Test Data generation. In this work, static analysis was used to remove

irrelevant variables for a given Test Data generation problem (i.e., from the

set of possible input vector parameter-value combinations), thereby reduc-

ing the search space size. However, this study focused on procedural soft-

ware and primitive parameter values; to the best of our knowledge, only two

works addressed the issue of reducing the input domain of Object-Oriented

Evolutionary Testing problems.

In [AY07b], Arcuri and Yao presented a way to reduce the search space

for Object-Oriented software by eliminating the functions that cannot give

any further help to the search, so as to avoid inserting method calls that

do not change the state of the object in the MCS. For determining if a

function is read-only, a syntactic analysis of the source code is performed.

Additionally, and because only container classes were used in the experi-

ments, a database of common read-only function names (e.g., insert, add,

push) was built and used to eliminate such functions using string match-

ing algorithms. For the container classes employed in the experiments, an

improvement of 65.5% (on average) in terms of efficiency was reported .

In Arjan Seesing’s Master Thesis report [SG06], Purity Analysis was pro-

posed as a means to improve the performance of a search-based approach

to Test Data generation for Object-Oriented software. A GP approach was

employed for creating test software for Object-Oriented systems, and Purity

Analysis was integrated into the test tool described (EvoTest). Its usage

is reported to almost double the coverage/time performance of the tool.

However, the methodology lacked complete automation; it was stated that

the analysis performed by the EvoTest tool still made many mistakes, and

manual annotations were allowed and used to complement the information

generated automatically. Additionally, the usage of Parameter Purity Anal-

ysis is not reported. Also, because Input Domain Reduction was not the

primary focus of this work, the procedure is not thoroughly explored and

described.

The Input Domain Reduction strategy presented in this Chapter builds

on the concept of Purity Analysis; however, the methodology proposed is

systematic and fully automated. What’s more, we introduce the usage of

Parameter Purity Analysis, which allows the automatic identification and

removal of entries even if the corresponding methods are not entirely pure.

84

6.2. Purified Function Set Generation

6.2 Purified Function Set Generation

This Section describes the Input Domain Reduction strategy proposed; Al-

gorithm 6.1 summarises the process. The output is the purified Function

Set, which specifies the nodes legally permitted in the STGP trees that

model Test Programs.

Algorithm 6.1: Input Domain Reduction strategy overview.
Data: class under test
Result: purified function set

define test cluster;
foreach method in test cluster do

foreach parameter do
annotate parameter purity;

compute types required table;
compute provided table;

initialize EMCDG with nodes;
connect EMCDG nodes with edges;
remove irrelevant edges;
create purified EMCDG;
create purified function set;

The first task of the purified Function Set generation process is that of

loading the user provided CUT; the Stack class will be used throughout

this Section for illustration purposes.

Next, the Test Cluster must be defined. A thorough description of the

Test Cluster definition phase of the Test Object Analysis process is provided

in Section 4.3.2 on page 59. For the purpose of this example, the Test Cluster

depicted in Table 6.1 will be considered.

Test Cluster

Data Types Members

Object Object()
Stack Stack()

Object pop()
Object push(Object)
boolean empty()
Object peek()

Table 6.1: Example Test Cluster for the Stack Class.

Parameter Purity Analysis is performed on the parameters (both implicit

and explicit) of the methods included in the Test Cluster with the aid of

85

6. Employing Purity Analysis for Reducing the Input
Domain of Object-Oriented Evolutionary Testing Problems

Parameter Purity Analysis Results

Method Parameter Purity

Object pop() IP is read/write
Object push(Object) IP is read/write

P0 is read-only
boolean empty() IP is safe
Object peek() IP is safe
int search(Object) IP is safe

P0 is safe

Table 6.2: Parameter Purity Analysis results for the Stack class.

the Soot Java Optimization Framework [VRCG+99]. Purity Analysis was

implemented into the Soot framework by Antoine Mine, in conformity to the

methodology proposed by Salcianu and Rinard [SR04, SR05]. Parameters

are annotated as being safe, read-only or read/write.

The Parameter Purity Analysis results for the methods of the afore-

mentioned Test Cluster are shown in Table 6.2; IP refers to the Implicit

Parameter, and P0 refers to the first Explicit Parameter.

Next, two tables are computed:

� a Data Types Required Table, which identifies the data types required

to build a method call for each member (i.e., the parameter data

types);

� and a Data Types Provided Table, which identifies the data types po-

tentially supplied by each member (i.e., the parameter reference data

types and the return types).

The Data Types Required and Data Types Provided tables for the Test

Cluster under consideration are depicted in Tables 6.3 and 6.4, respectively.

These tables are built with basis on the methods’ signatures and return

type information, and the entries are labelled with information on the As-

sociated Item. The Associated Item label links data types to the implicit

parameter, to an explicit parameter, or to the return value; it allows the

unambiguous definition of the data type’s provider/consumer. Without this

information, it would not be possible to construct the instructions in the

posterior Test Data Generation phase.

The list of possible labels for the Associated Item is the following:

86

6.2. Purified Function Set Generation

Data Types Required Table

Member Data Types Required

Stack() -
Object pop() Stack [IP]
Object push(Object) Stack [IP]

Object [P0]
boolean empty() Stack [IP]
Object peek() Stack [IP]
int search(Object) Stack [IP]

Object [P0]

Table 6.3: Data Types required by the Public Members of the Stack class.

Data Types Provided Table

Data Type Provider Members

Stack Stack() [IP]
Object pop() [IP]
Object push(Object) [IP]
boolean empty() [IP]
Object peek() [IP]
int search(Object) [IP]

Object Object() [IP]
Object pop() [RE]
Object push(Object) [RE, P0]
Object peek() [RE]
int search(Object) [P0]

Table 6.4: Data Types provided by the Public Members of the Stack class.

� Implicit Parameter (IP) – the data type is associated to the implicit

parameter;

� Explicit Parameter n (Pn) – the data type is associated to the explicit

parameter number n ∈ N0;

� Return Value (RE) – the data type is associated to the return value.

At this point, all the data required for building the EMCDG and mod-

elling call dependencies has been assembled.

The EMCDG is initialised, in accordance to the information contained

in the Test Cluster, with two types of nodes: data type nodes and member

nodes. The EMCDG nodes are then connected, in accordance to the infor-

87

6. Employing Purity Analysis for Reducing the Input
Domain of Object-Oriented Evolutionary Testing Problems

mation contained in the Data Types Required and Data Types Provided

tables:

� a directed edge between a data type (origin) and a member (desti-

nation) means that the data type at the origin is provided by the

member at the destination;

� a direct edge between a member (origin) and a data type (destination)

means that the member at the origin requires the data type at the

destination.

Edge information is complemented with a label containing information

on the Associated Item, in order to complete the EMCDG definition. Algo-

rithm 6.2 details the EMCDG generation process.

The purified EMCDG is computed with basis on the EMCDG and on the

parameters’ purity information, in accordance to Algorithm 6.3; in short,

the purified EMCDG is obtained by removing the edges representing safe

and read-only parameters from the EMCDG.

Finally, the purified Function Set is defined with basis on the purified

EMCDG, in accordance to the algorithm shown in Figure 6.4. Each entry

in the Function Set table contains information on the types required (child

types column) and types provided (return types column) by the correspond-

ing member.

Figure 6.1 and Table 6.2 illustrate, respectively, the purified EMCDG

and the purified Function Set generated for the Stack class; additionally,

the original EMCDG and the entries excluded from the Function Set as a

result of the Parameter Purity Analysis procedure are shown for comparison

purposes. It should be noted that the purified Function Set for the Stack

class includes only 7 entries, whereas the Function Set generated without

using Purity Analysis contains 12 entries.

6.3 Experimental Studies

This Section describes the case studies implemented with the objectives of

observing the impact of the Input Domain Reduction proposal – both in

terms of the size of the input domain (Subsection 6.3.1) and of the results

yielded by the eCrash tool (Subsection 6.3.2).

88

6.3. Experimental Studies

Algorithm 6.2: Algorithm for EMCDG generation with basis on the
Test Cluster.

Data: test cluster
Result: extended method call dependence graph

begin insert vertices
insert data type vertices;
insert member vertices;

begin connect vertices
begin insert directed edges from data type vertices to member vertices

foreach data type vertex do
foreach member vertex do

if member is provider of data type then
insert insert edge from data type vertex to member vertex
labeled [RE, IP, Pn];

begin insert directed edges from member vertices to data type vertices
foreach member vertex do

foreach data type vertex do
foreach data type required by member do

insert insert edge from member vertex to data type vertex
labeled [IP, Pn];

begin insert directed edges from data type vertices to data type vertices
foreach array type vertex do

foreach data type do
if data type is array component then

insert insert edge from array vertex to data type vertex
labeled [AR];

foreach interface vertex do
search known implementing classes in test cluster;
foreach implementing class do

insert edge from interface vertex to implementing class vertex
labeled [IM];

foreach class vertex do
search known subclasses in test cluster;
foreach known subclass do

insert insert edge from class vertex to subclass vertex
labeled [EX];

begin insert directed edges from constant vertices to data type vertices
foreach data type vertex do

foreach data type vertex do
if constant is provider of data type then

insert insert edge from data type vertex to constant vertex
labeled [CO];

89

6. Employing Purity Analysis for Reducing the Input
Domain of Object-Oriented Evolutionary Testing Problems

Figure 6.1: EMCDG (top) and purified EMCDG (bottom) for Stack.

Function Set

Member Return Type Child Types

Stack() Stack [IP]
Object pop() Object [RE] Stack [IP]
Object pop() Stack [IP] Stack [IP]
Object push(Object) Object [RE] Stack [IP], Object [P0]
Object push(Object) Stack [IP] Stack [IP], Object [P0]
Object peek() Object [RE] Stack [IP]
Object() Object [RE]

Entries Excluded
Object push(Object) Object [P0] Stack [IP], Object [P0]
Object peek() Object [IP] Stack [IP]
boolean empty() Stack [IP] Stack [IP]
int search(Object) Stack [IP] Stack [IP], Object [P0]
int search(Object) Stack [P0] Stack [IP], Object [P0]

Figure 6.2: Purified Function Set for the Stack class (top) and entries
excluded from the Purified Function Set (bottom).

90

6.3. Experimental Studies

Algorithm 6.3: Algorithm for the generation of the purified EMCDG.
Data: EMCDG, parameter purity information
Result: purified EMCDG

foreach EMCDG member node do
foreach incoming edge do

if Associated Item is not RETURN then
parameterPurity ← get parameter purity;
if parameterPurity is SAFE or READ-ONLY then

remove incoming edge;

Algorithm 6.4: Algorithm for the generation of the purified Function
Set with basis on the purified EMCDG.
Data: purified EMCDG
Result: purified function set

foreach EMCDG member node do
create new function set entry for member;
foreach outgoing edge do

dataType ← get destination node;
add dataType to member child types;

foreach incoming edge do
dataType ← get origin node;
add dataType to member return types;

6.3.1 Input Domain Size Study

With our approach, the EMCDG models call dependencies, and the Func-

tion Set encompasses the entries from which the Test Data generation algo-

rithm can choose when evolving Test Programs; as such, the impact of the

Input Domain Reduction strategy proposed on the size of the search space

is best assessed by comparing the purified Function Sets and EMCDGs to

those obtained when no Parameter Purity Analysis is employed.

The statistics depicted in Table 6.5 for the Stack and BitSet classes

show a clear reduction in the size of the input domain; the number of

Function Set entries in the Purity column is only 65.2% of those obtained

when no Parameter Purity Analysis is used.

This means that if Parameter Purity Analysis is not performed, and

when searching for Test Cases for these classes, approximately a third of

the set of instructions that can be selected for integrating the generated

Test Programs have no (positive) impact on the definition of test scenarios.

91

6. Employing Purity Analysis for Reducing the Input
Domain of Object-Oriented Evolutionary Testing Problems

No Purity Purity
EMCDG Function Set EMCDG Function Set
Edges Entries Edges Entries

Stack 19 12 14 7
BitSet 106 54 88 36

Table 6.5: Experimental results of the Input Domain Size case study: num-
ber of EMCDG edges and Function Set entries, obtained for the Stack and
BitSet classes, with and without Parameter Purity Analysis.

6.3.2 Test Data Generation Results Study

In this Subsection, the results yielded by the eCrash tool when the Param-

eter Purity Analysis phase is included and excluded from the process are

analysed and compared.

A single population of 10 individuals was used. 20 runs were executed

for each of the MUTs. The MUTs’ CFG nodes were initialized with a

weight of 200, with the α and β parameters (Section 5.1) being set to 0.5

and 150, respectively. The search stopped if an ideal individual was found

or after 100 generations. For breeding individuals, 3 pipelines were used: a

Reproduction pipeline, a Crossover pipeline, and a Mutation pipeline; the

probabilities of choosing these pipelines were set equal values. The selection

method employed was Tournament Selection with a size of 2.

Table 6.6 presents the results obtained for the Stack and BitSet classes.

For the Stack class, the number of generations required to attain full cov-

erage using Parameter Purity Analysis was, on average, 2.6 – less than half

of those required when no Parameter Purity Analysis was employed. All

the runs yielded full coverage in both cases. For the BitSet class – and

although 33.3% of the Function Set entries were eliminated when Parame-

ter Purity Analysis was used – the improvement was not as clear. Still, the

average percentage of Test Cases that accomplished full coverage within a

maximum of 100 generations increased approximately 7%.

The graphs shown in Figure 6.3 represent the average number of CFG

nodes left to be covered per generation. Again, the results obtained for

the Stack yield a significant improvement, whereas those presented for the

BitSet Test Object show a slight (but clear) improvement.

92

6.3. Experimental Studies

No Purity Purity
gens full gens full

Stack

pop 4.5 100% 1.3 100%
push 1.9 100% 1.9 100%
empty 7.1 100% 1.4 100%
peek 4.2 100% 1.3 100%
search 9.4 100% 6.9 100%

BitSet

hashCode 1.6 100% 1.3 100%
clear(int) 43.3 55% 37.7 60%
clear() 15.8 100% 17.7 100%
clear(int,int) - 0% 63.0 10%
toString 21.6 100% 18.4 100%
isEmpty 13.4 90% 4.2 90%
length 48.0 50% 47.4 95%
get(int,int) 75.5 15% - 0%
get(int) 13.2 50% 41.3 60%
size 1.6 100% 1.3 100%
set(int,boolean) 13.5 100% 9.2 90%
set(int,int) 42.2 90% 36.6 90%
set(int,int,boolean) 42.0 90% 39.4 100%
set(int) 26.0 70% 25.4 90%
flip(int,int) 48.8 40% 57.7 35%
flip(int) 41.0 60% 33.5 60%
andNot 38.2 45% 26.0 70%
cardinality 10.9 100% 9.7 100%
intersects 58.5 40% 61.8 40%
nextSetBit 68.0 10% 56.0 45%
xor 34.9 70% 29.8 90%

Averages
Stack 5.4 100.0% 2.6 100.0%
BitSet 32.9 65.5% 30.9 72.6%

Table 6.6: Experimental results for the Test Data Generation study: average
number of generations required to attain full structural coverage (gens); and
percentage of runs attaining full structural coverage (full); for the public
methods of the Stack and BitSet classes, with and without Parameter
Purity Analysis.

93

6. Employing Purity Analysis for Reducing the Input
Domain of Object-Oriented Evolutionary Testing Problems

Figure 6.3: Experimental results for the Input Domain Reduction study:
average percentage of CFG nodes remaining per generation, for the Stack

and BitSet classes, with and without Parameter Purity Analysis.

6.3.3 Discussion

The results observed in the Input Domain Size experiment indicate that the

search space of Evolutionary Testing problems can be dramatically reduced

by embedding Parameter Purity Analysis into the process. For the Test Ob-

jects used, approximately a third of the set of entries that could be selected

for integrating the generated Test Cases were discarded; these instructions

would have no (positive) impact on the definition of test scenarios.

In terms of the results yielded by the eCrash tool when Parameter Purity

Analysis is used, a significant improvement is clearly observable in terms

of the efficiency of the search – i.e., fewer generations (and, consequently,

less computational time) are required to find an adequate Test Set if the

conditions are, otherwise, similar.

Finally, it should be mentioned that the Input Domain Reduction strat-

egy proposed also enhances the Test Data Generation process indirectly, by

preventing irrelevant instructions from obstructing the search by throwing

runtime exceptions and rendering Test Cases unfeasible.

This fact is especially pertinent given that our Test Case Evaluation

methodology does consider unfeasible Test Cases for breeding at certain

points of the evolutionary search (cf. Chapter 5). The inclusion of a Pa-

rameter Purity Analysis phase into the process thus strengthens our Test

Program Evaluation proposal, by ensuring that unfeasible MCSs are com-

posed solely by instructions that are relevant in terms of state scenario

definition.

94

6.4. Summary

6.4 Summary

An Input Domain Reduction methodology, based on the concept of Pa-

rameter Purity Analysis, for eliminating irrelevant variables from Object-

Oriented Test Data generation search problems, was proposed. Our ap-

proach to Object-Oriented Evolutionary Testing involves representing Test

Programs using the STGP paradigm; Purity Analysis is particularly useful

in this context, as it provides a means to automatically identify and remove

Function Set entries that do not contribute to the definition of interesting

test scenarios; nevertheless, the concepts presented are generic and may be

employed to enhance other search-based Test Data generation methodolo-

gies in a systematic and straight-forward manner.

The observations made indicate that the Input Domain Reduction strat-

egy presented has a highly positive effect on the efficiency of the Test Case

generation algorithm; less computational time is spent to achieve results.

The process of “trimming” the input domain in order to eliminate irrele-

vant entries also ensures that Test Cases are not rendered unfeasible by the

inclusion of unsuitable instructions; this strategy is thus of special impor-

tance, given that our Test Data Evaluation strategy does consider unfeasible

Test Cases at certain stages of the search.

95

Chapter 7

An Adaptive Approach to the

Evolutionary Testing of

Object-Oriented Software

Evolutionary Algorithms are powerful – yet general – methods for search and

optimization [BFM97]. Their generality comes from the unbiased nature of

the standard operators used, which perform well for problems where little

or no domain knowledge is available [Ang95]. However, if knowledge about

a problem is available, a bias can be introduced directly into the problem

so as to remove (or penalise) undesirable candidate solutions and improve

the efficiency of the search.

Unfortunately, a priori knowledge about the intricacies of the problem is

frequently unavailable. Having little information about a problem does not,

however, necessarily prevent introducing an appropriate specific bias into

an evolutionary problem; for many tasks, it is possible to dynamically adapt

aspects to anticipate the regularities of the environment and improve solu-

tion optimization or acquisition speed. Adaptive Evolutionary Algorithms

are distinguished by their dynamic manipulation of selected parameters or

operators during the course of evolving a problem solution [HME97]. They

have an advantage over their standard counterparts in that they are more

reactive to the unanticipated particulars of the problem and, in some for-

mulations, can dynamically acquire information about regularities in the

problem and exploit them.

Typically, Evolutionary Algorithms maintain a population of candidate

97

7. An Adaptive Approach to the Evolutionary Testing of
Object-Oriented Software

solutions rather than just one current solution; in consequence, the search is

afforded many starting points, and the chance to sample more of the search

space than local searches. Mutation is the main process through which new

genetic material is introduced during an evolutionary run with the intent of

diversifying the search and escaping local maxima. The main contribution

of this Chapter is that of proposing an adaptive strategy for promoting

the introduction of relevant instructions into the existing Test Programs by

means of Mutation; the set of instructions from which the algorithm can

choose is ranked, with their rankings being updated every generation in

accordance to the feedback obtained from the individuals evaluated in the

preceding generation.

This Chapter is organised as follows. The next Section provides back-

ground on Adaptive Evolutionary Algorithms; in Section 7.2, the Adaptive

Evolutionary Testing strategy proposed is presented and detailed; the exper-

iments performed in order to validate the technique are discussed in Section

7.3; and Section 7.4 summarises the main contributions of this study.

7.1 Adaptive Evolutionary Algorithms

The action of determining the variables and parameters of an Evolutionary

Algorithm to suit the problem has been termed adapting the algorithm to

the problem; in Evolutionary Algorithms this can be performed dynamically,

while the algorithm is searching for a solution.

Adaptive Evolutionary Algorithms provide the opportunity to customise

the Evolutionary Algorithm to the problem, and to modify the configuration

and the strategy parameters used while the problem solution is sought. This

enables incorporating domain information into the Evolutionary Algorithm

more easily, and allows the algorithm itself to select those parametrisations

which yield better results; also, these values can be modified during the run

to suit the situation.

Adaptive Evolutionary Algorithms have already been applied to solve

several search problems; interesting review articles include [Ang95, HME97].

In [HME97], Hinterding et al. proposed a classification based on the adap-

tation type and adaptation level of the Adaptive Evolutionary Algorithm.

The type of adaptation consists of two main categories: static and dynamic.

Static adaptation is where the strategy parameters have a constant value

throughout the run of the Evolutionary Algorithm; consequently, an ex-

ternal agent or mechanism (e.g., the user) is needed to tune the desired

98

7.2. Adaptive Evolutionary Testing Strategy

strategy parameters and choose the most appropriate values. Dynamic

adaptation happens if there is some mechanism which modifies a strategy

parameter without external control, and can be divided further into deter-

ministic, adaptive, and self-adaptive mechanisms.

Deterministic dynamic adaptation is employed if the value of a strategy

parameter is altered by some deterministic rule, without using any feedback

(e.g., using a time-varying schedule). Adaptive dynamic adaptation takes

place if there is some form of feedback from the Evolutionary Algorithm that

is used to determine the direction and/or magnitude of the change to the

strategy parameter (e.g, involving credit assignment). With dynamic self-

adaptation, the idea of the “evolution of evolution” is used; the parameters

to be adapted are encoded onto the individual, and undergo Mutation and

Recombination themselves (e.g., Meta-GP [Edm01]).

The level of adaptation consists of the following categories. Environ-

ment level adaptation happens when the response of the environment to

the individual is changed (e.g, when the penalties in the fitness function

change). In population level adaptation, some or all of the global parame-

ters are modified – i.e., those that apply to all members of the population

(e.g., global Mutation and Crossover frequency). Individual level adaptation

adjusts strategy parameters held within individuals and whose value affects

only that individual (e.g., the Crossover point). Component-level adapta-

tion adjusts strategy parameters local to some component or gene of an

individual in the population.

Several methodologies to the Evolutionary Testing of Object-Oriented

software have been proposed, focusing on the usage of distinct Evolutionary

Algorithms (cf. Chapter 3). However, to the best of the author’s knowledge,

there are no studies on the possibility of applying Adaptive Evolutionary Al-

gorithm to Evolutionary Testing problems; in the following Sections, a novel

population-level adaptive dynamic adaptation technique will be detailed.

7.2 Adaptive Evolutionary Testing Strategy

STGP-based approaches to Object-Oriented Evolutionary Testing involve

encoding candidate solutions as STGP trees; each tree subscribes to a Func-

tion Set, which must be specified beforehand and establishes the constraints

involved in the trees’ construction. In other words, the Function Set con-

tains the set of instructions from which the algorithm can choose when

building Test Programs.

99

7. An Adaptive Approach to the Evolutionary Testing of
Object-Oriented Software

The Function Set can be defined completely automatically based solely

on the Test Cluster information (cf. Section 4.3.3). The definition of the

Test Cluster is, therefore, of paramount importance to the algorithm’s per-

formance and accuracy; however, if the Test Cluster consists of many classes

(or if it is composed of few classes which possess a high number of public

methods), the Function Set can be extremely large.

With an increasing size of the Function Set (and hence an increasing

size of the search space) the probability that the “right” methods appear in

a candidate test sequence decreases – and so does the efficiency of the evo-

lutionary search. Conversely, if a more conservative strategy is employed,

the Test Cluster may not include all the classes needed to attain full cover-

age, thus compromising effectiveness. As such, the selection of the classes

and methods to be included in the Test Cluster – and, consequently, in the

Function Set – must be carefully pondered, and adequate strategies must

be employed for defining the Test Cluster and sampling the search domain.

Still, there are good reasons to suppose that there is no one strategy,

however clever, recursive, or self-organising that will be optimal for all prob-

lem domains; the Test Cluster parametrisation process is heavily problem-

specific and, as such, it usually depends on the users’ decisions. Leaving

this task to the user has, however, several drawbacks. Namely [HME97]:

� the users’ mistakes in setting the parameters could be sources of errors

and/or suboptimal performance;

� parameter tuning costs a lot of time; and

� the optimal parameter value may vary during the evolution.

What’s more, the users’ choices are inevitably biased, and performance

is (arguably) often compromised for the sake of accuracy; in the particular

case of Evolutionary Testing problems, not doing so could result in the

impossibility of obtaining suitable Test Sets, in conformity to the criteria

defined.

In [Wap07], Wappler suggested the following strategies for addressing

the problem of large Function Sets, that result from large Test Clusters

with classes that possess many methods:

� Performing a static analysis so as to eliminate all the functions in the

Function Set that correspond to methods which are neither object-

creating nor state-changing. An Input Domain Reduction strategy,

100

7.2. Adaptive Evolutionary Testing Strategy

based on the concept of Purity Analysis, that meets this suggestion

has already been proposed in Chapter 6.

� Defining a distance-based heuristic, that prevents the methods from

those Test Cluster classes that are associated to the CUT via several

other classes from being transformed to functions of the Function Set.

Such an heuristic would have to be problem-specific, and decisions

would have to be made statically and a priori – potentially compro-

mising the success of the search. It seems difficult to implement an

automated solution for this idea without compromising generality.

� Naming classes whose methods shall not be transformed to functions

of the Function Set. This idea exploits the user’s knowledge of the

CUT, and suffers from the drawbacks mentioned above.

We propose a distinct strategy, based on the concept of dynamically

adapting the Function Set’s constraints selection probabilities. During an

evolutionary run, it is possible to perceive that the introduction of cer-

tain instructions should be favoured. By allowing the constraints’ selection

probabilities to variate throughout the search, with basis on the feedback

obtained by the behaviour of the individuals produced and evaluated pre-

viously, the introduction of interesting genetic material will be promoted.

This strategy presents the following advantages:

� it permits mitigating the negative effects of including a large number

of entries into the Test Cluster; and

� it allows a higher degree of freedom when defining the Test Cluster, by

minimizing the impact of redundant, irrelevant or erroneous choices –

especially those made by the user.

Mutation plays a central role on the diversification of the search and

on the exploration of the search space; it basically consists of selecting a

Mutation point in a tree, and substituting the sub-tree rooted at the point

selected with a newly generated sub-tree [Koz92]. Previous studies indicate

that better results can be attained if the Mutation operator is assigned a

relatively high probability of selection (cf. Chapter 5).

Mutation is, in fact, the main process by which new genetic material is

introduced during the evolutionary search. In the particular case of Object-

Oriented Evolutionary Testing problems, it allows the introduction of new

sequences of method calls into the generated Test Programs, so as to allow

101

7. An Adaptive Approach to the Evolutionary Testing of
Object-Oriented Software

trying out different objects and states in the search for full structural cover-

age. Nevertheless, it is clear that during an evolutionary run, it is possible to

perceive that some method calls are more relevant than others, e.g. because

they had been less prone to throw runtime exceptions and their introduc-

tion will likely contribute to Test Case feasibility, or simply because they

have been used less frequently and their introduction will promote diversity

(precisely the main task of the Mutation operator).

Whenever Mutation occurs, a new (sub-)tree must be created; usually,

one of the standard tree builders (e.g., Grow, Full, Half-Builder or Uniform)

is used to generate these trees [Luk00a]. We propose employing Luke’s

Probabilistic Tree Creation 2 (PTC2) algorithm [Luk00b] to perform this

task, so as to take advantage of the built-in feature that allows assigning

probabilities to the selection of constraints. Also, and more importantly, we

have modified this algorithm in order to be able to dynamically update the

constraints’ probabilities during the evolutionary run.

PTC2 provides uniform distribution of functions and has very low com-

putational complexity [Luk00a]. Also – and most interestingly – PTC2 has

provisions for picking non-terminals with a certain probability over other

non-terminals of the same return type, and terminals over other terminals

likewise. In order to illustrate the methodology followed by this algorithm,

let us consider a simple problem which includes a Function Set (Table

7.1) composed of seven entries (or constraints), defining three non-terminal

nodes – void print(String), String intToStr(Integer), Integer add

(Integer, Integer) – and four terminal nodes – "Foo", "Bar", 0 and 1.

Also, it defines three atomic types – TREE, STRING and INT – and one

set type – OBJECT, which includes both INT and STRING. The TREE

type is used as return type of the STGP tree.

The constraint selection rankings are also defined. "Foo" is given a rank

of 0.8, and "Bar" a rank of 0.2, for example; this means that, if the PTC2

algorithm is required to select a terminal node with a STRING return type,

it will select constraint "Foo" with a probability of 80% and "Bar" with a

probability of 20%. If, however, it is required to select a terminal node with

an OBJECT return type, PTC2 uniformly distributes the rankings of the

STRING and INT atomic types, with the constraints probabilities being

defined as follows: "Foo"–40%; "Bar"–10%; 0–20%; 1–30%.

Continuing with this example, if required to grow a tree of size 3, the

PTC2 algorithm would build the tree depicted in Figure 7.1 with a 19.2%

chance: 100% probability of selecting the root node, times 80% probability

of selecting the non-terminal constraint Integer add(Integer, Integer)

102

7.2. Adaptive Evolutionary Testing Strategy

Function Set and Type Set

Function Name Return Type Child Types

void print(Object) TREE OBJECT
String intToStr(Integer) STRING (rank:0.2) INT
“Foo” STRING (rank:0.8)
“Bar” STRING (rank:0.2)
Integer add(Integer,Integer) INT (rank:0.8) INT, INT
0 INT (rank:0.4)
1 INT (rank:0.6)

Set Types: OBJECT = [STRING, INT]

Table 7.1: Example Function Set and Type Set.

Figure 7.1: Example MCT (left) and corresponding Test Program (right),
built using the Function Set defined in Table 7.1.

as an OBJECT type provider for the root node, times 40% chance of choos-

ing 0 as the first terminal of type INT, times 60% chance of selecting 1 as

the second terminal.

The dynamic adaptive strategy described in the following Subsection

aims at dynamically tuning the Function Set’s constraints selection rankings,

so as to promote the creation of sub-trees, for insertion in the population

via Mutation, that favour both feasibility and diversity.

7.2.1 Constraint Selection Ranking Adaptation Strategy

Let the constraint selection ranking of constraint c in generation g be iden-

tified as ρgc . Also, let λ be the runtime exceptions caused factor, σ be the

runtime exceptions caused by ancestors factor, and γ be the constraint di-

versity factor. Then, ρgc is updated, at the beginning of each generation, in

accordance to the following Equation.

ρgc = ρg−1
c − λg−1

c − σg−1
c − γg−1

c (7.1)

That is, the constraint selection ranking ρgc of a given constraint c in

generation g is calculated as being the constraint selection ranking ρ of the

103

7. An Adaptive Approach to the Evolutionary Testing of
Object-Oriented Software

previous generation, minus the λ factor of the previous generation (with

λ ∈ [0, 1]), minus the σ factor of the previous generation (with σ ∈ [0, 1]),

minus the γ factor of the previous generation (with γ ∈ [−1, 1]).
In order to calculate the normalised constraint selection ranking ρ′gc ,

if the minimum ρgc in generation g is negative, the data is firstly shifted

by adding all numbers with the absolute of the minimum ρgc ; then, ρ
′g
c is

normalised into the range of [0, 1] as follows.

n′g
c =

ng
c

ng
MAX − ng

MIN

(7.2)

The following subsections detail the procedure used for calculating the

λ, σ, and γ factors.

Runtime Exceptions Caused Factor Let Eg
c be the set of runtime exceptions

caused by constraint c in generation g, and T g be the set of trees produced

in generation g, with |Eg
c | and |T g| being their cardinalities. Then, λ is

calculated as follows.

λg
c =
|Eg

c |
|T g|

(7.3)

That is, the λ factor is equal to the number of runtime exceptions thrown

by instructions corresponding to constraint c, dividing by the total number

of trees. It should be noted that only a single runtime exception may be

thrown by a Test Program (i.e., by a MCT).

This factor’s main purpose is that of penalising the ranking of constraints

corresponding to instructions that have caused runtime exceptions to be

thrown in the preceding generation. This factor is normalised into the

range of [0, 1] using Equation 7.2.

Runtime Exceptions Caused by Ancestors Factor LetXg
c be the set of runtime

exceptions thrown by ancestors of constraint c in generation g, and xg
ca ∈ Xg

c

be a runtime exception thrown by an ancestor of level a, with a ∈ {2 =

parent, 3 = grandparent, . . .} being the ancestry level of the constraint that

threw the exception. Also, let Ag
c be the multiset containing the ancestry

levels of xg
ca ∈ Xg

c . Then, σ is calculated as follows.

σg
c =

∑
a∈Ag

c

a−1 (7.4)

That is, the σ factor is equal to the sum of the inverses of the ancestry

levels of the ancestors of constraint c that threw runtime exceptions.

104

7.3. Experimental Studies

This factor’s main purpose is that of penalising the ranking of constraints

corresponding to instructions which have participated in the composition

of sub-trees (i.e., sub-MCSs) that have caused runtime exceptions to be

thrown in the preceding generation; the higher the ancestry level, the lower

the penalty. This factor is normalised into the range of [0, 1] using Equation

7.2.

Constraint Diversity Factor Let Cg be a multiset containing the number of

times each constraint appeared in generation g, and cg be the number of

times constraint c appeared in generation g. Also, let mCg be the mean of

the values contained in multiset Cg, and dgc = cg − mCg be the deviation

of constraint c in generation g, and rgd = dgMAX − dgMIN be the range of

deviation for generation g. Then, γg
c is calculated as follows.

γg
c =

dgc
rgd

(7.5)

That is, the γ factor is equal to the absolute deviation between con-

straint c’s number of appearances and the mean number of all constraints

appearances, dividing by the range of deviation for generation g.

This factor’s main purposes are those of allowing constraints to recover

their ranking if they have been used infrequently, and penalising the ranking

of constraints which have been selected too often.

7.3 Experimental Studies

The adaptive strategy described in the preceeding Section was embedded

into the eCrash automated Evolutionary Testing tool, with the objective of

observing the impact of this technique on both the efficiency and effective-

ness of the Test Data generation process.

The Java Vector and BitSet classes (JDK 1.4) were used as Test Ob-

jects. The experiments were executed using an Intel Core2 Quad 2.60GHz

processor with 4.0 GB RAM desktop, with 4 Test Data generation processes

running in parallel. 20 runs were executed for each of the 67 MUTs – in a to-

tal of 820 runs for the Vector class and 520 runs for the BitSet Class. Half

of these runs were executed employing the adaptive strategy proposed, and

half using a “static” approach for comparison purposes. The only difference

between the adaptive and the static runs was that, in the latter, the con-

straints’ rankings remained unaltered throughout the evolutionary search.

Since the same seeds were used in both the adaptive and non-adaptive runs,

105

7. An Adaptive Approach to the Evolutionary Testing of
Object-Oriented Software

and because eCrash is deterministic, the discrepancies in the results will

solely mirror the impact of the adaptive technique employed.

A single population of 10 individuals was used; the rationale for selecting

a relatively small population size had to do with the adaptive algorithm’s

need of obtaining frequent feedback. The search stopped if an ideal individ-

ual was found or after 200 generations. For the generation of individuals, 3

child sources were defined: strongly-typed versions of Mutation (selection

probability: 40%) and Crossover (selection probability: 30%), and a simple

Reproduction operator (selection probability: 30%). The selection method

was Tournament Selection with size 2. The tree builder algorithm was PTC2

(for the reasons explained in the preceding Section), with the maximum and

minimum tree depths being defined as 1 and 4. The constraints’ ranking

were initialized with the value 1.0, and were updated at the beginning of

every generation, before individuals were produced (cf. Algorithm 4.1 on

page 54), in accordance to Equation 7.1.

Table 7.2 depicts the percentage of successful runs (i.e., runs in which

a Test Set attaining full structural coverage was found) for the MUTs of

the Vector and BitSet classes, with and without adaptation. The graphs

shown in Figure 7.2 contain the percentage of CFG nodes remaining per

generation using the adaptive and the static techniques for the classes tested;

their inclusion enables the analysis of the strategy’s impact during the course

of the search.

The results depicted in Table 7.2 clearly indicate that the test case gen-

eration process’s performance is improved by the inclusion of the Adaptive

Evolutionary Testing methodology proposed. The adaptive strategy out-

performed the static approach for 28.4% of the MUTs tested, whereas the

latter only surpassed the former in 5.9% of the situations. In terms of the

average success rate, the adaptive strategy enhances results by 3% for the

Vector class; the improvement is even more significant for the BitSet class,

with the results meliorating 11%.

What’s more, the adaptive strategy allowed attaining full structural cov-

erage in some situations in which the success rate had been of 0% using the

non-adaptive strategy – namely, for the Object remove(int) and List

subList(int,int) MUTs of the Vector class, and for the int length()

and boolean intersects(BitSet) MUTs of the BitSet class; these obser-

vations indicate that this strategy is specially suited for overcoming some

difficult state problems.

The graph shown in Figure 7.2 also provides clear indication that the

evolutionary search benefits from the inclusion of the adaptive approach

106

7.3. Experimental Studies

MUT adaptive static

Vector

void add(int,Object) 80% 90%

boolean add(Object) 100% 100%

Object get(int) 100% 100%

int hashCode() 100% 100%

Object clone() 0% 0%

int indexOf(Object) 100% 100%

int indexOf(Object,int) 20% 10%

void clear() 100% 100%

boolean equals(Object) 100% 100%

String toString() 100% 100%

boolean contains(Object) 50% 40%

boolean isEmpty() 100% 100%

int lastIndexOf(Object,int) 0% 0%

int lastIndexOf(Object) 100% 100%

boolean addAll(Collection) 90% 70%

boolean addAll(int,Collection) 30% 20%

int size() 100% 100%

Object[] toArray() 100% 100%

Object[] toArray(Object[]) 40% 40%

void addElement(Object) 100% 100%

Object elementAt(int) 100% 100%

Object remove(int) 20% 0%

boolean remove(Object) 100% 100%

Enumeration elements() 100% 100%

Object set(int,Object) 100% 80%

int capacity() 100% 100%

boolean containsAll(Collection) 100% 100%

void copyInto(Object[]) 100% 100%

void ensureCapacity(int) 100% 100%

Object firstElement() 100% 100%

void insertElementAt(Object,int) 80% 90%

Object lastElement() 100% 100%

boolean removeAll(Collection) 100% 100%

void removeAllElements() 100% 100%

boolean removeElement(Object) 30% 40%

Continued on next page

107

7. An Adaptive Approach to the Evolutionary Testing of
Object-Oriented Software

Table 7.2 – continued from previous page

MUT adaptive static

void removeElementAt(int) 20% 10%

boolean retainAll(Collection) 100% 100%

void setElementAt(Object,int) 100% 70%

void setSize(int) 100% 100%

List subList(int,int) 30% 0%

void trimToSize() 100% 100%

BitSet

boolean get(int) 90% 60%

BitSet get(int,int) 0% 0%

int hashCode() 100% 100%

Object clone() 0% 0%

void clear(int, int) 0% 0%

void clear() 100% 100%

void clear(int) 90% 80%

boolean equals(Object) 0% 0%

String toString() 100% 100%

boolean isEmpty() 100% 100%

int length() 30% 0%

int size() 100% 100%

void set(int) 100% 70%

void set(int, boolean) 100% 100%

void set(int, int) 70% 40%

void set(int, int, boolean) 40% 70%

void flip(int, int) 60% 20%

void flip(int) 90% 50%

void and(BitSet) 0% 0%

void andNot(BitSet) 60% 30%

int cardinality() 100% 100%

boolean intersects(BitSet) 20% 0%

int nextClearBit(int) 0% 0%

int nextSetBit(int) 10% 10%

void or(BitSet) 0% 0%

void xor(BitSet) 90% 30%

Table 7.2: Experimental Results for the Adaptive Evolutionary Testing

study: percentage of runs attaining full structural coverage; for the public

methods of the Vector and BitSet classes; with and without adaptation.

108

7.4. Summary

Figure 7.2: Average percentage of CFG nodes remaining per generation; for
the public methods of the Vector and BitSet classes; with and without
adaptation.

described. For the Vector’s MUTs, the average number of nodes remaining

when the Adaptive Evolutionary Testing approach is used decreases as much

as 6% during the initial generations; for the BitSet class, the contrast is

the results is less perceptible, but the adaptive approach still manages to

attain a 3% improvement at certain stages.

In terms of speed, the overhead introduced by embedding the adaptive

strategy into the evolutionary algorithm was negligible; each generation

took, on average, 23.25 seconds using the adaptive methodology, and 23.21

seconds using the static approach. The time overhead introduced by the

adaptation procedure was a mere 0.19%.

7.4 Summary

Recent research on Evolutionary Testing has relied heavily on GP for rep-

resenting and evolving Test Data for Object-Oriented software. The main

contribution of this work is that of proposing a dynamic adaptation strategy

for promoting the introduction of relevant instructions into the generated

Test Programs by means of Mutation.

The Adaptive Evolutionary Testing strategy proposed obtains feedback

from the individuals produced and evaluated in the preceding generation,

and dynamically updates the selection probability of the constraints de-

fined in the Function Set so as to encourage the selection of interesting

109

7. An Adaptive Approach to the Evolutionary Testing of
Object-Oriented Software

genetic material and promote diversity and Test Program feasibility. The

experimental studies implemented indicate a considerable improvement in

the algorithm’s efficiency when compared to its static counterpart, while

introducing a negligible overhead.

110

Chapter 8

Enabling Object Reuse on

Genetic Programming-based

Approaches to Object-Oriented

Evolutionary Testing

The goal of Evolutionary Testing is to find a set of Test Programs that

satisfies a certain test criterion. If structural adequacy criteria are employed,

the basic idea is to ensure that all the control elements in a program are

executed by a given Test Set, providing evidence of its quality. Object

Reuse (OR) is a feature of paramount importance in this context.

Object Reuse means that one instance can be passed to multiple meth-

ods as an argument, or multiple times to the same method as arguments

[Wap07]. In the context of Object-Oriented Evolutionary Testing, it enables

the generation of Test Cases that exercise specific structures of software that

would not be reachable otherwise.

The equals method of Java’s Object class [Sun03] provides a paradig-

matic example. Class Object is the root of the Java class hierarchy, and the

equals method is used to assess if two objects are equivalent; also, several

search methods rely on it to verify if an item is present in a collection (e.g.,

Vector’s indexOf). However, the equals method implements the most

discriminating possible equivalence relation on objects: for any non-null

reference values x and y, this method returns true if and only if x and

y refer to the same reference. This means that, in order for the method

111

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing�

1 Object object1 = new Object ();

2 Object object2 = new Object ();

3 boolean isEqual = object1.equals(object2);

4 System.out.println(isEqual);� ��
1 Object object1 = new Object ();

2 boolean isEqual = object1.equals(object1);

3 System.out.println(isEqual);� �
Listing 8.1: Programs exemplifying object equality verification in Java; the
output of the program at the top is “false”, whereas the output of the
program at the bottom is “true”.

equals to return true, the same Object reference must be passed as an

argument twice – in the place of both the implicit parameter (i.e., the this

parameter) and the explicit parameters. The programs depicted in Listing

8.1 illustrate this characteristic.

Also, every class has Object as a superclass; this means that every

class inherits the equals method, and uses it internally for equivalence

verification. Object subclasses may override equals in order to implement

a less stringent equivalence relation. Still, it is not mandatory; what’s more,

recent studies have concluded that implementations of the equals methods

are often faulty [VTFD07].

Recent research on Evolutionary Testing has relied heavily on GP for

representing and evolving Test Data (cf. Chapter 3). However, standard GP

approaches do not allow node reuse; in this Chapter a novel methodology

to overcome this limitation is proposed, which involves the definition of

novel type of GP nodes – the At-Nodes – that “point to” other nodes, thus

effectively enabling the creation of edges to nodes that are already part of

the tree, and allowing the reuse of sub-trees. The introduction of At-Nodes

is performed by means of a custom-made evolutionary operator – the Object

Reuse operator. This operator acts on an individual by selecting two nodes

– the node to be replaced by the At-Node, and the node to be “pointed

at” by the At-Node – and by inserting the newly created At-Node into

the tree. At-Nodes may be removed from a tree by means of the Reverse

Object Reuse operator which, in short, searches the tree for At-Nodes, and

replaces these nodes with copies of the sub-trees pointed at by the At-Nodes.

This particular operator allows avoiding the reformulation of other common

biology-inspired mechanisms (e.g., Mutation and Crossover [Koz92]).

112

8.1. The Object Reuse Operator

Figure 8.1: Object Reuse (top) and Reverse Object Reuse (bottom) opera-
tors overview.

In addition allowing specific structures to be traversed, the Object Reuse

methodology proposed is able to enhance the performance of the Test Data

generation process:

� it yields solutions with smaller overall size and lower average structural

complexity;

� and the feasibility of the generated Test Programs is increased as a

result of the introduction of a specific heuristic for node selection.

The Object Reuse methodology proposed is based on the introduction

of two novel evolutionary operators: the Object Reuse Operator (detailed

in the following Subsection), and the Reverse Object Reuse Operator (de-

scribed in Subsection 8.2). Figure 8.1 provides an overview of these opera-

tors. In Section 8.3 the experiments performed in order to assess the impact

of the reuse strategy proposed on the Test Data generation process are ex-

plained and discussed; Section 8.4 contextualises relevant related work, and

the final Section summarises the contributions of this Chapter.

8.1 The Object Reuse Operator

Test Program quality evaluation on GP-based approaches to Object-Oriented

Evolutionary Testing typically involves executing the generated Test Pro-

113

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing

grams with the intention of collecting trace information with which to derive

coverage metrics. Test Program execution requires decoding an individual’s

genotype (i.e., the MCT) into its phenotype (i.e., the Test Program). Figure

8.2 exemplifies this process; Object Reuse has not been introduced at this

point. The MUT is the indexOf method of the Vector class – which corre-

sponds to the root node of the MCT depicted in Figure 8.2a. Each node’s

parameters are provided by its children; the MCS (Figure 8.2b) corresponds

to the linearised MCT, with tree linearisation being performed by means

of a depth-first traversal algorithm (depicted in Algorithm 4.2 on page 68).

Each MCS entry contains a MIO, which encloses: the method signature

data necessary for the Test Program’s source code to be assembled; and

references to other MIOs providing the parameters (if any) for that method

(enumerated between square brackets). The Test Program (Figure 8.2c) is

computed with basis on the MCS and corresponds to a syntactically correct

translation of the latter.

The purpose of the Object Reuse Operator is that of inserting At-Nodes

into valid locations of a MCT; the concept of At-Node is, thus, key to the

Object Reuse methodology proposed.

8.1.1 At-Nodes

At-Nodes are GP nodes that refer to other (standard) GP nodes, thus en-

abling the reuse of portions of the tree and, specifically, the reuse of the

object references returned by the functions corresponding to the reused sub-

trees. This is accomplished by having the node pointed at by the At-Node

provide the parameter not only to its parent node, but also to the At-Node’s

parent node; parameter assignment is performed during the MCT’s lineari-

sation by means of the process described in Subsection 8.1.4.

Figure 8.3a contains an example of a possible MCT resulting from the

application of the Object Reuse operator to the tree depicted in Figure 8.2a.

The At-Node labeled 0.1 replaces the node with the same label existing in

the original MCT, whereas node 0.0.1 was selected as the node to be reused.

As such, the Object instance returned by node 0.0.1 will be used both by

its parent (labeled 0.0) and by the At-Node’s parent (labeled 0). The MCS

and Test Program shown in Figure 8.3b and 8.3c mirror this alteration: in

the former, the MIO 0.0.1 provides the argument for the explicit parameters

of both the 0.0 and 0 MIOs; and in the latter, the reference to the Object

instance created at instruction 2 is passed to both the add and indexOf

methods (instructions 3 and 4).

114

8.1. The Object Reuse Operator

Figure 8.2: Example MCT without Object Reuse (a); and corresponding
MCS (b) and Test Program (c).

The creation of an At-Node for posterior introduction into a MCT re-

quires the Object Reuse operator to select two MCT nodes in the original

tree: the Destination Node (i.e., the node to which At-Node points to) and

the Replaced Node (i.e., the root node of the subtree to be truncated and

substituted by the At-Node). The first task of the Object Reuse Operator

is precisely that of indexing all the valid Replaced-Destination node pairs

in a MCT.

115

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing

Figure 8.3: Example MCT with Object Reuse (a); and corresponding MCS
(b) and Test Program (c).

8.1.2 Valid Replaced-Destination Node Pairs

A Replaced-Destination node pair is valid if:

� both nodes are distinct non-root standard GP nodes;

� the Replaced Node possesses a type that is swap-compatible with the

Destination Node (e.g., a node of type Vector is swap-compatible

with a node of type Object, because Vector is a sub-type of Object);

� the sub-tree rooted at the Replaced Node does not contain a node that

is pointed at by an existing At-Node. When an At-Node is inserted

into the tree, the sub-tree rooted at the Replaced Node is truncated;

116

8.1. The Object Reuse Operator

if it contains a node that is already being reused, this operation will

render the tree invalid;

� the Replaced Node is in a position reached by the linearisation al-

gorithm prior to the Destination Node. This validation ensures that

the MIOs only contain parameter references to elements that precede

them in the MCS, and that the corresponding Test Program’s method

calls have their parameters provided by previously created instances.

After all the valid Replaced-Destination node pairs have been indexed,

the Object-Reuse Operator proceeds to select one of those pairs.

8.1.3 Replaced-Destination Node Pair Selection

The node pair selection procedure is performed differently according to the

individual’s feasibility:

� if the individual is feasible, a Replaced-Destination node pair is chosen

at random from the set of valid Replaced-Destination node pairs;

� if the individual is unfeasible, the Object Reuse operator attempts

to select a valid pair so that the Replaced Node belongs to the non-

executed portion of the tree, and the Destination Node belongs to the

executed portion of the tree. If such pairs exist, one is selected at

random; otherwise, a node pair is chosen at random from the set of

all valid Replaced-Destination node pairs.

The heuristic described aims to promote Test Program feasibility by

favouring the reuse of feasible portions of the MCT. The Test Program

depicted in Figure 8.2c throws a runtime exception at instruction 6; the

feasible portion of this program is thus the subsequence of instructions 1

to 5, whereas instructions 6 and 7 form the unfeasible subsequence. These

sequences can be mapped directly to MCS entries which, in turn, can be

matched to the corresponding MCT node. The valid Replaced-Destination

node pairs which fulfil the premise of the heuristic are, thus, the following:

{0.1, 0.0.1}; {0.1.0, 0.0.0}; {0.1.0, 0.0}.

8.1.4 Method Call Tree Linearisation

Evaluating the quality of an individual involves its execution which, in turn

requires decoding the MCT into the Test Program. However, if At-Nodes

117

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing

Algorithm 8.1: Algorithm for Method Call Tree linearisation in the
presence of At-Nodes.
Data: Method Call Tree
Result: Method Call Sequence

Global Variables:
Current Node ← Root Node;
isDestinationNode ← false;
Previous MIO ← null;
MCS ← empty sequence;

begin Function linearizeMCT(Current Node, isDestinationNode)
if Current Node ̸= Root Node and isDestinationNode = false then

Previous MIO ← get MIO from from Parent Node of Current Node;

if Current Node is an instance of At-Node then
Destination Node ← get Destination Node from At-Node;
call linearizeMCT(Destination Node, true);

else if Current Node is an instance of Standard Node then
Current MIO ← get MIO from Current Node;
if Previous MIO ̸= null then

add Current MIO to Parameter Providers List of Previous MIO;

if isDestinationNode = false then
Child Nodes List ← get Child Nodes List from Current Node;
foreach Child Node in Child Nodes List do

call linearizeMCT(Child Node, false);

add Current MIO to MCS;

exist, a depth-first traversal algorithm does not suffice to linearise a tree;

the linearisation algorithm must take into account the fact that certain

parameters are supplied not by that node’s children, but rather by the node

pointed at by an At-Node. The algorithm depicted in Figure 8.1 describes

the polymorphic recursive function utilised to obtain a MCS with basis on

a MCT in the presence of At-Nodes.

8.2 The Reverse Object-Reuse Operator

If a MCT contains At-Nodes, some standard evolutionary operators, such

as Mutation and Crossover, require the tree to be analysed and possibly

modified prior to their application. This necessity is related with the fact

that these operators replace subtrees in the original individual by newly

created trees (in the case of the former) or by a copy of another individ-

ual’s subtree (in the case of the latter); however, if the subtrees truncated

in the original individual contain Destination Nodes their elimination will

118

8.3. Experimental Studies

With Object Reuse Without Object Reuse

Object Reuse Op. (25%) Mutation Op. (34%)
Reverse Object Reuse Op. / Mutation Op. (25%) Crossover Op. (33%)
Reverse Object Reuse Op. / Crossover Op. (25%) Reproduction Op. (33%)

Reproduction Op. (25%)

Table 8.1: Sources of individuals.

render the MCT inconsistent and disable the possibility of translating it to

a syntactically correct Test Program.

The Reverse Object Reuse operator’s task is precisely that of pre-process-

ing the individuals to be provided to other well-established operators, thus

avoiding their reformulation. It starts by indexing all the At-Nodes in a

MCT, and then proceeds to replace each At-Node with a clone copy of the

sub-tree rooted at its Destination node. The resulting MCT can then be

provided to another evolutionary operator. That is, the Reverse Object

Reuse operator’s purpose it that of being the first component of a breeding

pipeline and acting as a source of individuals; it selects individuals directly

from the population (e.g., using Tournament Selection [Koz92]), and pro-

vides the (possibly) modified individual to the operator at the end of the

breeding pipeline. This process is schematised in Figure 8.1 on page 113.

8.3 Experimental Studies

The Object Reuse methodology described was embedded into the eCrash

tool for the Evolutionary Testing of Object-Oriented Java software, with the

objective of assessing its impact on both the efficiency and the effectiveness

of the evolutionary search.

The Java TreeMap (an implementation of Red-Black Tree [CLRS01]) and

Vector classes of JDK 1.4 [Sun03] were used as Test Objects. Their selection

is supported by the fact that they are container classes, which are a typical

benchmark in Software Testing of Object-Oriented programs; Red-Black

Trees, in particular, have been empirically shown to be the most difficult to

test among containers programs [Arc09b]. As MUTs, the 5 most complex

public methods (in terms of their Cyclomatic Complexity Number (CCN)

[McC76]) of each class were selected.

For each MUT, 2 sets of 20 runs were executed. The Object Reuse and

Reverse Object Reuse operators were included in the first, and excluded

from the second; Table 1 depicts the sources of individuals selected for each

119

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing

set of runs. The decision of selecting equal probabilities for the Mutation,

Crossover and Reproduction operators is supported by previous experiments

described in Chapter 5. The remaining evolutionary parameters were com-

mon to both sets, and were defined as follows: a single population of 25

individuals was used; the search stopped if an ideal individual was found

or after 200 generations; the selection method was Tournament Selection

[Koz92] with size 2; the tree builder algorithm was PTC2 [Luk00b], with the

minimum and maximum tree depths being defined as 4 and 14. The eCrash

tool was configured in accordance to the setup proposed in [RZRFdV09].

An additional set of 20 runs, in which all individuals were randomly

generated using the PTC2 algorithm (with minimum and maximum tree

depths of 4 and 14), was performed for comparison purposes; because no

evolutionary operators were used, Object Reuse was absent from the process.

This random search stopped if an ideal individual was found or after the

generation of 5000 individuals. The results were included in Table 8.2 on

page 122.

8.3.1 Results and Discussion

The results depicted in Table 8.2 show that, for both classes, a higher per-

centage of runs attaining full structural coverage was achieved when includ-

ing the Object Reuse operator as a source (with the exception being the

putAll(Map) method of the TreeMap class). An average success rate of

62% was achieved with Object Reuse, whereas only 42.5% of the runs were

successful without it.

What’s more, the impossibility of attaining full structural coverage for

some of the methods tested is symptomatic of the way in which the lack of

the Object Reuse functionality can hinder the evolutionary search. In fact,

several search methods – in particular, Vector’s indexOf and lastIndexOf;

and TreeMap’s put, remove and get – rely on equals to verify if an item

is contained in a collection. This means that if instances are not reused,

the search for non-null arguments of type Object will fail. A commonly

used workaround (e.g., [RZRdV08a]) is that of including substitute classes

into the Test Cluster, which extend Object and override equals with a less

stringent implementation (e.g., String); this approach, however, does not

suffice for the following reasons:

� certain test scenarios may specifically involve using classes that do not

override equals, or the Object class itself.

120

8.4. Related Work

� the decision on which additional classes to include into the Test Clus-

ter is problem specific and human dependant; to the best of our knowl-

edge, no systematic strategy has been proposed to automate this task.

� the inclusion of redundant classes into the Test Cluster will enlarge the

search space and will thus have negative consequences on the efficiency

of the search (cf. Chapter 7).

The graphs depicted in Figure 8.4 provide an overview of the way in

which the runs evolved, and on how the Object Reuse methodology affects

the Test Data generation process in terms of structural coverage (Figures

8.4a and 8.4d), Test Program size (Figures 8.4b and 8.4e) and feasibility

(Figures 8.4c and 8.4f). The runs in which Object Reuse was employed yield

solutions with shorter MCS length (a difference of 20.3%, on average, for

TreeMap, and 12% for Vector). Also, feasibility is significantly promoted,

with an average increase of 4% for both the TreeMap and Vector classes.

These observations show that the methodology proposed is not only able

to enhance the effectiveness of the Test Case generation process, but also

its efficiency:

� it yields solutions with smaller overall size and lower average structural

complexity, thus contributing positively to the area of MCS minimi-

sation. Simpler and shorter Test Programs do not only reduce the

computational effort involved in compilation and execution; they also

ease the (mostly human-dependant) task of defining a mechanism for

checking that the output of a program is correct given some input

(i.e., an oracle).

� The application of the Replaced-Destination Node Pair Selection heuris-

tic is able to increase the average feasibility of the generated Test Pro-

grams. Because only feasible Test Programs are concluded with a call

to the MUT, a higher level of feasibility will increase the performance

of the Test Data generation process (cf. Chapter 5).

8.4 Related Work

The proposed approach to Object Reuse has some similarities with Koza’s

work on Automatically Defined Functions (ADFs) [Koz94]. ADFs enable

GP to solve a variety of problems in a way that can be interpreted as a

121

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing

W
it
h
O
R

W
/
o
u
t
O
R

R
a
n
d
o
m

M
U
T

C
C
N

%
f

#
i

%
f

#
i

%
f

#
i

T
r
e
e
M
a
p

p
u
t(
O
b
je
ct
,O

b
je
ct
)

10
10
%

45
63

0%
50
00

0%
50
00

p
u
tA

ll
(M

ap
)

10
85
%

13
89

95
%

11
54

75
%

23
85

re
m
ov
e(
O
b
je
ct
)

3
25
%

41
19

0%
50
00

0%
50
00

co
n
ta
in
sV

al
u
e(
O
b
je
ct
)

3
10
0%

50
1

10
0%

54
8

10
0%

62
8

ge
t(
O
b
je
ct
)

2
25
%

40
00

0%
50
00

0%
50
00

V
e
c
t
o
r

la
st
In
d
ex
O
f(
O
b
je
ct
,i
n
t)

10
60
%

32
03

0%
50
00

0%
50
00

in
d
ex
O
f(
O
b
je
ct
,i
n
t)

8
40
%

42
43

0%
50
00

0%
50
00

re
m
ov
eE

le
m
en
tA

t(
in
t)

6
85
%

18
29

75
%

22
58

70
%

29
48

ad
d
A
ll
(i
n
t,
C
ol
le
ct
io
n
)

5
10
0%

87
1

95
%

11
30

80
%

16
68

re
m
ov
e(
in
t)

4
90
%

19
04

80
%

25
45

80
%

28
15

T
ab

le
8.
2:

P
er
ce
n
ta
ge

of
ru
n
s
at
ta
in
in
g
fu
ll
co
ve
ra
ge

(%
f
)
an

d
av
er
ag
e
n
u
m
b
er

of
in
d
iv
id
u
al
s
ev
al
u
at
ed

p
er

ru
n
(#

i)
;
fo
r

th
e
W
it
h
O
R
,
W
it
ho

u
t
O
R

an
d
R
an

do
m

ru
n
s;
fo
r
th
e
5
p
u
b
li
c
m
et
h
o
d
s
w
it
h
th
e
h
ig
h
es
t
C
C
N

of
th
e
T
r
e
e
M
a
p
an

d
V
e
c
t
o
r

cl
as
se
s.

122

8.4. Related Work

Figure 8.4: Average percentage of CFG nodes left to be covered per gener-
ation (a and d), average MCS length per generation (b and e), and average
percentage of feasible individuals per generation (c and f); for the With OR
and Without OR runs; for the 5 public methods with the highest CCN of
the TreeMap and Vector classes.

123

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing

decomposition of a problem into subproblems, a solving of the subproblems,

and an assembly of the solutions to the subproblems into a solution to

the overall problem; an individual’s genotype usually consists of a forest of

trees (or functions), which are then called repeatedly from the main tree.

Therefore, ADFs do allow function reuse, as the possibility of selecting

and calling the same function multiple times exists. However, functions

in Object-Oriented languages typically return object references, and each

individual function call – even to the same function – returns a distinct

reference. As such, ADFs do not enable Object Reuse, as the possibility of

using the object reference returned by a single function call more than once

is not possible.

The Object Reuse methodology described also shares some characteris-

tics with graph-based approaches to GP, such as Parallel Distributed Ge-

netic Programming (PDGP) [Pol97] and Cartesian Genetic Programming

(CGP) [MT00], as it also involves loosening the interpretation of the edges

of a MCT thus effectively transforming it into a graph. However, to the

best of the authors’ knowledge, there has been no research on applying

any of the above approaches to the generation of Object-Oriented software

and, in particular, to Object-Oriented Evolutionary Testing; conversely,

STGP has been extended to support type inheritance and polymorphism

[HSW96, Yu01b], and extensive work has been performed on applying it to

Object-Oriented Evolutionary Testing (cf. Chapter 3). As such, we believe

that the methodology proposed constitutes a significant novel contribution

to the area.

The only previous approach to Object Reuse known to the author does

not involve a loosening of the interpretation of the edges of a MCT, but

rather a loosening of the parameter object assignments during tree lineari-

sation. In [Wap07], Wappler proposes employing an Object Pool that stores

references to all the objects created during a Test Program execution; this

pool is consulted if a parameter object is required for a method call, and a

parameter object selector component selects the instance to be used among

all available instances of the required type (e.g., Listing 8.2).

There are, however, some drawbacks to the Object Pool approach to

Object Reuse. Firstly, all the objects, even those that are not used, must

be created and stored in the Object Pool, which will obviously increase

the length and complexity of Test Programs. Also, and perhaps most im-

portantly, changing parameter object assignments during tree linearisation

will result in a discrepancy between the individual’s hereditary information

(i.e., its genotype) and its actual observed properties (i.e., its phenotype); in

124

8.5. Summary

�
1 Vector vector1 = new Vector ();

2 ObjectPool.addInstance(vector1);

3 Object object2 = new Object ();

4 ObjectPool.addInstance(object2);

5 Vector poolVector1 = ObjectPool.getInstance(Vector.class);

6 Object poolObject2 = ObjectPool.getInstance(Object.class);

7 boolean boolean3 = poolVector1.add(poolObject2);

8 ObjectPool.addInstance(boolean3);

9 Object object4 = new Object ();

10 ObjectPool.addInstance(object4);

11 Vector poolVector3 = ObjectPool.getInstance(Vector.class);

12 Object poolObject4 = ObjectPool.getInstance(Object.class);

13 int int5 = poolVector3.indexOf(poolObject4);� �
Listing 8.2: Example Test Program employing the Object Pool approach to
Object Reuse [Wap07].

other words, the Test Program might not directly correspond to the MCT.

Considering that an individual’s evaluation is performed at the phenotype

level, the Test Program must be an exact translation of the MCT in order

for the fitness to be accurately assessed and reflect an individual’s quality.

8.5 Summary

The goal of Object-Oriented Evolutionary Testing is to find a set of Test

Cases that satisfies a certain test criterion. If structural adequacy criteria

are employed, Object Reuse is a feature of paramount importance, as it

enables the generation of Test Programs that exercise specific structures of

software that would not be reachable otherwise.

Object Reuse means that one instance can be passed to multiple meth-

ods as an argument, or multiple times to the same method as arguments;

the main contribution of this work is that of proposing a novel methodol-

ogy which enables Object Reuse on typed GP-based approaches to Object-

Oriented Evolutionary Testing. The proposed approach to Object Reuse

involves the definition of novel type of GP nodes – the At-Nodes – that

“point to” other nodes, thus effectively enabling the reuse of portions of the

tree and, specifically, the reuse of the object references returned by the func-

tions corresponding to the reused sub-trees. Additionally, At-Nodes may be

removed from a tree; this particular feature allows avoiding the reformula-

tion of other well-established evolutionary operators, such as Mutation and

Crossover.

125

8. Enabling Object Reuse on Genetic Programming-based
Approaches to Object-Oriented Evolutionary Testing

Besides enhancing the effectiveness of the search, the experimental stud-

ies performed show that the proposed methodology is able to increase the

performance of the Test Data generation process: it yields solutions with

smaller overall size and lower structural complexity, and it is able to increase

the average feasibility of Test Programs by means of a specific heuristic for

the selection of the nodes to be used by the Object Reuse operator.

126

Chapter 9

Conclusions and Future Work

This Thesis presented a Genetic Programming-based approach to the gen-

eration of structural Unit Test data for Object-Oriented software. Relevant

contributions include (but are not limited to) the introduction of novel

methodologies for search guidance, Input Domain Reduction, constraint

selection, Object Reuse – and the presentation of the eCrash Test Data

generation tool.

Test Data generation is, in fact, a difficult research topic, especially if

the goal is to implement an automated, adaptable and inexpensive solution.

The State Problem of Object-Oriented programs, in particular, requires the

definition of methodologies that promote the coverage of problematic struc-

tures and difficult control-flow paths. We proposed tackling this particular

challenge by defining weighted Control-Flow Graph nodes and constantly

adapting the direction of the search. This strategy also causes the fitness

of feasible Test Programs to fluctuate throughout the search process, and

allows unfeasible Test Programs to be considered at certain points of the

evolutionary search – namely, once the feasible ones cease to be interesting

because they exercise recurrently traversed structures.

An Input Domain Reduction methodology for eliminating irrelevant vari-

ables from Object-Oriented Evolutionary Testing problems was also pro-

posed; it is based on the concept of Purity Analysis, and provides a means

to automatically identify and remove Function Set entries that do not con-

tribute to the definition of interesting test scenarios. This process also

ensures that Test Programs are not rendered unfeasible by the inclusion of

uninteresting instructions, which makes it particularly important in the con-

text of our approach, given that the Test Data evaluation strategy defined

127

9. Conclusions and Future Work

considers unfeasible Test Programs at certain stages of the search.

The inclusion of relevant instructions into the generated Test Programs

(by means of Mutation) also provides the rationale for the adaptive method-

ology presented for dynamically updating the selection probabilities of the

constraints defined in the Function Set. This strategy obtains feedback

from the solutions previously produced and evaluated in order to promote

diversity and Test Program feasibility.

The Object Reuse strategy presented enables the generation of Test

Programs that exercise specific structures of software that would not be

reachable otherwise; it is thus especially important if White-Box adequacy

criteria are employed. Object Reuse means that one instance can be passed

to multiple methods as an argument, or multiple times to the same method

as arguments; the proposed approach to Object Reuse involves the defi-

nition of novel type of Genetic Programming nodes that “point to” other

nodes, thus effectively enabling the reuse of the object references returned

by the functions corresponding to the reused sub-trees. Additionally, At-

Nodes may be removed from a tree; this particular feature allows avoiding

the reformulation of other well-established evolutionary operators, such as

Mutation and Crossover.

The initial objectives of this work were those of positively contributing

to improve the level of automation and performance of the (often neglected

but enormously important) Software Testing process, and of investigating

the pertinence of applying Evolutionary Algorithms to Test Data generation

problems. We believe that it is possible to affirm that this goal was achieved,

not only as a result of the proposals made to enhance both the efficiency

and the effectiveness of Object-Oriented Evolutionary Testing approaches,

but also because this research resulted in the development of an automated

tool which demonstrates the applicability of Genetic Programming to this

purpose.

The eCrash tool embodies the approach to Evolutionary Testing pro-

posed; it was implemented during the course of the research presented this

Thesis, and allowed studying and experimenting with novel methodologies

for improving the Evolutionary Testing process. Even though it is currently

in a prototype development stage, it is fully functional and is applicable

to a vast array of Object-Oriented Test Objects. Nevertheless, we are ac-

tively working on developing a stable, user-friendly and well-documented

implementation of this framework; near-future plans involve publishing an

IDE-integrated version of eCrash, that can be used by Software Testers in

a production environment and Evolutionary Testing researchers alike.

128

We also plan to address some of the limitations which we still did not

have the chance to investigate: the testing and structural coverage of non-

public methods (via an object’s public interface) is an important issue. Fu-

ture work will also be focused on addressing the challenges posed by the

three cornerstones of Object-Oriented programming: Encapsulation, Inher-

itance, and Polymorphism.

The importance of the Inheritance and Polymorphism properties, in par-

ticular, is yet to be fully studied by researchers in this area. Inheritance

allows the treatment of an object as its own type or its base type; Polymor-

phism means “different forms”, and allows one type to express its distinction

from another similar type through differences in behaviour of the methods

that can be called through the base class [Eck02]. Search space sampling

deals with the inclusion of all the relevant variables to a given Test Object

into the Test Data generation problem, so as to enable the coverage of the

entire search space whenever possible and improve the effectiveness the ap-

proach. Because the Test Cluster cannot possibly include all the subclasses

that may override the behaviours of the classes which are relevant for the

Test Object, adequate strategies for search space sampling – which take the

commonality among classes and their relationships with each other into ac-

count – are of paramount importance. Steps in this direction have already

been taken as a result of the proposal of the Adaptive Evolutionary Testing

methodology described in Chapter 7; static analysis methodologies will be

considered for sampling the search space and also for defining the initial

constraint selection probabilities.

Future research plans also involve addressing the oracle generation prob-

lem, and investigating the possibility of automating a mechanism for check-

ing if the output of a program is correct given some input; in fact, the

frequent non-existence of an oracle threatens to undo much of the progress

made in automating Test Data generation, as a human tester is still required

to perform this task manually. Research questions include verifying to

what extent Weyuker’s statement labelling some programs as “non-testable”

[Wey82] due to the difficulty of automatically generating a test oracle for

such programs is true, and exploring the possibility of circumventing the

oracle generation problem by means of pseudo-oracles [DW81, McM09].

We are also planning to experiment with parallel systems in order to en-

hance our methodology’s performance. The breeding and fitness calculation

procedures, in particular, are inherently parallelisable; all the individuals in

population my be created and evaluated simultaneously. Additionally, we

intend to treat the Test Data generation and selection process as a Multi

129

Objective Optimization problem [YH07], so as to take into account several

goals simultaneously (e.g, structural coverage, Test Program length, Test

Set size, execution cost).

130

Bibliography

[ABHPW08] S. Ali, L.C. Briand, H. Hemmati, and R.K. Panesar-Walawege. A system-

atic review of the application and empirical investigation of evolutionary

testing. Technical Report Simula Technical Report Simula.SE.293, 2008.

[cited at p. 27]

[ABHPW09] Shaukat Ali, Lionel C. Briand, Hadi Hemmati, and Rajwinder Kaur

Panesar-Walawege. A systematic review of the application and empiri-

cal investigation of search-based test-case generation. IEEE Transactions

on Software Engineering, 99(1), 2009. [cited at p. 14, 48, 49]

[Ang95] Peter J. Angeline. Adaptive and self-adaptive evolutionary computations.

In Computational Intelligence: A Dynamic Systems Perspective, pages 152–

163. IEEE Press, 1995. [cited at p. 97, 98]

[Arc08] Andrea Arcuri. On the automation of fixing software bugs. In ICSE

Companion ’08: Companion of the 30th international conference on Soft-

ware engineering, pages 1003–1006, New York, NY, USA, 2008. ACM.

[cited at p. 2, 45]

[Arc09a] Andrea Arcuri. Automatic software generation and improvement through

search based techniques. PhD thesis, University of Birmingham, 2009.

[cited at p. 48]

[Arc09b] Andrea Arcuri. Insight knowledge in search based software testing. In

GECCO ’09: Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, pages 1649–1656, New York, NY, USA, 2009.

ACM. [cited at p. 47, 119]

[AWCY08] Andrea Arcuri, David Robert White, John Clark, and Xin Yao. Multi-

objective improvement of software using co-evolution and smart seeding.

In Proceedings of the 7th International Conference on Simulated Evolution

And Learning (SEAL ’08), pages 61–70. Springer, 2008. [cited at p. 45]

[AY07a] Andrea Arcuri and Xin Yao. Coevolving programs and unit tests from their

specification. In ASE ’07: Proceedings of the twenty-second IEEE/ACM

international conference on Automated software engineering, pages 397–

400, New York, NY, USA, 2007. ACM. [cited at p. 2, 44, 50]

131

[AY07b] Andrea Arcuri and Xin Yao. A memetic algorithm for test data gen-

eration of object-oriented software. In Proceedings of the 2007 IEEE

Congress on Evolutionary Computation (CEC), pages 2048–2055. IEEE,

2007. [cited at p. 2, 46, 74, 84]

[AY07c] Andrea Arcuri and Xin Yao. On test data generation of object-oriented

software. In TAICPART-MUTATION ’07: Proceedings of the Testing:

Academic and Industrial Conference Practice and Research Techniques -

MUTATION, pages 72–76, Washington, DC, USA, 2007. IEEE Computer

Society. [cited at p. 45, 50]

[AY07d] Andrea Arcuri and Xin Yao. Search based testing of containers for object-

oriented software. Technical Report CSR-07-3, University of Birmingham,

School of Computer Science, April 2007. [cited at p. 46]

[AY08a] Andrea Arcuri and Xin Yao. A novel co-evolutionary approach to auto-

matic software bug fixing. In Proceedings of the IEEE Congress on Evolu-

tionary Computation (CEC ’08), pages 162–168. IEEE Computer Society,

2008. [cited at p. 45]

[AY08b] Andrea Arcuri and Xin Yao. Search based software testing of object-

oriented containers. Information Sciences, 178(15):3075–3095, 2008.

[cited at p. 28, 33, 47]

[Bal02] Francesco Balena. Programming Microsoft Visual Basic .NET (Core Ref-

erence). Microsoft Press, Redmond, WA, USA, 2002. [cited at p. 5]

[BDMN79] G.M. Birtwhistle, O.J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin.

Chartwell-Bratt Ltd, 1979. [cited at p. 6]

[Bei90] Boris Beizer. Software Testing Techniques. John Wiley & Sons, Inc., New

York, NY, USA, 1990. [cited at p. 1, 13, 14, 16]

[Ber02] Hans Bergsten. Javaserver Pages. O’Reilly & Associates, Inc., Sebastopol,

CA, USA, 2002. [cited at p. 7]

[Ber07] Antonia Bertolino. Software testing research: Achievements, challenges,

dreams. In FOSE ’07: 2007 Future of Software Engineering, pages 85–103,

Washington, DC, USA, 2007. IEEE Computer Society. [cited at p. 11, 27,

28]

[BFM97] Thomas Back, David B. Fogel, and Zbigniew Michalewicz, editors. Hand-

book of Evolutionary Computation. IOP Publishing Ltd., Bristol, UK, UK,

1997. [cited at p. 1, 97]

[BL05] C.J. Burgess and M. Lefley. Can Genetic Programming improve Software

Effort Estimation? A Comparative Evaluation, volume 16, pages 95–105.

World Scientific Publishing Co., May 2005. [cited at p. 45]

[BM09] William Bateson and Gregor Mendel. Mendel’s princi-

ples of heredity,. Cambridge [Eng.]University Press,, 1909.

http://www.biodiversitylibrary.org/bibliography/1057. [cited at p. 19]

132

[BME+07] Grady Booch, Robert A. Maksimchuk, Michael W. Engel, Bobbi J. Young,

Jim Conallen, and Kelli A. Houston. Object-Oriented Analysis and Design

with Applications (3rd Edition). Addison-Wesley Professional, 3 edition,

April 2007. [cited at p. 5, 7, 8, 10]

[BMH06] Bill Burke and Richard Monson-Haefel. Enterprise JavaBeans 3.0 (5th

Edition). O’Reilly Media, Inc., May 2006. [cited at p. 7]

[BS94] Stéphane Barbey and Alfred Strohmeier. The problematics of testing

object-oriented software. In M. Ross, C. A. Brebbia, G. Staples, and J. Sta-

pleton, editors, SQM’94 Second Conference on Software Quality Manage-

ment, Edinburgh, Scotland, UK, July 26-28 1994, volume 2, pages 411–426,

1994. [cited at p. 28]

[BS02] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies –a com-

prehensive introduction. Natural Computing: an international journal,

1(1):3–52, 2002. [cited at p. 19]

[CK06a] Yoonsik Cheon and Myoung Kim. A specification-based fitness function for

evolutionary testing of object-oriented programs. In GECCO ’06: Proceed-

ings of the 8th annual conference on Genetic and evolutionary computation,

pages 1953–1954, New York, NY, USA, 2006. ACM. [cited at p. 39]

[CK06b] Yoonsik Cheon and Myoung Kim. A specification-based fitness function for

evolutionary testing of object-oriented programs. In GECCO ’06: Proceed-

ings of the 8th annual conference on Genetic and evolutionary computation,

pages 1953–1954, New York, NY, USA, 2006. ACM Press. [cited at p. 50]

[CKP05] Yoonsik Cheon, Myoung Kim, and Ashaveena Perumandla. A complete

automation of unit testing for java programs. In Hamid R. Arabnia and

Hassan Reza, editors, Proceedings of the International Conference on Soft-

ware Engineering Research and Practice, SERP 2005, Las Vegas, Nevada,

USA, June 27-29, 2005, Volume 1, pages 290–295. CSREA Press, 2005.

[cited at p. 2, 39]

[CLRS01] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford

Stein. Introduction to Algorithms. MIT Press, Cambridge, MA, second

edition, 2001. [cited at p. 45, 119]

[Dar95] Charles Darwin. The Origin of Species. Gramercy, May 1995.

[cited at p. 19]

[dCT03] Leandro Nunes de Castro and Jon Timmis. Artificial immune systems

as a novel soft computing paradigm. Soft Comput., 7(8):526–544, 2003.

[cited at p. 18, 46]

[dCZ02] Leandro Nunes de Castro and Fernando J. Von Zuben. Learning and

optimization using the clonal selection principle. IEEE Trans. Evolutionary

Computation, 6(3):239–251, 2002. [cited at p. 46]

133

[DJAR07] C. S. Siva Dharsana, D. Nithila Jennifer, A. Askarunisha, and N. Ramaraj.

Java based test case generation and optimization using evolutionary testing.

In ICCIMA ’07: Proceedings of the International Conference on Compu-

tational Intelligence and Multimedia Applications (ICCIMA 2007), pages

44–49, Washington, DC, USA, 2007. IEEE Computer Society. [cited at p. 2,

40]

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization (Bradford

Books). The MIT Press, July 2004. [cited at p. 45]

[dV01] Francisco Fernández de Vega. Distributed Genetic Programming Models

with Application to Logic Synthesis on FPGAs. PhD thesis, University of

Extremadura, 2001. [cited at p. 19]

[DW81] Martin D. Davis and Elaine J. Weyuker. Pseudo-oracles for non-testable

programs. In ACM 81: Proceedings of the ACM ’81 conference, pages

254–257, New York, NY, USA, 1981. ACM. [cited at p. 48, 129]

[Eck02] Bruce Eckel. Thinking in Java. Prentice Hall Professional Technical Ref-

erence, 2002. [cited at p. 9, 129]

[Edm01] Bruce Edmonds. Meta-genetic programming: Co-evolving the operators

of variation. Elektrik, 9(1):13–29, May 2001. Turkish Journal Electrical

Engineering and Computer Sciences. [cited at p. 99]

[EKdCA98] Matthew Evett, Taghi Khoshgoftar, Pei der Chien, and Edward Allen.

Gp-based software quality prediction. In in: Proc. 3rd Annual Genetic

Programming Conference, 1998. [cited at p. 45]

[Ern03] Michael D. Ernst. Static and dynamic analysis: Synergy and duality. In

WODA 2003: ICSE Workshop on Dynamic Analysis, pages 24–27, Port-

land, OR, May 9, 2003. [cited at p. 16]

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The annotated C++ reference

manual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1990. [cited at p. 5, 6]

[FCA09] Javier Ferrer, Francisco Chicano, and Enrique Alba. Dealing with inheri-

tance in oo evolutionary testing. In GECCO ’09: Proceedings of the 11th

Annual conference on Genetic and evolutionary computation, pages 1665–

1672, New York, NY, USA, 2009. ACM. [cited at p. 41]

[fITS98] International Committee for Information Technology Standards. Program-

ming languages – smalltalk. Technical Report ANSI/INCITS 319-1998, 1

1998. [cited at p. 6]

[Fog62] L. J. Fogel. Toward inductive inference automata. In IFIP Congress, pages

395–400, 1962. [cited at p. 19]

[Fog99] Lawrence J. Fogel. Intelligence through simulated evolution: forty years of

evolutionary programming. John Wiley & Sons, Inc., New York, NY, USA,

1999. [cited at p. 19]

134

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Lan-

guage Specification, The (3rd Edition) (Java (Addison-Wesley)). Addison-

Wesley Professional, 2005. [cited at p. 9]

[Glo89] Fred Glover. Tabu search–Part I. ORSA Journal on Computing, 1(3):190–

206, 1989. [cited at p. 19]

[Gol89] D.E Goldberg. Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, 1989. [cited at p. 19]

[GR08] Nirmal Kumar Gupta and Mukesh Kumar Rohil. Using genetic algorithm

for unit testing of object oriented software. In ICETET ’08: Proceedings of

the 2008 First International Conference on Emerging Trends in Engineer-

ing and Technology, pages 308–313, Washington, DC, USA, 2008. IEEE

Computer Society. [cited at p. 2, 44, 50]

[Har07a] Mark Harman. Automated test data generation using search based soft-

ware engineering. In AST ’07: Proceedings of the Second International

Workshop on Automation of Software Test, page 2, Washington, DC, USA,

2007. IEEE Computer Society. [cited at p. 1]

[Har07b] Mark Harman. The current state and future of search based software

engineering. In FOSE ’07: 2007 Future of Software Engineering, pages 342–

357, Washington, DC, USA, 2007. IEEE Computer Society. [cited at p. 2,

27]

[HHH+04] Mark Harman, Lin Hu, Rob Hierons, Joachim Wegener, Harmen Sthamer,

André Baresel, and Marc Roper. Testability transformation. IEEE Trans.

Softw. Eng., 30(1):3–16, 2004. [cited at p. 47]

[HHL+07] Mark Harman, Youssef Hassoun, Kiran Lakhotia, Phil McMinn, and

Joachim Wegener. The impact of input domain reduction on search-based

test data generation. In ESEC-FSE ’07: Proceedings of the the 6th joint

meeting of the European software engineering conference and the ACM

SIGSOFT symposium on The foundations of software engineering, pages

155–164, New York, NY, USA, 2007. ACM Press. [cited at p. 28, 47, 81, 84]

[Hil90] W. Daniel Hillis. Co-evolving parasites improve simulated evolution as an

optimization procedure. Phys. D, 42(1-3):228–234, 1990. [cited at p. 44]

[Hir67] I. N. Hirsch. Memmap/360. Technical Report TR P-1168, IBM Systems

Development Division, Product Test Laboratories, Poughkeepsie, N.Y., 2

1967. [cited at p. 16]

[HME97] Robert Hinterding, Zbigniew Michalewicz, and A. E. Eiben. Adaptation

in evolutionary computation: A survey. In In Proceedings of the Fourth

International Conference on Evolutionary Computation (ICEC 97, pages

65–69. IEEE Press, 1997. [cited at p. 97, 98, 100]

[HMZ09] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search based

software engineering: A comprehensive analysis and review of trends tech-

niques and applications. Technical Report TR-09-03, 2009. [cited at p. 2,

27, 29, 45, 48, 49]

135

[Hol62] John H. Holland. Outline for a logical theory of adaptive systems. J. ACM,

9(3):297–314, 1962. [cited at p. 19]

[Hol92] John H. Holland. Adaptation in Natural and Artificial Systems: An In-

troductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. The MIT Press, April 1992. [cited at p. 21]

[HSW96] Thomas D. Haynes, Dale A. Schoenefeld, and Roger L. Wainwright. Type

inheritance in strongly typed genetic programming. In Peter J. Angeline

and K. E. Kinnear, Jr., editors, Advances in Genetic Programming 2, pages

359–376. MIT Press, Cambridge, MA, USA, 1996. [cited at p. 26, 124]

[IEE87] IEEE. Ansi/ieee std 1008-1987: Ieee standard for software unit testing,

1987. [cited at p. 16]

[Ind09] The TIOBE Programming Community Index.

www.tiobe.com/tiobe index/index.htm, 11 2009. [cited at p. 6, 7]

[IX07] Kobi Inkumsah and Tao Xie. Evacon: A framework for integrating evolu-

tionary and concolic testing for object-oriented programs. In Proc. 22nd

IEEE/ACM International Conference on Automated Software Engineering

(ASE 2007), pages 425–428, November 2007. [cited at p. 2, 39]

[IX08] Kobi Inkumsah and Tao Xie. Improving structural testing of object-

oriented programs via integrating evolutionary testing and symbolic exe-

cution. In Proc. 23rd IEEE/ACM International Conference on Automated

Software Engineering (ASE 2008), September 2008. [cited at p. 2, 40]

[KDR06] A. Kinneer, M. Dwyer, and G. Rothermel. Sofya: A flexible framework

for development of dynamic program analysis for java software. Technical

Report TR-UNL-CSE-2006-0006, University of Nebraska, Lincoln, 4 2006.

[cited at p. 18]

[KDR07] Alex Kinneer, Matthew B. Dwyer, and Gregg Rothermel. Sofya: Sup-

porting rapid development of dynamic program analyses for java. In ICSE

COMPANION ’07: Companion to the proceedings of the 29th International

Conference on Software Engineering, pages 51–52, Washington, DC, USA,

2007. IEEE Computer Society. [cited at p. 55, 70]

[Kin76] James C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, 1976. [cited at p. 43]

[KJS98] Nathan P. Kropp, Philip J. Koopman Jr., and Daniel P. Siewiorek. Auto-

mated robustness testing of off-the-shelf software components. In Sympo-

sium on Fault-Tolerant Computing, pages 230–239, 1998. [cited at p. 60]

[KL86] Pekka J. Korhonen and Jukka Laakso. A visual interactive method for

solving the multiple criteria problem. European Journal of Operational

Research, 24(2):277–287, February 1986. [cited at p. 18]

[Koz92] John R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection (Complex Adaptive Systems). The MIT

Press, December 1992. [cited at p. 19, 21, 22, 75, 101, 112, 119, 120]

136

[Koz94] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable

Programs. The MIT Press, Cambridge, Massachusetts, 1994. [cited at p. 25,

121]

[KP08a] Gal Katz and Doron Peled. Genetic programming and model checking:

Synthesizing new mutual exclusion algorithms. In ATVA ’08: Proceedings

of the 6th International Symposium on Automated Technology for Verifica-

tion and Analysis, pages 33–47, Berlin, Heidelberg, 2008. Springer-Verlag.

[cited at p. 45]

[KP08b] Gal Katz and Doron Peled. Model checking-based genetic programming

with an application to mutual exclusion. In C. R. Ramakrishnan and

Jakob Rehof, editors, TACAS, volume 4963 of Lecture Notes in Computer

Science, pages 141–156. Springer, 2008. [cited at p. 45]

[KR88] Brian W. Kernighan and Dennis M. Ritchie. C Programming Language

(2nd Edition). Prentice Hall PTR, 2 edition, April 1988. [cited at p. 6]

[LA87] P. J. M. Laarhoven and E. H. L. Aarts, editors. Simulated annealing:

theory and applications. Kluwer Academic Publishers, Norwell, MA, USA,

1987. [cited at p. 18, 38]

[LB03] Craig Larman and Victor R. Basili. Iterative and incremental development:

A brief history. Computer, 36(6):47–56, 2003. [cited at p. 12]

[LBR06] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design

of jml: a behavioral interface specification language for java. SIGSOFT

Softw. Eng. Notes, 31(3):1–38, 2006. [cited at p. 39, 82]

[Lis87] Barbara Liskov. Data Abstraction and Hierarchy. In Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA),

Addendum to the Proceedings, volume 23, pages 17–34, October 1987.

[cited at p. 10]

[LL02] P. Larranaga and J.A. Lozano. Estimation of distribution algorithms:

A new tool for evolutionary computation. Kluwer Academic Pub, 2002.

[cited at p. 45]

[LR07] K. Liaskos and M. Roper. Automatic test-data generation: An immunolog-

ical approach. In Testing: Accademic and Industrial Conference - Practice

and Research Techniques (TAIC PART), pages 77–81. IEEE Computer

Society, September 2007. [cited at p. 46]

[LR08] Konstantinos Liaskos and Marc Roper. Hybridizing evolutionary testing

with artificial immune systems and local search. In ICSTW ’08: Pro-

ceedings of the 2008 IEEE International Conference on Software Testing

Verification and Validation Workshop, pages 211–220, Washington, DC,

USA, 2008. IEEE Computer Society. [cited at p. 2, 46]

[LRW07] Konstantinos Liaskos, Marc Roper, and Murray Wood. Investigating data-

flow coverage of classes using evolutionary algorithms. In GECCO ’07:

137

Proceedings of the 9th annual conference on Genetic and evolutionary com-

putation, pages 1140–1140, New York, NY, USA, 2007. ACM. [cited at p. 2,

46]

[Luk00a] Sean Luke. Issues in Scaling Genetic Programming: Breeding Strategies,

Tree Generation, and Code Bloat. PhD thesis, Department of Computer

Science, University of Maryland, A. V. Williams Building, University of

Maryland, College Park, MD 20742 USA, 2000. [cited at p. 102]

[Luk00b] Sean Luke. Two fast tree-creation algorithms for genetic programming.

IEEE Transactions on Evolutionary Computation, 4(3):274–283, Septem-

ber 2000. [cited at p. 102, 120]

[Luk09a] Sean Luke. ECJ 19: A Java evolutionary computation library.

http://cs.gmu.edu/∼eclab/projects/ecj/, 2009. [cited at p. 55, 70]

[Luk09b] Sean Luke. Essentials of Metaheuristics. 2009. available at

http://cs.gmu.edu/∼sean/book/metaheuristics/. [cited at p. 21, 23]

[LW04] Kanglin Li and Mengqi Wu. Effective Software Test Automation: Devel-

oping an Automated Software Testing Tool. SYBEX Inc., Alameda, CA,

USA, 2004. [cited at p. 10, 11, 12]

[LWL05] Xiyang Liu, Bin Wang, and Hehui Liu. Evolutionary search in the con-

text of object-oriented programs. In MIC’05: Proceedings of the Sixth

Metaheuristics International Conference, 2005. [cited at p. 2, 45]

[LY99] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[cited at p. 7, 58]

[MA05] Timo Mantere and Jarmo T. Alander. Evolutionary software engineering,

a review. Appl. Soft Comput., 5(3):315–331, 2005. [cited at p. 2, 48, 49]

[Mar94] John J. Marciniak, editor. Encyclopedia of software engineering. Wiley-

Interscience, New York, NY, USA, 1994. [cited at p. 10, 11]

[McC76] Thomas J. McCabe. A complexity measure. IEEE Trans. Software Eng.,

2(4):308–320, 1976. [cited at p. 119]

[McM04] P. McMinn. Search-based software test data generation: A survey. Software

Testing, Verification and Reliability, 14(2):105–156, 2004. [cited at p. 1, 2,

27, 48, 49]

[McM09] Phil McMinn. Search-based failure discovery using testability transforma-

tions to generate pseudo-oracles. In GECCO ’09: Proceedings of the 11th

Annual conference on Genetic and evolutionary computation, pages 1689–

1696, New York, NY, USA, 2009. ACM. [cited at p. 48, 129]

[MH03] P. McMinn and M. Holcombe. The state problem for evolutionary testing,

2003. [cited at p. 29]

138

[Mic94] Zbigniew Michalewicz. Genetic algorithms + data structures = evolution

programs (2nd, extended ed.). Springer-Verlag New York, Inc., New York,

NY, USA, 1994. [cited at p. 20]

[Mon93] David J. Montana. Strongly typed genetic programming. Technical Re-

port #7866, 10 Moulton Street, Cambridge, MA 02138, USA, 7 1993.

[cited at p. 26]

[Mon95] David J. Montana. Strongly typed genetic programming. Evolutionary

Computation, 3(2):199–230, 1995. [cited at p. 2, 26, 33, 52]

[Mos89] P. Moscato. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Caltech Concurrent Computa-

tion Program, C3P Report, 826:1989, 1989. [cited at p. 46]

[MS76] W. Miller and D. L. Spooner. Automatic generation of floating-point test

data. IEEE Trans. Softw. Eng., 2(3):223–226, 1976. [cited at p. 37]

[MS04] Glenford J. Myers and Corey Sandler. The Art of Software Testing. John

Wiley & Sons, 2004. [cited at p. 15]

[MT00] Julian F. Miller and Peter Thomson. Cartesian genetic programming. In

Proceedings of the European Conference on Genetic Programming, pages

121–132, London, UK, 2000. Springer-Verlag. [cited at p. 124]

[NL03] Colin J. Neill and Phillip A. Laplante. Requirements engineering: The

state of the practice. IEEE Software, 20(6):40–45, 2003. [cited at p. 12]

[Ols94] J. R. Olsson. Inductive functional programming using incremental program

transformation and execution of logic programs by iterative-deepening a*

sld-tree search. research report 189, University of Oslo, 1994. Dr. scient.

thesis, edited version. [cited at p. 26]

[PE07] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random

testing for java. In OOPSLA ’07: Companion to the 22nd ACM SIGPLAN

conference on Object-oriented programming systems and applications com-

panion, pages 815–816, New York, NY, USA, 2007. ACM. [cited at p. 40]

[PLM08] Riccardo Poli, William B. Langdon, and Nicholas F. Mcphee. A Field

Guide to Genetic Programming. Lulu Enterprises, UK Ltd, March 2008.

[cited at p. 21, 23, 24, 25, 26]

[Pol97] Riccardo Poli. Evolution of graph-like programs with parallel distributed

genetic programming. In Thomas Bäck, editor, ICGA, pages 346–353.

Morgan Kaufmann, 1997. [cited at p. 124]

[Raj04] R. Rajendran. White paper on unit testing. Online at:

http://www.mobilein.com/WhitePaperonUnitTesting.pdf, 2004.

[cited at p. 11, 15]

139

[RdVZR07] José Carlos Bregieiro Ribeiro, Francisco Fernández de Vega, and Mário

Zenha-Rela. Using dynamic analysis of java bytecode for evolutionary

object-oriented unit testing. In SBRC WTF 2007: Proceedings of the 8th

Workshop on Testing and Fault Tolerance at the 25th Brazilian Symposium

on Computer Networks and Distributed Systems, pages 143–156. Brazilian

Computer Society (SBC), 2007. [cited at p. 43]

[Rec65] I. Rechenberg. Cybernetic solution path of an experimental problem. Tech-

nical report, Royal Air Force Establishment, 1965. [cited at p. 19]

[Rib08] José Carlos Bregieiro Ribeiro. Search-based test case generation for object-

oriented java software using strongly-typed genetic programming. In

GECCO ’08: Proceedings of the 2008 GECCO Conference Companion on

Genetic and Evolutionary Computation, pages 1819–1822, New York, NY,

USA, 7 2008. ACM. [cited at p. 43]

[RNC+96] Stuart J. Russell, Peter Norvig, John F. Candy, Jitendra M. Malik, and

Douglas D. Edwards. Artificial intelligence: a modern approach. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1996. [cited at p. 38]

[Roy87] W. W. Royce. Managing the development of large software systems: con-

cepts and techniques. In ICSE ’87: Proceedings of the 9th international

conference on Software Engineering, pages 328–338, Los Alamitos, CA,

USA, 1987. IEEE Computer Society Press. [cited at p. 12]

[Run06] Per Runeson. A survey of unit testing practices. IEEE Softw., 23(4):22–29,

2006. [cited at p. 15]

[Rut08] Leszek Rutkowski. Computational Intelligence: Methods and Techniques.

Springer Publishing Company, Incorporated, 2008. [cited at p. 21]

[RZdV07a] José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fernández

de Vega. ecrash: a framework for performing evolutionary testing on third-

party java components. In CEDI JAEM’07: Proceedings of the I Jornadas

sobre Algoritmos Evolutivos y Metaheuristicas at the II Congreso Español

de Informática, pages 137–144, 2007. [cited at p. 43]

[RZdV07b] José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fernández

de Vega. An evolutionary approach for performing structural unit-testing

on third-party object-oriented java software. In Nature Inspired Coopera-

tive Strategies for Optimization (NICSO 2007), volume 129/2008 of Studies

in Computational Intelligence, pages 379–388. Springer Berlin / Heidelberg,

11 2007. [cited at p. 43]

[RZRdV08a] José Carlos Bregieiro Ribeiro, Mário Zenha-Rela, and Francisco Fernández

de Vega. A strategy for evaluating feasible and unfeasible test cases for the

evolutionary testing of object-oriented software. In AST ’08: Proceedings

of the 3rd International Workshop on Automation of Software Test, pages

85–92, New York, NY, USA, 2008. ACM. [cited at p. 43, 120]

140

[RZRdV08b] José Carlos Bregieiro Ribeiro, Mário Alberto Zenha-Rela, and Fran-

cisco Fernández de Vega. Strongly-typed genetic programming and purity

analysis: input domain reduction for evolutionary testing problems. In

GECCO ’08: Proceedings of the 10th Annual Conference on Genetic and

Evolutionary Computation, pages 1783–1784, New York, NY, USA, 7 2008.

ACM. [cited at p. 43]

[RZRdV10a] José Carlos Bregieiro Ribeiro, Mário Alberto Zenha-Rela, and Fran-

cisco Fernández de Vega. Adaptive evolutionary testing: an adaptive ap-

proach to search-based test case generation for object-oriented software.

In NICSO 2010 - International Workshop on Nature Inspired Cooperative

Strategies for Optimization (to appear), Studies in Computational Intelli-

gence. Springer, 5 2010. [cited at p. 43]

[RZRdV10b] José Carlos Bregieiro Ribeiro, Mário Alberto Zenha-Rela, and Fran-

cisco Fernández de Vega. Enabling object reuse on genetic programming-

based approaches to object-oriented evolutionary testing. In EuroGP 2010

- 13th European Conference on Genetic Programming (to appear), Lecture

Notes in Computer Science. Springer, 4 2010. [cited at p. 43]

[RZRFdV09] José Carlos Bregieiro Ribeiro, Mário Alberto Zenha-Rela, and Francisco

Fernández de Vega. Test case evaluation and input domain reduction strate-

gies for the evolutionary testing of object-oriented software. Inf. Softw.

Technol., 51(11):1534–1548, 2009. [cited at p. 43, 120]

[SA06] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and

explicit path model-checking tools. In Thomas Ball and Robert B. Jones,

editors, CAV, volume 4144 of Lecture Notes in Computer Science, pages

419–423. Springer, 2006. [cited at p. 39, 40]

[SAY07] Ramon Sagarna, Andrea Arcuri, and Xin Yao. Estimation of distribution

algorithms for testing object oriented software. In Dipti Srinivasan and

Lipo Wang, editors, 2007 IEEE Congress on Evolutionary Computation,

pages –, Singapore, 25-28 September 2007. IEEE Computational Intelli-

gence Society, IEEE Press. [cited at p. 2, 45, 72]

[SD07] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms.

Springer Publishing Company, Incorporated, 2007. [cited at p. 33]

[See06] Arjan Seesing. Evotest: Test case generation using genetic programming

and software analysis. Master’s thesis, Delft University of Technology, 2006.

[cited at p. 2, 41, 44]

[Sen07] Koushik Sen. Concolic testing. In ASE ’07: Proceedings of the twenty-

second IEEE/ACM international conference on Automated software engi-

neering, pages 571–572, New York, NY, USA, 2007. ACM. [cited at p. 39]

[SG06] Arjan Seesing and Hans-Gerhard Gross. A genetic programming approach

to automated test generation for object-oriented software. International

Transactions on System Science and Applications, 1(2):127–134, 2006.

[cited at p. 2, 41, 43, 50, 84]

141

[SR04] A. Salcianu and M. Rinard. A combined pointer and purity analysis for

Java programs. Technical Report MIT-CSAILTR-949, MIT, May 2004.

[cited at p. 62, 81, 86]

[SR05] Alexandru Salcianu and Martin C. Rinard. Purity and side effect analysis

for java programs. In VMCAI’05: Proceedings of the 6th International Con-

ference on Verification, Model Checking, and Abstract Interpretation, vol-

ume 3385 of Lecture Notes in Computer Science, pages 199–215. Springer,

2005. [cited at p. 81, 82, 86]

[Sun03] Sun Microsystems. JavaTM 2 Platform, Standard Edition, v 1.4.2,

API Specification, 2003. http://java.sun.com/j2se/1.4.2/docs/api/.

[cited at p. 5, 7, 111, 119]

[Tal09] El-Ghazali Talbi. Metaheuristics : from design to implementation. John

Wiley & Sons, 2009. [cited at p. 18]

[Tas02] G. Tassey. The economic impacts of inadequate infrastructure for software

testing. Technical report, National Institute of Standards and Technology,

2002. [cited at p. 10, 11, 13]

[TCMM02] Nigel Tracey, John Clark, John McDermid, and Keith Mander. A search-

based automated test-data generation framework for safety-critical sys-

tems. Systems engineering for business process change: new directions,

pages 174–213, 2002. [cited at p. 1]

[Tho89] D. Thomas. What’s in an object? (object-oriented programming).

14(3):231–232, 234–236, 238, 240, 270–271, March 1989. [cited at p. 10]

[Til08] Pexwhite box test generation for .net. pages 134–153. 2008. [cited at p. 40]

[Ton04] Paolo Tonella. Evolutionary testing of classes. In ISSTA ’04: Proceedings

of the 2004 ACM SIGSOFT international symposium on Software test-

ing and analysis, pages 119–128, New York, NY, USA, 2004. ACM Press.

[cited at p. 1, 2, 27, 28, 37, 38, 39, 43, 46, 48, 60]

[Top02] Kim Topley. J2ME in a nutshell. O’Reilly & Associates, Inc., Sebastopol,

CA, USA, 2002. [cited at p. 7]

[Tsa93] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,

New York, 1993. [cited at p. 43]

[VDMW06] A. M. R. Vincenzi, M. E. Delamaro, J. C. Maldonado, and W. E. Wong.

Establishing structural testing criteria for java bytecode. Softw. Pract.

Exper., 36(14):1513–1541, 2006. [cited at p. 8, 16, 58]

[VPP06] Willem Visser, Corina S. Pǎsǎreanu, and Radek Pelánek. Test input genera-

tion for java containers using state matching. In ISSTA ’06: Proceedings of

the 2006 international symposium on Software testing and analysis, pages

37–48, New York, NY, USA, 2006. ACM. [cited at p. 47]

142

[VRCG+99] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. Soot - a java bytecode optimization frame-

work. In CASCON ’99: Proceedings of the 1999 conference of the Centre

for Advanced Studies on Collaborative research, page 13. IBM Press, 1999.

[cited at p. 86]

[VTFD07] Mandana Vaziri, Frank Tip, Stephen Fink, and Julian Dolby. Declarative

object identity using relation types. In Erik Ernst, editor, ECOOP, volume

4609 of Lecture Notes in Computer Science, pages 54–78. Springer, 2007.

[cited at p. 112]

[Wap07] Stefan Wappler. Automatic Generation Of Object-Oriented Unit Tests Us-

ing Genetic Programming. PhD thesis, Technischen Universitat Berlin, 12

2007. [cited at p. 2, 26, 29, 43, 52, 59, 100, 111, 124, 125]

[WBS01] Joachim Wegener, Andr Baresel, and Harmen Sthamer. Evolutionary test

environment for automatic structural testing. Information and Software

Technology Special Issue on Software Engineering using Metaheuristic In-

novative Algorithms, 43(14):841–854, 2001. [cited at p. 47]

[Wei08] Matt Weisfeld. The Object-Oriented Thought Process. Addison-Wesley

Professional, 2008. [cited at p. 6]

[Wey82] Elaine J. Weyuker. On testing non-testable programs. Comput. J.,

25(4):465–470, 1982. [cited at p. 129]

[Wil02] Mickey Williams. Microsoft Visual C# (Core Reference). Microsoft Press,

Redmond, WA, USA, 2002. [cited at p. 5]

[WL05] Stefan Wappler and Frank Lammermann. Using evolutionary algorithms

for the unit testing of object-oriented software. In GECCO ’05: Pro-

ceedings of the 2005 conference on Genetic and evolutionary computation,

pages 1053–1060, New York, NY, USA, 2005. ACM Press. [cited at p. 29,

38, 43]

[WM97] D.H. Wolpert and W.G. Macready. No free lunch theorems for optimiza-

tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, April

1997. [cited at p. 19]

[WR99] John Whaley and Martin Rinard. Compositional pointer and escape

analysis for java programs. In OOPSLA ’99: Proceedings of the 14th

ACM SIGPLAN conference on Object-oriented programming, systems, lan-

guages, and applications, pages 187–206, New York, NY, USA, 1999. ACM.

[cited at p. 82]

[WS07] Stefan Wappler and Ina Schieferdecker. Improving evolutionary class test-

ing in the presence of non-public methods. In ASE ’07: Proceedings

of the twenty-second IEEE/ACM international conference on Automated

software engineering, pages 381–384, New York, NY, USA, 2007. ACM.

[cited at p. 2, 42, 50]

143

[WW06a] S. Wappler and J. Wegener. Evolutionary unit testing of object-oriented

software using a hybrid evolutionary algorithm. In CEC’06: Proceedings

of the 2006 IEEE Congress on Evolutionary Computation, pages 851–858.

IEEE, 2006. [cited at p. 2, 31, 41, 42]

[WW06b] Stefan Wappler and Joachim Wegener. Evolutionary unit testing of object-

oriented software using strongly-typed genetic programming. In GECCO

’06: Proceedings of the 8th annual conference on Genetic and evolutionary

computation, pages 1925–1932, New York, NY, USA, 2006. ACM Press.

[cited at p. 2, 14, 27, 41, 42, 62]

[XES+92] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, and S. Katsikas andd

K. Karapoulios. Application of genetic algorithms to software testing [ap-

plication des algorithmes génétiques au test des logiciels]. In Proceedings of

the 5th International Conference on Software Engineering, pages 625–636,

1992. [cited at p. 27, 37]

[XPV07] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic pu-

rity analysis for java programs. In PASTE ’07: Proceedings of the 7th ACM

SIGPLAN-SIGSOFT workshop on Program analysis for software tools and

engineering, pages 75–82, New York, NY, USA, 2007. ACM. [cited at p. 81,

82]

[XTdHS08] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte.

Method-sequence exploration for automated unit testing of object-oriented

programs. In Proc. Workshop on State-Space Exploration for Automated

Testing (SSEAT 2008), July 2008. [cited at p. 2, 40, 50]

[YH07] Shin Yoo and Mark Harman. Pareto efficient multi-objective test case

selection. In ISSTA ’07: Proceedings of the 2007 international symposium

on Software testing and analysis, pages 140–150, New York, NY, USA,

2007. ACM. [cited at p. 45, 130]

[Yu01a] Tina Yu. Hierachical processing for evolving recursive and modular

programs using higher order functions and lambda abstractions. Ge-

netic Programming and Evolvable Machines, 2(4):345–380, December 2001.

[cited at p. 26]

[Yu01b] Tina Yu. Polymorphism and genetic programming. In EuroGP ’01: Pro-

ceedings of the 4th European Conference on Genetic Programming, pages

218–233, London, UK, 2001. Springer-Verlag. [cited at p. 124]

[ZHR+06] Sharon Zakhour, Scott Hommel, Jacob Royal, Isaac Rabinovitch, Tom

Risser, and Mark Hoeber. The Java Tutorial: A Short Course on the

Basics, 4th Edition (Java Series). Prentice Hall PTR, 4th edition, October

2006. [cited at p. 8, 59]

[ZLXJ03] Weicai Zhong, Jing Liu, Mingzhi Xue, and Licheng Jiao. Global numer-

ical optimization using multi-agent genetic algorithm. In ICCIMA ’03:

Proceedings of the 5th International Conference on Computational Intelli-

gence and Multimedia Applications, page 165, Washington, DC, USA, 2003.

IEEE Computer Society. [cited at p. 45]

144

Appendices

145

Appendix A

Publications

The work presented in this Thesis is original work undertaken between June

2006 and June 2010 at the University of Extremadura, Spain. Portions of

this work have been published elsewhere.

Journal Proceedings (ISI)

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., “Test Case Evaluation and

Input Domain Reduction strategies for the Evolutionary Testing of

Object-Oriented software”. Jornal of Information and Software Tech-

nology, Volume 51, Issue 11, pp. 1534-1548. Elsevier, Butterworth-

Heinemann, Newton, MA, USA, November 2009. ISSN: 0950-5849

DOI: http://dx.doi.org/10.1016/j.infsof.2009.06.009

Conference Proceedings

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., ”Adaptive Evolutionary

Testing: an Adaptive Approach to Search-Based Test Case Genera-

tion for Object-Oriented Software”. In Proc. of the NICSO’10 – 4th

International Workshop on Nature Inspired Cooperative Strategies for

Optimization, pp. 185-197, Vol. 284/2010, Studies in Computational

Intelligence – Springer, Granada, Spain, May 2010

DOI: http://dx.doi.org/10.1007/978-3-642-12538-6 16

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., ”Enabling Object Reuse

on Genetic Programming-based Approaches to Object-Oriented Evo-

147

lutionary Testing”. In Proc. of the EuroGP’10 – 13th European Con-

ference on Genetic Programming, pp. 220-231, Vol. 6021/2010, Lec-

ture Notes in Computer Science – Springer, Instanbul, Turkey, April

2010

DOI: http://dx.doi.org/10.1007/978-3-642-12148-7 19

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., “An Adaptive Strategy

for Improving the Performance of Genetic Programming-based Ap-

proaches to Evolutionary Testing”. In Proc. of the GECCO’09 –

11th Annual Conference on Genetic and Evolutionary Computation,

pp. 1949-1950, ACM, Montréal, Québec, Canada, July 2009

DOI: http://doi.acm.org/10.1145/1569901.1570253

� Ribeiro, J. , “Search-Based Test Case Generation for Object-Oriented

Java Software Using Strongly-Typed Genetic Programming”. In Proc.

of the GECCO’08 – Graduate Student Workshop, pp. 1819-1822,

ACM, Atlanta, Georgia, USA, July 2008

DOI: http://doi.acm.org/10.1145/1388969.1388979

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., “Strongly-Typed Ge-

netic Programming and Purity Analysis: Input Domain Reduction

for Evolutionary Testing Problems”. In Proc. of the GECCO’08 –

10th Annual Conference on Genetic and Evolutionary Computation,

pp. 1783-1784, Atlanta, Georgia, USA, July 2008

DOI: http://doi.acm.org/10.1145/1389095.1389439

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., “A strategy for evalu-

ating feasible and unfeasible test cases for the evolutionary testing of

object-oriented software”. In Proc. of the AST’08 – 3rd International

Workshop on Automation of Software Test at the 30th International

Conference on Software Engineering, pp. 85-92, ACM, Leipzig, Ger-

many, May 2008.

DOI: http://doi.acm.org/10.1145/1389095.1389439

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., “An Evolutionary Ap-

proach For Performing Structural Unit-Testing On Third-Party Object-

Oriented Java Software”. In Proc. of the NICSO’07 – 2nd Interna-

tional Workshop on Nature Inspired Cooperative Strategies for Op-

timization, pp. 379-388, Vol. 129/2008, Studies in Computational

Intelligence – Springer, Acireale, Italy, November 2007.

DOI: http://dx.doi.org/10.1007/978-3-540-78987-1 34

148

� Ribeiro, J. and Rela, M. Z. and Vega, F.F., “eCrash: a Framework for

Performing Evolutionary Testing on Third-Party Java Components”.

In Proc. of the JAEM’07 – I Jornadas sobre Algoritmos Evolutivos y

Metaheuristicas at the II Congreso Espaol de Informtica, pp. 137-144,

Zaragoza, Spain, September 2007. ISBN: 978-84-9732-593-6.

URL: http://jcbribeiro.googlepages.com/jribeiro jaem07.pdf

� Ribeiro, J. and Luis, B.M. and Rela, M. Z. , “Error propagation mon-

itoring on windows mobile-based devices”. In Proc. of the LADC’07

– 3rd Latin-American Symposium on Dependable Computing, pp. 111-

122, Vol. 4746/2007, Lecture Notes in Computer Science – Springer,

Morelia, Mexico, September 2007.

DOI: http://dx.doi.org/10.1007/978-3-540-75294-3 9

� Ribeiro, J. and Vega, F.F. and Rela, M. Z., “Using Dynamic Analy-

sis of Java Bytecode for Evolutionary Object-Oriented Unit Testing”.

In Proc. of the WTF’08 – 8th Workshop on Testing and Fault Tol-

erance at the 25th Brazilian Symposium on Computer Networks and

Distributed Systems, pp. 143-156, Belém, Brazil, May 2007. ISBN:

85-766-0119-1.

URL: http://www.sbrc2007.ufpa.br/anais/2007/WTF04 - 02.pdf

� Ribeiro, J. and Rela, M. Z. , “mCrash: a Framework for the Evalua-

tion of Mobile Devices Trustworthiness Properties”. In Proc. of the

CSMU’06 – Conference on Mobile and Ubiquitous Systems, pp. 163-

166, Guimarães, Portugal, June 2006. ISBN: 972-8692-29-3.

URL: http://ubicomp.algoritmi.uminho.pt/csmu/proc/ribeiro-149.pdf

149

Appendix B

Example ECJ Parameter and

Function Files

�
1 # if otherwise noted , default Koza parameters are used

2 parent .0 = koza.params

3

4

5 ### GENERAL PARAMETERS ###

6

7 # termination criteria

8 #

9 generations = 200

10 quit -on-run -complete = true

11

12 # subpopulation size

13 #

14 pop.subpop .0. size = 25

15

16 # problem

17 #

18 eval.problem = eCrash.MyProb

19 eval.problem.data = eCrash.MyGPData

20 eval.problem.stack.context.data = eCrash.MyGPData

21 eval.problem.size = 20

22 pop.subpop .0. species.ind = eCrash.MyGPIndividual

23

24 # BREEDING PIPELINES

25 #

26 pop.subpop .0. species.pipe = ec.breed.MultiBreedingPipeline

27 pop.subpop .0. species.pipe.generate -max = false

28 pop.subpop .0. species.pipe.num -sources = 3

29 pop.subpop .0. species.pipe.source .0 = ec.gp.koza.MutationPipeline

30 pop.subpop .0. species.pipe.source .0. prob = 0.34

31 pop.subpop .0. species.pipe.source .1 = ec.gp.koza.CrossoverPipeline

32 pop.subpop .0. species.pipe.source .1. prob = 0.33

33 pop.subpop .0. species.pipe.source .2 = ec.breed.ReproductionPipeline

34 pop.subpop .0. species.pipe.source .2. prob = 0.33

151

35

36 # SELECTION STRATEGY

37 #

38 gp.koza.mutate.source .0 = ec.select.TournamentSelection

39 gp.koza.mutate.ns.0 = ec.gp.koza.KozaNodeSelector

40 gp.koza.mutate.build .0 = ec.gp.build.PTC2

41 gp.koza.mutate.tries = 100

42 gp.koza.xover.source .0 = ec.select.TournamentSelection

43 gp.koza.xover.source .1 = same

44 gp.koza.xover.ns.0 = ec.gp.koza.KozaNodeSelector

45 gp.koza.xover.ns.1 = same

46 gp.koza.xover.maxdepth = 100

47 gp.koza.xover.tries = 100

48 breed.reproduce.source .0 = ec.select.TournamentSelection

49 breed.reproduce.tries = 100

50 select.tournament.size = 2

51

52 # TREE BUILDER

53 #

54 gp.tc.0. init = ec.gp.build.PTC2

55 gp.tc.1. init = ec.gp.build.PTC2

56 gp.build.ptc2.min -size = 4

57 gp.build.ptc2.max -size = 14

58 gp.build.ptc2.max -depth = 14

59 gp.fs.0 = ec.gp.build.PTCFunctionSet

60 gp.fs.0. name = f0

61

62

63 ### TEST OBJECT SPECIFIC PARAMETERS ###

64

65 # TREE INFO

66 #

67 pop.subpop .0. species.ind.numtrees = 1

68 pop.subpop .0. species.ind.tree.0 = ec.gp.GPTree

69 pop.subpop .0. species.ind.tree .0.tc = tc0

70 gp.tc.size = 1

71 gp.tc.0 = ec.gp.GPTreeConstraints

72 gp.tc.0. init = ec.gp.build.PTC2

73 gp.tc.0. name = tc0

74 gp.tc.0. fset = f0

75 gp.tc.0. returns = TREE

76

77 # ATOMIC TYPES

78 #

79 gp.type.a.size = 3

80 gp.type.a.0. name = classjavautilStack

81 gp.type.a.1. name = classjavalangObject

82 gp.type.a.2. name = TREE

83

84 # SET TYPES

85 #

86 gp.type.s.size = 1

87 gp.type.s.0. name = classjavalangObject -S

88 gp.type.s.0. size = 2

89 gp.type.s.0. member .0 = classjavalangObject

90 gp.type.s.0. member .1 = classjavautilStack

91

92 # FUNCTION FILES

93 #

152

94 gp.fs.0. size = 8

95 gp.fs.0. func.0 = eCrash.functionFiles.Stack_probabilities.FF00_Stack

96 gp.fs.0. func .0.nc = nc0

97 gp.fs.0. func.1 = eCrash.functionFiles.Stack_probabilities.FF01_pop

98 gp.fs.0. func .1.nc = nc1

99 gp.fs.0. func.2 = eCrash.functionFiles.Stack_probabilities.FF02_pop

100 gp.fs.0. func .2.nc = nc2

101 gp.fs.0. func.3 = eCrash.functionFiles.Stack_probabilities.FF04_push

102 gp.fs.0. func .3.nc = nc4

103 gp.fs.0. func.4 = eCrash.functionFiles.Stack_probabilities.FF05_push

104 gp.fs.0. func .4.nc = nc5

105 gp.fs.0. func.5 = eCrash.functionFiles.Stack_probabilities.FF07_peek

106 gp.fs.0. func .5.nc = nc7

107 gp.fs.0. func.6 = eCrash.functionFiles.Stack_probabilities.FF11_Object

108 gp.fs.0. func .6.nc = nc11

109

110 # NODE CONSTRAINTS

111 #

112 # size

113 gp.nc.size = 8

114 # Stack () > IMPLICITPARAMETER

115 gp.nc.0 = ec.gp.GPNodeConstraints

116 gp.nc.0. name = nc0

117 gp.nc.0. returns = classjavautilStack

118 gp.nc.0. size = 0

119 gp.nc.0. prob = 1.0

120 # Object Stack.pop() > RETURN

121 gp.nc.1 = ec.gp.GPNodeConstraints

122 gp.nc.1. name = nc1

123 gp.nc.1. returns = classjavalangObject

124 gp.nc.1. size = 1

125 gp.nc.1. child.0 = classjavautilStack

126 gp.nc.1. prob = 1.0

127 # Object Stack.pop() > IMPLICITPARAMETER

128 gp.nc.2 = ec.gp.GPNodeConstraints

129 gp.nc.2. name = nc2

130 gp.nc.2. returns = classjavautilStack

131 gp.nc.2. size = 1

132 gp.nc.2. child.0 = classjavautilStack

133 gp.nc.2. prob = 1.0

134 # public Object Stack.push(Object) > RETURN

135 gp.nc.3 = ec.gp.GPNodeConstraints

136 gp.nc.3. name = nc4

137 gp.nc.3. returns = classjavalangObject

138 gp.nc.3. size = 2

139 gp.nc.3. child.0 = classjavautilStack

140 gp.nc.3. child.1 = classjavalangObject -S

141 gp.nc.3. prob = 1.0

142 # Stack.push(Object) > IMPLICITPARAMETER

143 gp.nc.4 = ec.gp.GPNodeConstraints

144 gp.nc.4. name = nc5

145 gp.nc.4. returns = classjavautilStack

146 gp.nc.4. size = 2

147 gp.nc.4. child.0 = classjavautilStack

148 gp.nc.4. child.1 = classjavalangObject -S

149 gp.nc.4. prob = 1.0

150 # Object Stack.peek() > RETURN

151 gp.nc.5 = ec.gp.GPNodeConstraints

152 gp.nc.5. name = nc7

153

153 gp.nc.5. returns = classjavalangObject

154 gp.nc.5. size = 1

155 gp.nc.5. child.0 = classjavautilStack

156 gp.nc.5. prob = 1.0

157 # Object () > IMPLICITPARAMETER

158 gp.nc.6 = ec.gp.GPNodeConstraints

159 gp.nc.6. name = nc11

160 gp.nc.6. returns = classjavalangObject

161 gp.nc.6. size = 0

162 gp.nc.6. prob = 1.0

163

164

165 ### MUT SPECIFIC PARAMETERS ###

166

167 # public synchronized int java.util.Stack.search(java.lang.Object)

168 gp.nc.7 = ec.gp.GPNodeConstraints

169 gp.nc.7. name = nc12

170 gp.nc.7. returns = TREE

171 gp.nc.7. size = 2

172 gp.nc.7. child.0 = class javautilStack

173 gp.nc.7. child.1 = classjavalangObject -S

174 gp.nc.7. prob = 1.0

175

176 gp.fs.0. func.7 = eCrash.functionFiles.Stack_probabilities.FF09_search

177 gp.fs.0. func .7.nc = nc12� �
Listing B.1: Example ECJ Parameter File for Stack’s search method.�

1 package eCrash.functionFiles.Stack;

2 import eCrash.MyGPNode;

3

4 public class FF09_search extends MyGPNode {

5 public FF09_search () {

6 m.methodId = "FF09_search ";

7 m.methodSignature = "Stack.search(Object)";

8

9 m.isConstant = false;

10 m.isConstructor = false;

11 m.modifiers = 33;

12

13 m.methodName = "search ";

14 m.methodClass = "class java.util.Stack";

15

16 m.methodReturnClass = "int";

17 m.methodReturnIsPrimitive = true;

18 m.methodReturnIsArray = false;

19

20 m.methodParametersClass.add("java.lang.Object ");

21 m.methodParametersIsPrimitive.add(false);

22 m.methodParametersIsArray.add(false);

23

24 m.associatedItem = 3; // PARAMETER #0

25 }

26 }� �
Listing B.2: Example ECJ Function File for Stack’s search method.

154

Appendix C

Resumen en Español

Introducción

La Prueba de Software (“Software Testing”) es el proceso de verificar una

aplicación con el objetivo de detectar errores y de comprobar si se cumple

con los requisitos especificados. Es un proceso costoso, que t́ıpicamente

consume aproximadamente la mitad de los costos totales relacionados con

el desarrollo de Software; automatizar el proceso de generación de Datos de

Prueba es, pues, vital para avanzar el estado del arte en lo que respecta a las

Pruebas de Software. El empleo de Algoritmos Evolutivos para generación

de Datos de Prueba es, muchas veces, referido como “Evolutionary Testing”.

El objetivo del Evolutionary Testing es encontrar un conjunto de Programas

de Prueba que cumplan con un criterio de prueba particular.

El objetivo de este trabajo es el desarrollo de una solución basada en

Programación Genética para evolucionar Datos de Prueba para la Prueba

Unitaria de programas Orientados a Objetos. La técnica propuesta para

el Evolutionary Testing de Software Orientado a Objetos abarca la repre-

sentación de Casos de Prueba utilizando Programación Genética Fuerte-

mente Tipada (“Strongly-Typed Genetic Programming”). La evaluación

de la calidad de los Casos de Prueba incluye la instrumentalización de los

Objetos de Prueba, y también la ejecución de los Programas de Prueba gen-

erados con la intención de recoger información de “tracing” para obtener

indicadores de cobertura. Se pretende aśı orientar, de manera eficiente, el

proceso de búsqueda hacia la consecución de la plena cobertura estructural

del programa bajo prueba.

155

Los objetivos principales de este trabajo fueron los de definir estrategias

para encontrar respuestas a los desaf́ıos presentados por el paradigma de

Programación Orientada a Objetos en el contexto de la automatización de

Pruebas de Software, y de proponer metodoloǵıas para mejorar la eficiencia

y la eficacia de las técnicas de Evolutionary Testing.

Las Contribuciones más relevantes aportadas en este trabajo incluyen:

� la introducción de una nueva estrategia para la evaluación de Progra-

mas de Prueba y para guiar la búsqueda;

� la presentación de una metodoloǵıa para reducir el Dominio de En-

trada, basada en el concepto de Análisis de Pureza (“Purity Analy-

sis”).

� sugerir una metodoloǵıa adaptativa para promover la introducción

de instrucciones relevantes, a través de la Mutación, dentro de los

Programas de Prueba generados; y

� la propuesta de una metodoloǵıa de Reutilización de Objetos para

metodoloǵıas de Evolutionary Testing basadas en Programación Gené-

tica, que permite que una sola instancia de un objeto sea utilizada

como un parámetro de una función varias veces.

Los avances alcanzados resultaran en el desarrollo e implementación de

la herramienta de generación de Datos de Prueba “eCrash”, que incorpora

las técnicas de Evolutionary Testing para el Software Orientado a Objetos

propuestas.

Antecedentes y Motivación

La Prueba Unitaria (“Unit Testing”) es una forma de probar el correcto

funcionamiento de las unidades más pequeñas del Software – los Objetos

de Prueba – probándolos en un ambiente aislado. La Prueba Unitaria es

realizada ejecutando los Objetos de Prueba en diversos panoramas, usando

Casos de Prueba (“Test Cases”) relevantes e interesantes; un Conjunto de

Casos de Prueba (“Test Set”) se considera adecuado con respecto a un cri-

terio dado si la totalidad de los Casos de Prueba en este sistema satisface

este criterio. Una Prueba Unitaria para Software Orientado a Objetos con-

siste en una secuencia de llamadas a métodos, que define el escenario de la

156

prueba. Durante la ejecución del Caso de Prueba, todos los objetos que par-

ticipan se crean y ponen en estados particulares con una serie de llamadas

a métodos, y cada Caso de Prueba se centra en la ejecución de un método

público particular – el Método Bajo Prueba (“Method Under Test”).

La mayoŕıa de la investigación en Pruebas de Software se ha hecho te-

niendo en mente el Software Orientado a Procedimientos; sin embargo, los

métodos tradicionales no se pueden aplicar a Software Orientado a Objetos

sin ser previamente adaptados. En Software Orientado a Objetos, las clases

y los objetos se consideran t́ıpicamente las unidades más pequeñas que se

pueden probar de forma aislada. Un objeto almacena su estado en campos,

y expone su comportamiento a través de métodos. Ocultar el estado interno

y requerir que toda la interacción se haga a través de los métodos de un

objeto se conoce como Encapsulación de Datos – un principio fundamental

de la programación Orientada a Objetos.

Los Algoritmos Evolutivos emplean evolución simulada como estrate-

gia de búsqueda para evolucionar soluciones candidatas para un problema,

usando operadores inspirados por la genética y la selección natural. La Pro-

gramación Genética, en particular, es una especialización de los Algoritmos

Genéticos generalmente asociada a la evolución de las estructuras con forma

de árbol; se centra en la creación automática de programas de computadora

por medio de la evolución, por lo que es especialmente adecuada para la

representación y la evolución de Casos de Prueba.

Los nodos de un árbol en Programación Genética son, por lo general,

no tipados – es decir, todas las funciones son capaces de aceptar todos los

argumentos posibles. Sin embargo, técnicas de Programación Genética no

tipadas no son adecuadas para representar Casos de Prueba para Software

Orientado a Objetos; inversamente, la Programación Genética Fuertemente

Tipada permite la definición de tipos para variables, constantes, argumen-

tos, y valores devueltos. La única restricción es que el tipo de dato para

cada elemento debe ser especificado de antemano en el Conjunto de Fun-

ciones (“Function Set”); esto hace que el proceso de inicialización y todas

las operaciones genéticas sólo construyan árboles sintácticamente correctos.

El Evolutionary Testing consiste en la aplicación de Algoritmos Evo-

lutivos a la generación de Datos de Prueba. El objetivo del Evolution-

ary Testing es encontrar un conjunto de Casos de Prueba que satisfaga

un determinado criterio – como la cobertura estructural total de los Obje-

tos de Prueba. El objetivo de la prueba debe ser definido numéricamente,

y funciones de aptitud (“fitness”) adecuadas, que ofrezcan orientación a

la búsqueda y evalúen la calidad de las soluciones candidatas, deben ser

157

definidas. El espacio de búsqueda es el conjunto de entradas posibles al

Objeto de Prueba; en el caso particular de los programas Orientados a Ob-

jetos, el dominio de entrada incluye los parámetros de los métodos públicos

del Objeto de Prueba. Como tal, la meta de la búsqueda evolutiva es en-

contrar Casos de Prueba que definan escenarios de estado interesantes para

las variables que se pasarán, como argumentos, en la llamada al Método

Bajo Prueba. Uno de los desaf́ıos más apremiantes que enfrentan los inves-

tigadores es el Problema del Estado (“State Problem”), que ocurre porque

los objetos almacenan información en campos que están protegidos contra

la manipulación externa – y que únicamente se pueden acceder a través de

los métodos públicos que exponen el estado interno de los objetos.

La definición de un Conjunto de Casos de Prueba que logre la cobertura

estructural implica la generación de Casos de Prueba complejos e intrincados

a fin de definir escenarios de estado elaborados, y requiere la definición

de metodoloǵıas cuidadosamente afinadas que promuevan el recorrido de

estructuras problemáticas.

Metodoloǵıa

La metodoloǵıa de Evolutionary Testing para Software Orientado a Objetos

propuesta implica la codificación de soluciones potenciales (i.e., Casos de

Prueba) como individuos de Programación Genética Fuertemente Tipada.

La Programación Genética Fuertemente Tipada es especialmente adecuada

para representar y desarrollar programas Orientados a Objetos, que pueden

ser representados como Árboles de Llamadas a Métodos (“Method Call

Trees”). Un Árbol de Llamadas a Métodos es compuesto por nodos-método:

cada una de ellos representa un método que más tarde será incluido en el

Caso de Prueba decodificado, y el nodo ráız representa el Método Bajo

Prueba.

En la Programación Genética Fuertemente Tipada, los tipos se definen a

priori en el Conjunto de Funciones y definen las restricciones implicadas en

la construcción de los Árboles de Llamadas a Métodos; es decir, el Conjunto

de Funciones contiene el conjunto de instrucciones que el algoritmo puede

utilizar cuando está construyendo Casos de Prueba. Esta caracteŕıstica per-

mite que el proceso de inicialización y las distintas operaciones genéticas

sólo construyan Árboles de Llamadas a Métodos sintácticamente correctos,

restringiendo aśı el espacio de búsqueda al conjunto de Programas de Prueba

compilables. El Conjunto de Funciones se define de forma totalmente au-

158

tomática, sólo en base a la información contenida en el “Test Cluster” (i.e.,

el conjunto transitivo de clases que son pertinentes para probar la Clase

Bajo Prueba).

Para que un Caso de Prueba sea ejecutado, el genotipo (i.e., el Árbol

de Llamadas a Métodos) debe ser decodificado en el fenotipo (i.e., el Caso

de Prueba); esto puede lograrse covirtiendo el árbol en una lista, a través

de un algoritmo de búsqueda en profundidad. La calidad de un determi-

nado Caso de Prueba se relaciona con los nodos del Grafo de Control de

Flujo (que representa el Método Bajo Prueba) que son los objetivos de la

búsqueda evolutiva en una determinada fase del proceso; Casos de Prueba

que ejerciten estructuras poco (o nada) exploradas son favorecidos, con el

objetivo de alcanzar la meta principal del proceso de generación de Datos

de Prueba – encontrar un conjunto de Casos de Prueba que logre la plena

cobertura estructural del Objeto de Prueba.

La herramienta eCrash ’encarna’ la metodoloǵıa de Evolutionary Test-

ing para Software Orientado a Objetos presentada en esta Tesis. Es un

prototipo de herramienta de generación de datos de prueba basado en Java,

y se desarrolló durante el curso del doctorado para apoyar la integración de

los pasos de la investigación. El logro del más alto nivel de automatización

posible ha sido siempre una de las preocupaciones principales subyacentes

en su desarrollo e implementación; la falta de automatización es uno de los

principales problemas que enfrentan los Probadores de Software hoy en d́ıa,

y un importante obstáculo que todav́ıa impide que el Software Orientado a

Objetos sea adecuadamente probado y validado.

Contribuciones para la Mejora de las Metodo-

loǵıas de Evolutionary Testing para Software Ori-

entado a Objectos basadas en Programación Ge-

nética

Contribuciones significativas para mejorar la aplicabilidad y el rendimiento

de metodoloǵıas de Evolutionary Testing se han logrado como resultado de

esta investigación. Estos avances serán brevemente descritos en las secciones

siguientes.

159

Una estrategia para la evaluación de Programas de Prueba

para el Evolutionary Testing de Software Orientado a Ob-

jetos

La generación de Datos de Prueba es un tema de investigación dif́ıcil, espe-

cialmente si el objetivo es implementar una solución automatizada, adapt-

able y de bajo costo. El Problema del Estado (“State Problem”) de los

programas Orientados a Objetos, en particular, requiere la definición de

metodoloǵıas que promuevan la cobertura de estructuras problemáticas y

de dif́ıciles caminos de control de flujo. Nos propusimos hacer frente a este

desaf́ıo a través de una nueva estrategia para la evaluación de Programas

de Prueba y para la orientación de la búsqueda. La técnica propuesta im-

plica la definición de nodos ponderados en el Grafo del Control de Flujo, y

permite que Casos de Prueba inviables (i.e., aquellos que terminan premat-

uramente debido a una “Runtime Exception”) sean considerados en ciertas

etapas de la búsqueda evolutiva – a saber, una vez que los Casos de Prueba

viables que están siendo generados dejen de ser interesantes, porque solo

ejercitan estructuras recurrentemente atravesadas. En conjunto, con el im-

pacto de los operadores evolutivos de Mutación y Recombinación, se puede

lograr un buen compromiso entre la intensificación y la diversificación de la

búsqueda.

El empleo de Análisis de Pureza para la reducción del do-

minio de entrada de Software Orientado a Objetos

La metodoloǵıa de reducción del dominio de entrada para la eliminación

de variables irrelevantes de problemas de Evolutionary Testing propuesto

se basa en el concepto de la Análisis de Pureza, y proporciona un medio

para identificar y eliminar automáticamente las entradas del Conjunto de

Funciones que no contribuyen en la definición de escenarios de prueba in-

teresantes. Este proceso también asegura que los Programas de Pruebas no

sean inviables debido a la inclusión de instrucciones sin interés; esto es par-

ticularmente importante en el contexto de nuestra metodoloǵıa, dado que la

estrategia de evaluación de Casos de Prueba definida considera programas

inviables en ciertas etapas de la búsqueda. Las observaciones realizadas

indican que la estrategia de reducción del dominio de entrada que se pre-

senta tiene un efecto altamente positivo en la eficiencia del algoritmo de

generación de Casos de Prueba: se gasta menos tiempo de cómputo para

lograr resultados.

160

Una metodoloǵıa adaptativa para el Evolutionary Testing

de Software Orientado a Objetos

La inclusión de instrucciones pertinentes en los Programas de Prueba gen-

erados (por medio del operador de Mutación) es también la justificación

para la metodoloǵıa adaptativa definida para actualizar dinámicamente las

probabilidades de selección de las entradas definidas en el Conjunto de Fun-

ciones. Esta estrategia obtiene información de las soluciones anteriormente

producidas y evaluadas, con el fin de promover la diversidad y viabilidad de

los Programas de Prueba. Los estudios experimentales indican una mejora

considerable en la eficiencia del algoritmo en comparación con su versión

estática, al tiempo que introduce una sobrecarga insignificante.

Permitir la reutilización de objetos en metodoloǵıas de

Evolutionary Testing para Software Orientado a Objetos

basadas en Programación Genética

La estrategia para la reutilización de objetos propuesta permite la gen-

eración de Casos de Prueba que ejercitan estructuras espećıficas de Software

que no se pudŕıan ejercitar de otra manera, por lo que es especialmente

importante si criterios de adecuación estructurales (“White-Box”) son em-

pleados. Reutilización de Objetos significa que un objeto puede ser pasado

a varios métodos, o varias veces al mismo método, como argumento. La

metodoloǵıa propuesta para reutilización de objetos implica la definición de

un nuevo tipo de nodos de Programación Genética – los “At-Nodes” – que

’apuntan’ a otros nodos, con lo que permiten la reutilización de las referen-

cias a objetos devueltas por las funciones correspondientes a los sub-árboles

apuntados. Los “At-Nodes” pueden ser eliminados de un árbol; esta car-

acteŕıstica particular permite evitar la reformulación de otros operadores

evolutivos, como los de Mutación y Recombinación. Además de mejorar la

eficacia de la búsqueda, los estudios experimentales realizados muestran que

la metodoloǵıa propuesta es capaz de aumentar el rendimiento del proceso

de generación de Datos de Prueba: las soluciones producidas tienen menor

tamaño y menor complejidad estructural, y el promedio de viabilidad de los

Programas de Prueba generados es mejorado.

161

Conclusiones y Trabajo Futuro

Los objetivos iniciales de este trabajo eran los de contribuir positivamente

para mejorar los niveles de automatización y rendimiento del (a menudo des-

cuidado, pero enormemente importante) proceso de Pruebas de Software, y

de investigar la pertinencia de aplicar Algoritmos Evolutivos a los problemas

de generación de Datos de Prueba. Creemos que es posible afirmar que este

objetivo se logró, no sólo como resultado de las propuestas formuladas para

mejorar la eficiencia y la eficacia de metodoloǵıas de Evolutionary Testing

para Software Orientado a Objetos, sino también porque esta investigación

resultó en el desarrollo de una herramienta automatizada que demuestra la

aplicabilidad de las metodoloǵıas propuestas.

La herramienta eCrash incorpora los avances en el área de Evolutionary

Testing propuestos en esta Tesis. A pesar de ser todav́ıa un prototipo,

eCrash es totalmente funcional y es aplicable a una amplia gama de Objetos

de Prueba. No obstante, estamos trabajando activamente en el desarrollo de

una aplicación estable, fácil de usar y bien documentada; los planes para el

futuro próximo incluyen la publicación de una versión de eCrash integrada

en el IDE Eclipse, que pueda ser utilizada por los Probadores de Software en

un entorno de producción, y por los investigadores de Evolutionary Testing

por igual.

También tenemos planes para hacer frente a algunas cuestiones de inves-

tigación que todav́ıa no hemos tenido la oportunidad de estudiar, a saber:

posibilitar la prueba de los métodos no-públicos (a través de la interfaz

pública de un objeto); explorar el tema de “Search Space Sampling”, que

se ocupa de la inclusión de todas las variables relevantes para un determi-

nado Objeto de Prueba en el problema de generación de Datos de Prueba;

abordar el problema de generación de ’oráculos’, e investigar la posibili-

dad de automatizar un mecanismo para comprobar que las salidas de un

programa son correctass y de acuerdo con los entradas; y, finalmente, exper-

imentar con sistemas paralelos a fin de aumentar el rendimiento de nuestra

metodoloǵıa.

162

