
 
 

 

  

Abstract—In this paper an approach to design adaptive 
proportional-integral (PI) controllers, for SISO systems, based 
on sliding window principal components analysis (PCA) is 
presented. Closed-loop control can be formulated and 
implemented within the reduced space defined by a PCA 
model. This PCA controller, results in an integral controller, 
which can be used as an inferential controller for linear or 
nonlinear systems. The main contributions of the paper are: a) 
the proposed architecture and the adaptive mechanism based 
on online sliding window PCA; b) the incorporation of a 
proportional action and an integral anti-windup mechanism on 
the integral PCA controller. Some experimental results, 
obtained with a nonlinear system (three tank benchmark – 
Amira DTS200) are presented, showing the controller 
performance. 

I. INTRODUCTION 
odern industrial automation and distributed control 
systems make possible the collection of large 

quantities of process raw data. These data has to be 
processed to extract important information. Knowledge 
should be obtained from the significant information. 
Multivariate statistical methods (principal component 
analysis, factor analysis, discriminant analysis, etc) can be 
used to develop nonparametric models for process 
monitoring (including fault detection and diagnosis), ([1, 2, 
3, 4]), for controller loop monitoring [22], as well as for 
feedback control in the scores space ([1, 2, 5, 6, 7]. 

There are a lot of approaches for controller tuning 
depending on the type of controller [18]. The focus here is 
on sliding window approaches for PI controller’s tuning. 
Some references in this area are the following: a) a neural 
auto-tuner for PID controller [17], b) auto-tuning methods 
for PID controllers [15]; c) auto-tuning PID control with an 
on-line recursive identification algorithm (least squares 
support vector machines estimation algorithm) [19]; d) a 
control approach using a minimum variation controller and a 
linearized neural network model around its current operation 
region [20].  

The proposed PCA control formulation, in a reduced 
control space, is analogous to modal control (also called 
eigenvalue-assignment control, ([8, 9]). 

In [5], a controller based on static PCA, using an ARX 
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model, for linear SISO systems, was proposed. An adaptive 
version using recursive PCA was proposed in [6]. 

In this paper, an adaptive controller based on sliding 
window PCA to deal with linear and nonlinear systems, in 
real-time applications, is proposed. 

II. SVD / PCA DECOMPOSITION 
Principal Component Analysis (PCA) is a multivariate 

statistical technique that can be implemented using singular 
value/vector decomposition (SVD) of the sample covariance 
matrix. Others statistical techniques include Principal 
Components Regression (PCR), Partial Least Squares (PLS 
or Projection to Latent Structures), etc, ([3, 4, 10, 11]). 

PCA models can be used for data compression, process 
monitoring, fault detection and diagnosis and also for 
process control, as described in the next section. 

PCA involves several steps. First, the original data Xo 
should be scaled, i.e., mean centered, and often normalized 
by the standard deviation. From the scaled data X ∈ ℜn × m, 
the covariance matrix is computed by the relationship (1), 
where n is the number of observations (samples) and m is 
the number of process variables. 

 

S = 1
n-1 XT X 

(1) 

 

PCA captures the variability of the data X. It determines 
loading vectors (orthogonal vectors) ordered by the amount 
of variance explained in the loading vector directions. The 
loading vectors are computed by solving the stationary 
points of an optimization problem ([3, 10, 11]), i.e., solving 
a singular value decomposition (SVD) of the sample 
covariance matrix S: 

 

S = 
1

n-1 XT X = V Λ  VT 
(2) 

 

The diagonal matrix Λ  = ΣT Σ , Λ   ∈ ℜ m × m, contains the 
non-negative real singular values of decreasing magnitude 
obeying the relation 

 

λ1 ≥ λ2 ≥ … ≥ λm ≥ 0 (3) 

 

When the goal is to minimize the effect of random noise 
that corrupt the PCA representation, and to optimally capture 
the variations of data, then only the loading vectors 
corresponding to the “a” largest singular values must be 

Design of Adaptive Sliding Window PI-PCA Controller 
L. Brito Palma, F. Vieira Coito, and P. Sousa Gil 

M 

2012 20th Mediterranean Conference on Control & Automation (MED)
Barcelona, Spain, July 3-6, 2012

978-1-4673-2531-8/12/$31.00 ©2012 IEEE 1061



 
 

 

retained in the PCA model; “a” is the number of principal 
components that captures the most important information, 
that can be computed according a certain explained variance 
(usually greater than 80 % or 90%). 

PCA projects the observation space into two subspaces: 
the scores subspace and the residual subspace. Selecting the 
columns of the loading matrix P ∈ ℜm × a to correspond to 
the loading vectors V ∈ ℜm × m associated with the “a” 
largest singular values, the projections of the observation 
data X ∈ ℜn × m into the lower-dimensional space are 
contained in the scores matrix T ∈ ℜn × a 

 

T = X P (4) 
 

The projection of T back into the m-dimensional 
observation space is given by 

 

eq \o(X;\s\up8(∧)) = T P\s\up5(T) (5
) 

 

The residual matrix E is given by 
 

eq E = X - \o(X;\s\up8(∧)) (6
) 

 

The residual matrix E captures the variations in the 
observation space spanned by the loading vectors associated 
with the "m - a" smallest singular values. The subspaces 
eq \o(X;\s\up8(∧)) and E are usually denominated scores 
space and residual space, respectively. 

I. PROCESS CONTROL BASED ON PCA MODELS 
Many industrial plants (power plants, chemical processes, 

etc) have a large number of exogenous variables and a few 
manipulated ones. The exogenous variables indicate the 
process state, and the manipulated variables control directly 
the measured quantities and indirectly the unmeasured 
quantities. Some of these unmeasured quantities are related 
to the final product quality, so they should be carefully 
monitored and controlled. 

In this work, the main idea is to develop a PCA model, 
using a sliding window, to represent the desired process 
region in the score space, and then design a controller in the 
score space that maintains operation within this region. The 
control moves in the score space are then mapped to the real 
variable space and implemented on the process. The process 
is kept within the desired region provided that the PCA 
model has correctly established the relationship between 
exogenous variables and manipulated variables. 

 

A. Design of Controller based on Static PCA Model 
The formulation presented here is based on the previous 

works [1, 2, 5]. Let X be composed of two types of variables 
(exogenous and manipulated) 

 

X = [Xex | Xmp]   (7) 
 

The development of a PCA model yields 
 

X = [Xex | Xmp] = T PT + E (8) 

 

The process output signal can be decomposed in 
 

xd = T qT + fv (9) 

where fv is the output residual. 
 
The equivalent controller set point in the scores space is 

obtained from (10), where Ψ is the pseudo-inverse. 
 

tsp = xd,sp (qT)Ψ (10) 

 

The score vector, t, can be computed from the projection 
of x onto the matrix of eigenvectors P, obeying 

 

t = x P (11) 
 

In the scores space the error between the desired set point 
and the online scores associated with x at discrete time k is 
given by  

 

Δt = tsp - t (12) 
 

The error in the scores space can be reconstructed as an 
error in the X space by 

 

Δx = Δt PT (13) 
 

The relationship between the exogenous and manipulated 
variables in the score space must be defined. Consider the 
partition of the matrix of eigenvectors P as 

 

PT =[Pex | Pmp] (14) 

 

The relationship between exogenous and manipulated 
variables is given by (15), where Λp is the matrix of 
coefficients that defines this relationship in the scores space. 

 

Pmp = Pex Λp (15) 
 

So, the matrix Λp can be computed using the 
pseudoinverse Ψ 

 

Λp = Pex
Ψ Pmp  (16) 

 

The architecture of the classical integral PCA controller 
used in this work is depicted in Fig. 1, [5]. The block Pa 
represents the plant, C is the PCA controller, and Q is given 
by 
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Q = (qT)Ψ  (17) 

 

Q C+ Pa

Q

xd, sp
tsp

+
-

t

Δt xdxmp

 
 

Fig. 1.  Architecture of the classical integral PCA controller. 
 

B. Implementation of the Classical Integral PCA 
controller 
The PCA model, relating exogenous and manipulated 

variables, is a steady-state model that results in an integral 
PCA controller. The implementation presented will be 
detailed assuming, without loss of generality, a linear SISO 
process, modeled by an autoregressive ARX input-output 
model. 

First, an ARX model structure should be selected by 
means of a system identification algorithm such as least-
squares, principal components regression, etc [4]. In this 
work, a relay controller was used to capture the nominal data 
around a certain operating point. Let’s assume a low order 
ARX model, ARX(na=2, nb=1, nd=1). The matrix 
X ∈ ℜn × m, mean centered, will have lines of vectors 
(regressor for each discrete time k) given by the expression   
x(k) = η(k) = [y(k) y(k-1) y(k-2) u(k-1)]. In this work, n is the 
number of data samples and  m is the number of columns in 
the regressor η(k). The sampling time used was Ts = 1 s. The 
number of exogenous variables is r = 3, the number of 
manipulated variables is p = m - r = 1, and the number of 
principal components is a = 2. 

The covariance matrix is computed from (1), and the SVD 
decomposition (2) gives the eigenvalues and the 
eigenvectors. The loading matrix P ∈ ℜm × a  corresponds to 
the loading vectors V ∈ ℜm × m associated with the “a” 
largest singular values. The scores matrix T ∈ ℜn × a is 
computed based on (4). The process output is given by 
xd(k) = y(k) and q is given by 

 

q = (TT xd)T (18) 

 

The decomposition of transposed P matrix permits to 
obtain the others matrices (14). The matrix Λp is computed 
using (16). 

The previous computations were obtained offline. In 
online operation the next computations should be performed 
for each discrete time k. First, assign the reference signal to 
xd,sp(k). Next, compute the set point in the scores space 
using (10). Compute the scores in the reduced 2D space 
from   

 

t(k) = xd(k) (qT)Ψ (19) 

 

The control error in the scores space is given by (12). The 
control error in the X space is given by (13). 

Finally, the increment in the manipulated variable can be 
computed from  

 

Δxm(k) = Δt(k) Pmp (20) 
 

In the incremental form, assuming u(k) = xmp(k), the 
control action is given by  

 

xmp(k) = xmp(k-1) +  Kc Δxm(k) (21) 
 

The controller gain, Kc, was incorporated in [5], in order 
to allow tuning the closed-loop dynamics. This control 
structure is an integral controller. In order to improve the 
controller performance, an anti-windup mechanism and a 
proportional action should be incorporated in the PCA 
controller; this will be done in section III.D. 

 

C. Design of Adaptive PCA Controller based on 
Recursive PCA 
It is possible to implement adaptive PCA controllers using 

a recursive PCA algorithm, as described in [6]. The main 
idea is to compute online, recursively, the eigenvector 
matrix P(k) and the eigenvalue matrix Λ(k). The eigenvector 
matrix is computed accordingly (22), were I is an identity 
matrix, Pv is a perturbation matrix and Np(k) is a diagonal 
normalization matrix, [6, 12, 13].  

 

P(k) = P(k-1) (I + Pv) Np(k) (22) 

 

D. Design of PI Controller based on Sliding Window 
PCA 
The main contribution of the paper is presented next. A 

proportional-integral (PI) controller using sliding-window 
PCA will be detailed. The proposed architecture of the 
adaptive PI-PCA controller is depicted in Fig. 2. 

An adaptive controller needs supervisory functions in 
order to function well in an industrial environment [14]. 
Here, the supervisor should adjust the adaptive mechanism 
of the sliding window PCA algorithm that implements the 
integral component of the PI controller. 

 
The main advantage of this approach is the fact that the 

integral component of the PI controller is based on a PCA 
model build on-line using input-output correlated data 
acquired from the process. The persistent excitation 
conditions should be verified on-line. At the startup a fixed 
PCA model should be used, build off-line using manual 
control or any other stabilizing controller (relay, PID, etc).  
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Fig. 2.  Architecture of the adaptive sliding window PI-PCA controller. 
 

The PI-PCA controller equations are presented next. 
The control action is the sum of two control actions: one 

due to the proportional controller and another due to the 
adaptive integral PCA controller. The control action is 
saturated by the block “Sat” in order to guarantee a range 
between “0” and “1”. 

Here, the adaptive mechanism based on sliding window 
PCA algorithm is used to compute the adaptive integral 
action. 

First, the sliding window data Xk=X(:,:,k) ∈ ℜn × m for 
“n” samples should be obtained from input-output process 
data: 
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(23) 

 
Then the SVD decomposition is applied to the covariance 

matrix and finally the on-line Pk matrix is obtained: 
 

Xk → Sk 

Vk = SVD(Sk) 

Pk = Vk(:,1:a) 

 

 

(24) 

 
The manipulated part of the Pk matrix, Pmp,k, is obtained 

from  
 

PT
k =[Pex,k | Pmp,k] (25) 

 
Finally, the incremental action, Δusw(k), computed based 

on the sliding window PCA, is given by 
 

Δusw(k) = Δt(k) Pmp,k (26) 

 
The adaptive integral control action, with anti-windup 

(“aw”) mechanism, is given by (27), inspired on the classical 
integral action (21): 

 
ui(k) = ui(k-1) +  Ki Δusw(k) + Kaw (u(k) - u0(k)) (27) 

 
The proportional control action is expressed by the 

conventional law: 
 

up(k) = Kp e(k) = Kp (r(k) - y(k)) (28) 

 

II. TRAINING AND PERFORMANCE EVALUATION OF THE 
SLIDING WINDOW PCA CONTROLLER 

In order to evaluate the performance of the PI-PCA 
controller, a comparison with others controllers will be 
presented in the next section, using the mean-squared control 
error (MSE) criterion. 

A. Training Data 
Input-output open-loop or closed-loop data is necessary to 

train the classical integral PCA controller, [7]. In this work, 
closed-loop data captured using a relay controller was used 
to build the PCA model, assuming a sampling time equal to 
1 second, as depicted in Fig. 3. 
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Fig. 3. Input-output training data for integral PCA controller. 

 

B. Closed-Loop Behavior 
The incorporation of the anti-windup mechanism and the 

proportional action on the classical integral PCA controller 
contribute to improve the closed-loop behavior, as shown on 
some experiments.  

In the next section, a table showing the mean square 
control error (MSE) for a set of controllers is presented. 
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III. EXPERIMENTAL RESULTS 
Experimental results obtained with the DTS200 

benchmark are presented here. A small dither ( 510− ) was 
added to the reference signal in order to try to guarantee 
persistent excitation conditions.  

A. DTS200 benchmark 
The DTS200 benchmark system (Fig. 4, Fig. 5), 

manufactured by the Amira® Company, has been used, all 
over the world, to test nominal and fault tolerant controllers. 
Here the goal is to control the level in tank T1. The 
nonlinear models of this setup can be found in [21]. The 
configuration used in the experiments is the following: a) 
control action “u” – pump 1 control signal; b) sensor output 
“y” – tank 1 level; c) opened valves (V13, V32, V2out); d) 
leakage valves closed (V1L, V3L, V2L).  

 
Fig. 4. The DTS200 benchmark setup (picture), [21]. 
 

 
 
Fig. 5. The DTS200 benchmark setup (schematic diagram), [21]. 
 

B. Experimental Results 
Experimental results are shown for a set of discrete time 

controllers, implemented on the Matlab environment using a 
National Instruments USB-6009 data acquisition board. The 
sampling time is 1 second. Figure 6 depicts the experimental 
results obtained with the classical PID controller, with anti-
windup mechanism and the following controller parameters, 
obtained using the auto-tuning relay feedback method [15]: 
Kp = 13.42, Ti = 6.43 s, and Td = 0.96 s. Figure 6 depicts the 
reference signal “r” (red), the control action “u” (green) and 
the sensor output “y” (blue). These labels are the same for 

all figures. 
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Fig. 6. Experiment with the classical PID controller for a fixed set-point (r = 
0.3). 

 
An adaptive LQG polynomial controller ([16]) was also 

tested on the benchmark system, as shown in Fig. 7. The 
controller gain is equal to 0.1, and an adaptive ARX(2,1,1) 
model was used for on-line system identification.  

The results obtained with the proposed adaptive PI-PCA 
controller are depicted in Figure 8. The controller gains 
(design parameters) used for the experiments are the 
following: Kp = 10, Ki = 33, Kaw = 0.1. The initial value of 

the sliding window length (“ 0n ”) was fixed on 60 seconds. 
The proportional action is depicted in a dashed line, and the 
integral adaptive action appears as a solid line. The choice of 
the controller gains obeys the following criteria. The 
proportional gain Kp was chosen to be equal to the classical 
PID controller. The integral gain Ki and the anti-windup 
gain were chosen to guarantee good performance in terms of 
convergence. The length of the sliding window (“ n ”) 
should contain enough samples to guarantee a good PCA 
model obtained from the SVD decomposition of the data 
covariance matrix; here “n ” obeys the equation (29), where 
“ e ” is the control error (in the normalized range [ ]1;0 ). 

.,60),1( 00 yrenenn −==+=  (29) 
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Fig. 7. Experiment with the adaptive LQG controller for a fixed set-point (r 
= 0.3). 
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Fig. 8. Experiment with the adaptive PI-PCA controller for a fixed set-point 
(r = 0.3). 
 

In Table I a comparison of controller’s performance is 
presented, showing the mean squared control error (MSCE). 
The proposed PI-PCA controller reveals a good 
performance, for fixed (r = SP = 0.3) and variable set-points. 
The PCA controller is the classical integral PCA controller 
(21), without proportional action and without anti-windup 
mechanism. 

 

TABLE I 
COMPARISON OF CONTROLLERS PERFORMANCE (MSCE).  

 
MSE (10-3) SP: 0.3 SP: 0.3 → 0.4 
PID controller 6.82 6.85 
LQG controller 6.36 6.82 
PCA controller 6.54 6.91 
PI-PCA controller 6.15 6.80 

IV. CONCLUSIONS 
An adaptive PI controller based on sliding window 

principal component analysis (SW-PCA) was proposed in 
this paper, showing a performance similar to other kinds of 
controllers, such as the classical PID controller and the 
adaptive LQG controller. The main advantage of this 
approach is the fact that the integral component of the PI 
controller is based on a PCA model build on-line, using 
input-output correlated data acquired from the process. The 
persistent excitation conditions should be verified on-line. 

In order to improve the performance of the PI-PCA 
controller, an optimization procedure that adjust on-line the 
sliding window length and guarantee the closed-loop 
stability should be implemented. 

The extension of this kind of controller to act as a fault 
tolerant controller will be also investigated. 
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