
  

 

Abstract – Cardiovascular disease (CVD) is the world’s largest 

killer, responsible for 17.1 million deaths per year. Thus, the 

improvement of the prognosis of this disease is an important 

factor to defeat the current statistics. Although there are several 

risk tools available to assess the risk of occurrence of a 

cardiovascular event within a given period of time, these tools 

present some major drawbacks. In particular, each individual 

tool considers a reduced number of risk factors, does not permit 

to incorporate additional clinical knowledge and presents 

difficulties in coping with missing risk factors. 

In order to overcome the identified weaknesses, a flexible 

framework is proposed here, based on the fusion of a set of 

distinct risk assessment tools. The methodology is based on two 

main hypotheses: i) it is possible to derive a common 

representation for the individual risk assessment tools, ii) it is 

possible to combine (fusion) the obtained individual models, in 

order to achieve the referred goals. Additionally, through the 

implementation of optimization techniques, an increasing in the 

global risk prediction performance is also investigated. 

The validation of the strategy is carried out through the 

combination of three current risk assessment tools (GRACE, 

TIMI, PURSUIT) developed to predict the risk of an event in 

coronary artery disease (CAD) patients. The combination of 

these tools is validated with two real patients testing datasets: i) 

Santa Cruz Hospital, Lisbon/Portugal, N=460 ACS-NSTEMI1 

patients; ii) Santo André Hospital, Leiria/Portugal, N=99 ACS-

NSTEMI patients. 

Considering the obtained results with the available datasets it is 

possible to state that the initial goals of this work were 

achieved. This evidence makes this work a valid contribution 

for the improvement of the risk assessment applied to 

cardiovascular diseases.  

I. INTRODUCTION 

The cardiovascular disease
2
 (CVD) disease is the world’s 

largest killer, responsible for 17.1 million deaths per year 

[1]. In fact, each year, cardiovascular disease causes over 4.3 
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1 ACS-NSTEMI Acute Coronary Syndrome with non-ST segment elevation 
2
 Cardiovascular disease is caused by disorders of the heart and blood 

vessels, including coronary heart disease (heart attacks), cerebrovascular 

disease (stroke), raised blood pressure (hypertension), peripheral artery 

disease, rheumatic heart disease, congenital heart disease and heart failure. 

million deaths in Europe and almost 2.0 million in the 

European Union. Consequently, CVD is the main cause of 

illness and death in Europe, responsible for 23% of the total 

disease burden [2]. Moreover, CVD alone represents 

approximately €192 billion /year to health costs in the 

European Union [3]. Furthermore, the population of the EU 

and the western world is aging. The number of elderly 

people aged 65-79 will increase approximately by 37% by 

2030 [4]. It is recognized that this demographic change in 

the population will result in unaffordable health costs. 

In this context, the correct diagnosis and prognosis of 

cardiovascular disease assumes a particular importance in 

trying to reduce these statistics. The assessment of the risk of 

occurrence of an event, i.e. the evaluation of the probability 

of occurrence of an event given the patient’s past and current 

exposure to risk factors, is critical to improve prognosis. 

This way, it is possible to increase the quality of preventive 

health care, as this assessment data will help physicians to 

identify and adapt the treatment/care plan to an individual 

patient [5][6].  

Several risk score tools
3
 were developed to assess the 

probability of occurrence of a CVD event within a certain 

period of time (months/years). Available risk score tools 

differ on the assessed period of time (months/years), disease 

(coronary artery disease, heart failure, ...), predicted events 

(death/non-fatal), risk factors considered in the model, 

patient’s conditions (ambulatory patients, hospitalized 

patients, cardiac transplant candidates,…). 

These tools are very useful although they present some 

important weaknesses: i) they ignore the information 

provided by other risk assessment tools that were previously 

developed, ii) each individual tool considers a reduced 

number of risk factors, iii) they have difficulty in coping with 

missing risk factors, iv) they do not allow the incorporation 

of additional clinical knowledge, v) some tools do not assure 

the clinical interpretability of the respective parameters. 

The proposed approach aims to defeat these flaws and 

simultaneously consider the valuable information provided 

by these tools. Therefore, rather than to derive a new model, 

the proposed methodology intends to create a flexible global 

framework (global model) based on the combination of 

available risk assessment tools.  

The combination of individual tools will also permit to 

overcome of the additional difficulty of selecting the best 

tool to use in the daily clinical practice. Actually, one of 

these statistical tools is typically selected as the standard 

 
3 In order to clarify, risk assessment models that have been statistically 

validated and are available in literature are going to be designated through 

this work as risk assessment tools. 
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model to be applied in a given institution. However, the 

choice of the risk assessment tool can be difficult since there 

might not be a consensus about the best tool to use.  

The developed methodology [7] is based on two main 

hypotheses:  

i) It is possible to implement a common representation of 

individual risk assessment tools. In fact, current risk 

assessment tools are diversely represented (charts, equations, 

scores,…). This does not facilitate their 

integration/combination. The ability to deal with missing risk 

factor along with the flexibility to incorporate additional 

clinical knowledge (new risk factors) are further aspects that 

influenced the selection of the classifier to implement this 

first step. Moreover, its parameters/rules must be clinically 

interpretable;  

ii) It is possible to implement a combination of the obtained 

individual models. The ability of combining available 

knowledge from various sources is useful since it creates a 

flexible global framework which originates the mentioned 

benefits. Additionally, the parameters of the global model 

resulting from this combination can be adjusted by means of 

optimization methodologies (such as genetic algorithms), in 

order to increase the CVD risk prediction performance. 

This approach was validated with current risk assessment 

tools specific for secondary prevention on coronary artery 

disease (CAD) patients, in particular for assessing the risk of 

death/myocardial infarction within a short period of time 

(days/months). Here, of particular relevance are the 

statistical risk assessment tools GRACE, TIMI (no ST-

elevation) and PURSUIT [8][9][10]. This validation was 

supported by two real patients testing datasets: i) Santa Cruz 

Hospital, Lisbon/Portugal, N=460 ACS-NSTEMI patients; 

ii) Santo André Hospital, Leiria/Portugal, N=99 ACS-

NSTEMI patients. 

The paper is organized as follows: in section II an outline of 

the developed methodology is presented. In section III the 

results of the validation procedure with the two datasets are 

discussed. Section IV summarizes the main conclusions and 

the main research paths to be followed up in the near future.  

II. METHODOLOGY 

Figure 1 presents the proposed combination methodology: 
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Figure 1 – Proposed Methodology 

 

The first step of this approach consists in the creation of a 

common representation, based on a machine learning 

classification methodology that can be applied to all the 

selected individual tools
4
. The classifier must be selected 

considering both the combination of these individual models 

 
4 The selection of current available risk assessment tools must be done 

according to the specific CVD risk assessment context, e.g. secondary 

prevention, coronary artery disease patients, 1 month, ...  

and also dealing with missing risk factors. Moreover, this 

common representation must assure the clinical 

interpretability of the model. 

The second step of the methodology is the combination of 

the individual models. In this phase the individual models 

that were originated from the previous step (common 

representation of individual risk assessment tools) are 

combined. The global model that results from this 

combination scheme must be derived based on the available 

input risk factors and the individual models’ selection 

criteria. For instance, if one individual model does not have 

any of its input values available, then that model should not 

be considered for integration in the combination scheme. 

This approach allows a very flexible model which is able to 

consider a variable number of input risk factors, it enables to 

incorporate empirical clinical knowledge and it avoids the 

necessity of choosing a particular model as a standard model 

for the clinical practice. However, the clinical relevance of a 

CVD risk prediction system depends directly of its 

performance. Optimization techniques, namely genetic 

algorithms, are adopted in this stage to increase the global 

model’s performance (maximize sensitivity and specificity).  

The third phase is validation that is determinant to evaluate 

the potential clinical importance of the proposed 

methodology, namely using sensitivity and specificity 

metrics. This phase is performed based on real data and it 

intends to be as inclusive as possible. 

A. Common Representation of Individual Tools 

Current individual risk score models are described by 

different equations/scores/charts [8][9][10]. So, in order to 

ease their combination, all the individual risk score tools 

were represented based on a similar structure, i.e. the same 

classifier. 

The naïve Bayes classifier was the selected classifier. In fact, 

the naïve Bayes has a competitive performance with the 

remaining classifiers, is simple and can deal with missing 

risk factors. Besides these features, naïve Bayes assures the 

interpretability of the model which is one of the main goals 

of this approach. Finally, the structure of naïve Bayes 

simplifies the incorporation of empirical clinical knowledge 

[11][12]. Figure 2 depicts the structure of a naïve Bayes 

classifier. 

C

X1 X2 ... Xp
 

Figure 2 – Naïve Bayes Structure 

 

The variable 1[ ... ]pX X X  is a vector of random variables 

and C  is a random variable that denotes the class of an 

instance, where c is a particular class label. A vector 

1[ ... ]px xx  represents a particular instance that contains the 

observed values of the different p  attributes, i.e., X  x  is 



  

the same as 1 1 ... p pX x X x    . In the context of this 

work, 1[ ... ]pX X X  is a set of observations (risk factors) 

such as clinical examination and laboratory measurements 

and C is the hypothesis (e.g. risk level is “High”).  

The inference mechanism is described by equation (1) 

1

1

( | ) ( | ,..., )  ( ) ( | )

p

p i

i

P C X P C X X P C P X C



    (1) 

 

The term ( | )P C X  is the probability that the hypothesis is 

correct after observations have occurred (e.g., the probability 

that risk is “High” given the results of a clinical examination, 

measurements,…). ( )P C  
is the probability that the 

hypothesis is correct before seeing any observation (in this 

example, the prevalence of the risk level).   is a 

normalization constant. ( | )iP X C  is a likelihood expressing 

the probability of the observation iX  being made if the 

hypothesis is correct (equivalent to the sensitivity of the 

clinical examination). This particular Bayesian inference 

mechanism (naïve Bayes) assumes that attributes 

1[ ... ]pX X X , are conditionally independent, given the 

value of hypothesis C  [13].  

It is recognized that the violation of the assumption of 

independence may affect the performance of naïve Bayes 

classifier [12][13][14]. In the present combination scheme 

the selection of risk factors considered by the individual 

tools results from a statistical analysis process. This 

procedure usually starts with a large set of candidate risk 

factors, where the most relevant, typically not correlated, are 

selected. Therefore, the eventual violation of the attribute 

independence is controlled as the attributes’ independence is 

addressed in the statistical derivation of each individual risk 

assessment tool. Moreover, the present methodology 

addresses this potential lack of performance through the 

implementation of an optimization procedure, that is carried 

out in the models’ combination phase, by means of a genetic 

algorithm approach. 

The structure of naïve Bayes classifier is completely defined 

(Figure 2) as a result the construction of the classifier is 

restricted to parameters’ learning. Thus, the model has to 

learn from the training data set, the conditional probability 

( | )iP X C  of each attribute iX  given the class C  as well as 

the prior probability ( )P C  of the class C . 

Then, the process of representing an individual risk 

assessment tool as a naïve Bayes classifier can be 

systematized as follows: 

 A training dataset ( N instances 1[ ... ]px xx  composed 

of p  attributes) is generated.  

  This training dataset is applied to a given risk 

assessment tool in order to obtain a complete labelled 

dataset 1 1{( , ),....,( , )}N NJ c c x x .  

  Based on J  and through the maximum likelihood 

estimation (2) it is possible to derivate a naïve Bayes 

classifier that resembles the behavior of that specific 

risk assessment tool. The prior probability ( )P C  

results directly from distribution of the class values. 

The conditional probabilities can be calculated through 

the following expression: 

1

1

( )

( | )

( )

N

i i

i i N

X x C c

P X x C c

C c

  

  






 (2) 

It is important to refer that this probabilities’ estimation is 

reliable only when the attributes are qualitative. Hence the 

discretization of numeric attributes may have a great impact 

in the construction of the conditional probabilities tables and 

therefore in the performance of the classifier. The Equal 

Width Discretization (EWD) was the selected discretization 

method to allow the application of the maximum likelihood 

estimation to numeric attributes [15]. 

This process must be repeated to each one of the individual 

risk assessment tools that integrate the combination scheme. 

B. Individual Model’s Combination 

1) Combination strategy 

The models’ combination phase is responsible for the 

combination of the naïve Bayes classifiers that resemble the 

behavior of each one of the risk assessment tools that 

integrate the combination scheme. This procedure, is 

described in Figure 3. 
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Figure 3 – Combination Scheme 

 

Several individual models 1{ ,..., }i lM M M M   are 

considered to integrate the combination scheme, where each 

classifier is characterized by a specific conditional 

probability table ( | )
i

jP X C , and by their respective prior 

probability of output class ( )jP C . ( | )
i

j
jP X C

 
represents the 

conditional probability table of attribute i  of model j , 

( )jP C  is the prior probability distribution of model j  



  

regarding a specific number of mutually exclusive classes, 

1[ ... ]j
px x x x  is the input instance considered by the 

model j  (subset of the p  risk factors that are considered by 

the individual model j ). 

The combination scheme implements the direct combination 

of the individual models’ parameters (models’ fusion) 

according to the following equation: 

1 1

1 1
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Where l  is the number of individual models, b  is the 

number of individual models that contain the attribute 

iX X , jC  denotes each individual model that contains 

iX , jw is the weight of model j . 

This combination scheme is very flexible which permits the 

implementation of a combination strategy that depends on 

the characteristics of each specific combination, namely it: i) 

permits to assign to each individual model a different weight 

that is proportional to the respective performance; ii) allows 

disabling a specific model. In this way, different individual 

model selection criteria to integrate the combination scheme 

may be implemented; iii) allows the incorporation of 

additional features to improve risk prediction. For instance, 

the clinical partners that collaborated in this work identified 

the possibility of assign different weights to the different 

attributes/risk factors.  

The model selection criterion highly influences the global 

classification performance. According to the implemented 

condition, the information of a given model was considered 

if there was available at least one of its inputs. Moreover, 

some risk factors may be considered by more than one 

model, while other inputs belong only to a single model. 

Therefore, the classification of the global model is dependent 

on the availability of input risk factors as well as on the 

selection criteria to define the individual models that should 

be included in the combination scheme. 

Additionally, to allow the combination of different individual 

models the following condition has to be verified: 

“Individual models have the same number of output levels 

(e.g. “low/intermediate”, “high”)”. This restriction ensures 

that models share the same risk assessment goal
5
.  

This methodology also makes the incorporation of clinical 

expertise a straightforward operation. In fact, a new model 

can be directly created by the physician based on a CPT 

definition, and easily incorporated in the combination 

scheme. This is an important characteristic of this method. 

 
5 It is important to emphasize that this restriction does not obstructs the 

clinical application of the proposed methodology. In fact, from the clinical 

perspective the main goal is the identification of the high risk patients. 

2) Optimization 

An additional optimization step can be performed to improve 

the performance of the global model. Conditional probability 

tables ( | )iP X C of the global model can be optimized by 

means of an optimization strategy, such as genetic algorithms 

(GA). This algorithm focuses on the parameters 

( ( | ); ( )iP X C P C ) of the global model that was created 

through (3). 

An evaluation function must be defined in order to assign a 

quality measure to each candidate solution. As a result from 

several experiments, the selected evaluation function is 

composed of two functions ( 1 2,f f  multiobjective 

optimization
6
) since the optimization attempts to maximize 

simultaneously the specificity and the sensitivity of the 

global model. The objective functions are given by (4) in 

order to transform the maximization of specificity and 

sensitivity into a minimization problem. 

1 21 ;  1
TP TN

f f
TP FN TN FP

   
 

 

TP : True positive; FP : False positive; TN : True negative; 

FN : False negative 

(4) 

The optimization procedure is restricted to the 

neighbourhood of the initial values in order to assure the 

clinical interpretability of the final model. 

For instance, considering three possible categories for the 

attribute 1X , 
1 2 3
1 1 1{ , , }x x x  and two mutually exclusive risk 

classes 1 2{ , }c c
 
for the output C , the respective conditional 

probability table is defined by a 3 2  matrix, as shown in 

equation . 

1 1
1 1 1 11 1 1 2 12

2 2
1 1 1 21 1 1 2 22

3 3
1 1 1 31 1 1 2 32

( | )  ( | )

( | )  ( | )

( | )  ( | )

P X x C c P X x C c

P X x C c P X x C c

P X x C c P X x C c

 (5) 

Variables kj  denote the variations on the probability of the 

category k  of attribute iX  given the class j .  

C. Validation 

The validation procedure focused on the evaluation of the 

performance of the global model that is originated through 

the combination of current risk assessment tools. 

In this particular case, some current tools suitable to predict 

risk in coronary artery disease (CAD) patients have been 

selected. 

Two different datasets made available by two Portuguese 

hospitals were used as testing datasets, while the training 

 
6 Multiobjective optimization is applied when a single objective with 

several constraints does not adequately represent the optimization problem. 

In multiobjective optimization there is a vector of objective functions, 

where a tradeoff between objectives must be found.  



  

dataset required to generate the parameters to represent the 

individual Bayesian classifiers was derived based on proper 

values available in literature. 

The validation phase was composed of three main steps: i) 

performance assessment of individual tools. Here, individual 

tools were tested with both populations. This data provided 

some additional knowledge to adjust the weights of 

individual tools; ii) performance assessment of the global 

model. The performance of the global model was evaluated 

when different weights were assigned to the individual 

models. For all testing datasets, the Bayesian global model 

has been compared with a voting model
7
 as well as with each 

one of the individual tools. In order to increase the statistical 

significance of the obtained results, bootstrapping validation 

was employed which allowed the derivation of confidence 

intervals of the formulas assessed. Parametric statistical 

significance tests (Student’s t-test, Levene’s test) were 

executed to increase the reliability of the conclusions 

extracted from this comparison; iii) missing risk factors. The 

ability of the Bayesian global model to deal with missing risk 

factors was also assessed. Each variable has been 

successively removed. For each variable, the performance of 

three different models was evaluated: i) Bayesian global 

model before optimization; ii) Bayesian global model after 

optimization; iii) Voting model
8
 [14]. The different models’ 

performance were compared based on parametric statistical 

significance tests (Student’ t-test, Levene’s test) that were 

complemented with an analysis of variance. Also in this 

situation the validation was based on the bootstrapping 

validation with 1000n  bootstrap samples.  

III. RESULTS 

A. Testing Datasets 

1) Santa Cruz Hospital Dataset  

 

This dataset contains data from N=460 consecutive patients 

that were admitted in the Santa Cruz Hospital, Lisbon, with 

Acute Coronary Syndrome with non-ST segment elevation 

(ACS-NSTEMI) between March 1999 and July 2001. 

Table I contains the number of events considering two 

different endpoints (death/myocardial infarction) and two 

different periods (one month/one year). 

TABLE I 

ENDPOINTS OF SANTA CRUZ HOSPITAL DATASET 

Time Event n % Total  

30 

days 

D 13 2.8 33 

7.2% MI 24 5.2 

1 

year 

D 32 7.0 70 

15.4 MI 49 10.7 

D: Death; MI: Myocardial Infarction 

 
7 In voting, the classification produced by a classifier is considered as a 

vote for a particular class value. The class with the highest number of votes 

is selected as the final classification. 
8 If the missing variables were continuous the replacement has been done 

based on the respective mean values, in the case of Boolean variables their 

value were successively replaced by 0 and 1 values.  

 

Table II presents the main clinical characteristics of such 

patients (a detailed analysis can be found in Gonçalves et. al. 

[16]). Continuous variables with a normal distribution are 

expressed as mean value and standard deviation. Discrete 

variables are presented as frequencies and percent values. 

TABLE II 

CLINICAL CHARACTERISTICS OF PATIENTS THAT INTEGRATE THE DATASET 

Model Event 

Age (years) 63.4 ± 10.8 

Sex (Male/Female) 361 (78.5%) / 99 (21.5%) 

Risk Factors: 

 Diabetes (0/1) 

 Hypercholesterolemia (0/1) 

 Hypertension (0/1) 

 Smoking (0/1) 

 

352 (76.5%) / 108 (23.5%) 

180 (39.1%) / 280 (60.9%) 

176 (38.3%) / 284 (61.7%) 

362 (78.7 %) / 98 (21.3%) 

Previous History / Known CAD 

 Myocardial Infarction (0/1) 

 Myocardial Revascularization (0/1) 

 PTCA 

 CABG 

 

249 (54.0%) / 211 (46.0%) 

239 (51.9%) / 221 (48.1%) 

146 (31.7%) 

103 (22.4%) 

Sbp (mmHg) 142.4 ± 26.9 

Hr (bpm) 75.3 ± 18.1 

Creatinine (mg/dl) 1.37 ± 1.26 

Enrolment [0 UA, 1 MI] 180 (39.1 %) / 280 (60.9%) 

Killip  1/2/3/4 395 (85.9%) / 31 (6.8%) /  

33 (7.3 %) / 0% 

CCS [0 I/II; 1 CSS III/IV] 110 (24.0%) / 350 (76.0%) 

ST Segment Deviation (0/1) 216 (47.0%) / 244 (53.0%) 

Signs of Heart Failure(0/1) 395 (85.9%) / 65 (14.1%) 

Tn I > 0.1 ng/ml (0/1) 313 (68.0%) / 147 (32.0%) 

Cardiac Arrest Admission (0/1) 460 (100%) / 0% 

Aspirin (0/1) 184 (40.0%) / 276 (60.0%) 

Angina (0/1) 19 (4.0%) / 441 (96.0%) 

 

2) Santo André Hospital Dataset 

Table III presents the main clinical characteristics of 

patients’ data collected in Santo André Hospital, Leiria, 

Portugal. 

TABLE III 

CLINICAL CHARACTERISTICS OF PATIENTS THAT INTEGRATE THE DATASET 

Model Event 

Age (years) 68.0 ± 11.8 

Sex (Male/Female) 68 (68.7%) / 31 (31.3%)  

Risk Factors: 

 Diabetes DMIT (0/1) 

 Diabetes DMNIT (0/1) 

 Hypercholesterolemia (0/1) 

 Hypertension (0/1) 

 Smoking (0/1) 

 

91(91.9%) / 8 (8.1%) 

70 (70.7%) / 29 (29.3%) 

59 (59.6%)/ 40 (40.4%) 

26 (26.3%) / 73 (73.7%) 

83 (83.8) / 16 (16.2%) 

Previous History / Known CAD 66 (66.7%) / 33 (33.3%) 

Sbp (mmHg) 145.7 ± 32.1 

Hr (bpm) 83.2 ± 20.2 

Creatinine (mg/dl) 1.11 ± 0.42 

Enrolment [0 UA, 1 MI] 6 (6.1%) / 93 (93.9%) 

Killip 1/2/3/4 70 (70.7%) / 21 (21.2%) / 7 

(7.1%) /1 (1%) 

CCS [0 I/II; 1 CSS III/IV] 78 (78.8%) / 21 (21.2%) 

ST Segment Deviation (0/1) 98 (99%) / 1 (1%) 

Signs of Heart Failure(0/1) 70 (70.7%) / 29 (29.3%) 

Tn I > 0.1 ng/ml (0/1) 7 (7.1%) / 92 (92.9%) 

Cardiac Arrest Admission (0/1) 98 (99%) / 1 (1%) 

Aspirin (0/1) 71 (71.7%) / 28 (28.3%) 

Angina (0/1) 33 (33.3%) / 66 (66.7%) 

 



  

The available dataset contains data from N=99 patients that 

were admitted in the Hospital with Acute Coronary 

Syndrome (ACS-NSTEMI) during 2007. 

B. Training Data Set 

The approach proposed by Twardy et. al. [17] was followed 

to the generation of the training data set. Continuous 

variables were normally distributed. Values for mean and 

standard deviation were taken from the literature [16]. 

Discrete variables are binary and were generated through a 

random process. The training data set was created 

1[ ... ]i i i
px xx  for all Ni 1 : with 1000N . This 

training dataset was applied to the selected risk assessment 

tools (Table IV) in order to obtain the respective output class 

1 1{( , ),....,( , )}N NJ c c x x . 

C. Individual Risk Assessment Tools 

Table IV presents the selected individual risk assessment 

tools to predict death/MI for CAD patients within a short 

period. 

TABLE IV 

SHORT-TERM RISK ASSESSMENT MODELS 

Model Event Time 
Prev. 
Type 

Risk Factors 

GRACE 

[7] 
D 

MI 
6 m S 

Age, SBP, CAA HR, 

Cr, STD, ECM, CHF 

PURSUIT 

[8] 
D 

MI 
30 d S 

Age, Sex, SBP, CCS, 

HR, STD, ERL, HF 

TIMI 

[9] 

D 

MI 

UR 

14 d S 
Age, STD, ECM, 

KCAD, AS, AG, RF 

D: Death; MI: Myocardial Infarction; UR: Urgent revascularization 

m: months; d: days; S: Secondary Prevention; 

Cr-Creatinine, HR – Heart Rate, CAA – Cardiac Arrest at Admission, 

CHF – Congestive Heart Failure, STD - ST Segment. Depression, ECE - 

Elevated Cardiac Markers/Enzymes, KCAD- Known CAD, ERL – 

Enrolment (MI/UA), HF –Heart Failure, CCS – Angina classification, AS - 

Use of aspirin in the previous 7 days, AG - 2 or more angina events in past 

24 hrs, RF - 3 or more cardiac risk factors 

D. Individual Risk Assessment Tools’ Performance 

The proposed combination scheme requires that individual 

models have the same number of output levels. This work 

defines the risk stratification in two categories: 

{“low/intermediate risk” , “high risk” }.Therefore, the “high 

risk” category in the original models matches the new “high 

risk”. The remaining original categories were grouped into 

“low/intermediate risk” category.  

Table V shows the performance of the three individual 

models when a period of 30 days is considered. 

As observed the three models present a very different ability 

to predict the endpoint in the three different testing 

situations. GRACE was the risk assessment tool with the best 

performance and discrimination capability in the three test 

situations. TIMI and PURSUIT presented a poor 

performance, so they are not as suitable as GRACE to the 

endpoint prediction in the considered datasets. 

 

TABLE V 

PERFORMANCE OF SELECTED INDIVIDUAL RISK ASSESSMENT TOOLS 

Model % 
Santa Cruz 

30 days/D/MI 

Santa Cruz 

30 days/D 

Santo André 

30 days/D 

GRACE 

SE 60.6 76.9 60.0 

SP 74.9 73.8 60.6 

Acc 73.9 73.9 60.6 

AUC 0.67 0.765 0.600 

PURSUIT 

SE 42.4 38.5 20.0 

SP 74.2 73.4 72.3 

Acc 72.0 72.4 69.7 

AUC 0.575 0.565 0.5* 

TIMI 

SE 33.3 23.1 20.0 

SP 73.5 72.9 93.6 

Acc 70.7 71.5 89.9 

AUC 0.525 0.5* 0.575 

 SE: Sensitivity (%); SP: Specificity (%); ACC: Accuracy (%);  

 AUC: area under the Receiver Operating Characteristic 

E. Individual Models’ Combination  

The Bayesian global model was derived according to the 

methodology explained in II. The global voting model was 

implemented considering the votes (0/1) of the three 

individual models.  

TABLE VI 

PERFORMANCES COMPARISON – SANTA CRUZ, (DEATH/MI) 

 % GRACE PURSUIT TIMI ByG Vot. 

O
ri

g
in

a

l 

SE 60.6 42.4 33.3 60.6 48.5 

SP 74.9 74.2 73.5 67.0 75.6 

Gmean 67.3 56.0 49.4 63.4 60.6 

AUC 0.675 0.575 0.525 0.635 0.625 

B
o

o
t 

S
am

p
le

s 

n
=

1
0

0
0

 

SE 
60.8 

(60.2; 61.3) 

42.4 

(41.9;43.1) 

33.5 

(33.0; 34.0) 

60.6 

(60.1;61.3) 

48.6 

(48.0;49.2) 

SP 
74.9 

(74.8; 75.1) 

74.2 

(74.1;74.3) 

73.6 

(73.5; 73.7) 

67.0 

(66.9;67.2) 

75.6 

(75.5;75.8) 

Gmean 
67.3 

(67.0; 67.6) 

55.8 

(55.5;56.2) 

49.3 

(48.9; 49.7) 

63.6 

(63.3;63.9) 

60.3 

(60.0;60.7) 

TABLE VII 

PERFORMANCES COMPARISON – SANTA CRUZ, DEATH 

 % GRACE PURSUIT TIMI ByG Vot. 

O
ri

g
in

a

l 

SE 76.9 38.5 23.1 61.5 53.8 

SP 73.8 73.4 72.9 65.7 74.7 

Gmean 75.3 53.1 40.6 63.5 63.0 

AUC 0.765 0.565 0.5 0.625 0.625 

B
o

o
t 

S
am

p
le

s 

n
=

1
0

0
0

 

SE 
77.3 

(76.5;78.0) 

38.2 

(37.4;39.2) 

23.0 

(22.3;23.7) 

61.6 

(60.7;62.5) 

53.7 

(52.9;54.7) 

SP 
73.8 

(73.6;73.9) 

73.3 

(73.1;73.4) 

72.9 

(72.8;73.1) 

65.8 

(65.6;65.9) 

74.6 

(74.5;74.8) 

Gmean 
75.2 

(74.9;75.6) 

51.8 

(51.1;52.5) 

38.8 

(38.0;39.5) 

63.1 

(62.7;63.6) 

62.7 

(62.2;63.3) 

TABLE VIII 

PERFORMANCES COMPARISON – SANTO ANDRÉ, DEATH 

 % GRACE PURSUIT TIMI ByG Vot. 

O
ri

g
in

a

l 

SE 60.0 20.0 20.0 80.0 40.0 

SP 60.6 72.3 93.6 67.0 74.5 

Gmean 60.2 38.0 43.2 73.2 54.5 

AUC 0.6 0.5 0.575 0.725 0.575 

B
o

o
t 

S
am

p
le

s 

n
=

1
0

0
0

 

SE 
61.2 

(59.8;62.8) 

19.9 

(18.6;21.2) 

21.5 

(20.3;22.9) 

80.3 

(78.9;81.5) 

41.4 

(40.0;43.1) 

SP 
60.4 

(59.9;60.8) 

72.1 

(71.6;72.5) 

93.2 

(92.7;93.5) 

66.8 

(66.4;67.2) 

74.1 

(73.7;74.5) 

Gmean 
58.7 

(57.7;59.7) 

29.0 

(27.4;30.5) 

35.2 

(33.4;36.9) 

72.3 

(71.5;73.1) 

50.6 

(49.3;52.1) 

 



  

Based on the previous tables (VI, VII, VIII), it is possible to 

conclude that in some testing situations (Table VIII) the 

Bayesian global model presents a better performance than 

the other models. However, GRACE tool showed higher 

discrimination capability when applied patients of Santa 

Cruz dataset.  

These results demonstrate that the proposed combination 

scheme should be complemented with the adjustment of its 

parameters (optimization procedure) in order to improve its 

performance. 

F. Optimization 

The proposed fusion methodology can be adjusted to a 

specific population. If a dataset is available, an optimization 

can be performed improving the behavior of the global 

Bayesian model. Table IX presents the optimization results, 

obtained through a genetic algorithm approach. 

TABLE IX 

PERFORMANCES COMPARISON  

  Santa Cruz 

30 days/D/MI 

Santa Cruz 

30 days/D 

Santo André 

30 days/D 

  ByG ByG AO ByG ByG AO ByG ByG AO 

O
ri

g
in

al
 SE 60.6 72.7 61.5 76.9 80.0 80.0 

SP 67.0 69.1 65.7 70.7 67.0 82.9 

Gmean 63.4 70.9 63.5 73.7 73.2 81.5 

AUC 0.635 0.7 0.625 0.725 0.725 0.8 

B
o

o
t 

S
am

p
le

s 

n
=

1
0

0
0

 

SE 
60.6 

(60.1;61.3) 

72.9 

(72.4;73.4) 

61.6 

(60.7;62.5) 

77.3 

(76.5;78.0) 

80.3 

(78.9;81.5) 

79.8 

(78.6;81.0) 

SP 
67.0 

(66.9;67.2) 

69.1 

(69.0;69.2) 

65.8 

(65.6;65.9) 

70.6 

(70.5,70.8) 

66.8 

(66.4;67.2 ) 

83.8 

(83.3;84.2) 

Gmean 
63.6 

(63.3;63.9) 

70.9 

(70.6;71.1) 

63.1 

(62.7;63.6) 

73.6 

(73.3;74.0) 

72.3 

(71.5;73.1) 

80.9 

(80.0;81.6) 

SE: Sensitivity; SP: Specificity; D: Death; MI: Myocardial Infarction; 

(;)=95% Confidence Interval; ByG – Bayesian Global Model; ByG AO – 

Bayesian Global Model After Optimization. 

 

It is possible to conclude that genetic algorithms’ 

optimization improved the performance of the Bayesian 

global model. The optimization was performed in the 

neighborhood of the initial values, although this restriction 

may reduce the efficiency of the optimization algorithm, it 

assures that the optimization procedure does not ignore the 

knowledge provided by the original risk assessment tools. 

G. Missing Risk Factors  

The ability of the different classifiers to deal with missing 

risk factors was assessed through the comparison of the 

Bayesian approach (before and after the optimization 

procedure) with the voting model. 

Replacement of missing risk factors in voting model was 

done according to the variables’ type, such as: i) binary 

variables were replaced successively by values 0 and 1; ii) as 

Killip level is ordinal, it was replaced sequentially by values 

1, 2 and 3; iii) a single imputation method based on the mean 

value was applied to the remaining variables that are 

continuous. Three different situations were evaluated: i) one 

missing risk factor; ii) two missing risk factors; iii) three 

missing risk factors.  

 

TABLE X 

MISSING RISK FACTORS - SANTA CRUZ, (DEATH/MI) 

 
Parameter Bayesian 

Bayesian 

After Opt. 
Voting 

SE 

mean 
57.1 

(55.3;58.8) 

65.4 

(62.9;67.7) 

47.8 

(43.9;52.6) 

std. dev. 5.1 7.1 11.5 

range [45.4;72.2] [48.5;75.7] [27.3;72.7] 

SP 

mean 
65.5 

(63.1;67.9) 

65.9 

(63.4;68.4) 

74.7 

(71.3;78.2) 

std. dev. 7.1 7.4 10.3 

range [47.3;74.4] [48.0;75.8] [46.9; 94.8] 

Gmean 

mean 
61.0 

(60.2;61.8) 

65.2 

(64.2;66.0) 

59.0 

(57.5;60.6) 

std. dev. 2.3 2.8 4.7 

range [57.8; 67.6] [60.3; 71.2] [50.5; 69.0] 

TABLE XI 

MISSING RISK FACTORS - SANTA CRUZ, (DEATH) 

 
Parameter Bayesian 

Bayesian 

After Opt. 
Voting 

SE 

mean 
60.0 

(58.1;61.9) 

63.0 

(61.0;65.1) 

49.6 

(45.2;54.1) 

std. dev. 5.6 7.0 13.2 

range [46.1;76.9] [46.2;84.6] [23.0;76.9] 

SP 

mean 
64.6 

(62.2,66.9) 

68.8 

(66.8,70.8) 

74.3 

(70.9,77.8) 

std. dev. 6.9 5.8 10.2 

range [46.5, 72.9] [55.0, 78.0] [46.0, 93.7] 

Gmean 

mean 
62.0 

(61.0;63.0) 

65.2 

(63.5;66.8) 

59.5 

(57.5;61.6) 

std. dev. 2.9 4.9 6.1 

range [57.9;66.8] [58.7;75.1] [46.2;70.6] 

TABLE XII 

MISSING RISK FACTORS - SANTO ANDRÉ, (DEATH/MI) 

 
Parameter Bayesian 

Bayesian 

After Opt. 
Voting 

SE 

mean 
70.8 

(66.4;75.1) 

75.1 

(71.1;79.1) 

45.4 

(38.4;52.3) 

std. dev. 12.9 11.9 20.8 

range [20;80] [20;80] [20;100] 

SP 

mean 
65.5 

(64.4;66.6) 

79.4 

(78.1;80.7) 

73.5 

(70.9;76.1) 

std. dev. 3.3 3.9 7.8 

range [61.7;81.9] [75.5;81.9] [58.5;88.9] 

Gmean 

mean 
62.1 

(61.0;63.0) 

65.2 

(63.5;66.8) 

59.5 

(57.5;61.6) 

std. dev. 2.9 4.9 6.1 

range [57.9;66.8] [58.7;75.1] [46.2;70.6] 

 

It is possible to conclude that in the majority of the test cases 

the global Bayesian model after optimization presents the 

best performance (highest sensitivity/highest specificity). 

However, in some situations (Santa Cruz Dataset) the voting 

model presented the highest specificity’s value. This lack of 

performance of the Bayesian global model in some testing 

situations must be further investigated.  

IV. CONCLUSIONS 

This work addressed the combination (fusion) of CVD risk 

assessment tools. As referred, the combination of these 

individual risk assessment tools can overcome the respective 

weaknesses, namely: i) consider simultaneously the 



  

information provided by the selected individual current risk 

assessment tools, ii) increase the number of risk factors to 

compute the risk, iii) improve the capability to deal with 

missing risk factors, iv) allow the incorporation of additional 

clinical knowledge, v) assure the clinical interpretability of 

the respective parameters. Besides, it eliminates the need of a 

consensus on the best model to use in the clinical practice. 

Finally, this global model can be easily adjusted for a given 

population. 

The obtained results are very promising, suggesting the 

potential of the Bayesian approach to fuse current risk 

assessment tools in a clinical practice context. 

Future work will further investigate the capability of this 

combination strategy to deal with missing information as 

well as the incorporation of additional clinical knowledge. 

Validation considering a significant number of patients as 

well as its application to other populations will give 

additional significance to the developed strategy. 

V. REFERENCES 

[1]  World Health Organization, “Cardiovascular Diseases (CVDs)”, fact 

sheet n°317. 

 http://www.who.int/mediacentre/factsheets/fs317/en/index.html. 

(accessed December 2010) 

[2] European Heart Network, “Healthy Hearts for All”, Annual Report 

2009.Available:http://www.ehnheart.org/publications/annual-

reports.html (accessed March 2011). 

[3]  European Heart Network, “Healthy Hearts for All”, Annual Report 

2008.Available:http://www.ehnheart.org/publications/annual-

reports.html (accessed March 2011). 

[4] Commission of the European Communities, “Confronting 

demographic change: a new solidarity between the generations - Green 

paper”. Available: http://eur-lex.europa.eu/LexUriServ (Accessed in 

December 2010). 

[5] Bertrand, M. et al. “Management of acute coronary syndromes in 

patients presenting without persistent ST-segment elevation”, 

European Heart Journal, Vol. 23, 1809–1840, 2002. 

[6] Graham, I. et. al., “Guidelines on preventing cardiovascular disease in 

clinical practice: executive summary”, European Heart Journal, 

Vol.28, 2375 – 2414, 2007. 

[7]  S. Paredes, T. Rocha, P. Carvalho, J. Henriques, M. Harris, J. Morais, 

“Long Term Cardiovascular Risk Models' Combination”, Computer 

Methods and Programs in Biomedicine Journal, 2011.  

[8]  Tang. E, et. al., “Global Registry of Acute Coronary Events(GRACE) 

hospital discharge risk scores accurately predicts long term mortality 

post-acute coronary syndrome”, AHJ, Vol. 154, pp. 29-35 2007. 

[9]  Antman, E. et. al., “The TIMI risk score for Unstable Angina / Non-St 

Elevation MI – A method for Prognostication and Therapeutic 

Decision Making”, Journal of American Medical Association ,Vol. 

284, pp. 835-842, 2000. 

[10]  Boersma E., K. Pieper, E. Steyerberg, “Predictors of outcome in 

patients with acute coronary syndromes without persistent ST-segment 

elevation. Results from an international trial of 9461 patients”, 

Circulation 101;2557–2567, 2000. 

[11] Kotsiantis, S, “Supervised Machine Learning: A Review of 

Classification Techniques”, Informatica Vol.31, 249-268, 2007. 

[12] Zheng, “A comparative study of semi-naïve Bayes methods in 

classification learning.” Proceedings of the 4th Australasian Data 

Mining Conference, (pp. pp. 141-156.). 

[13] Friedman N., Geiger D., Goldszmidt M., “Bayesian network 

classifiers”, Machine Learning, Vol.29, 131-163, 1997. 

[14]  Tsymbal A., S. Puuronen and D. Patterson, “Ensemble feature 

selection with the simple Bayesian classification”, in Information 

Fusion, Vol.4, Issue 2, pp. 87-100 (Elsevier, 2003). 

 [15] Yang. (2009). Discretization for naïve- Bayes learning managing 

discretization bias and variance. Machine Learning, Vol. 74, pp. 39-

74. 

[16] Gonçalves P., Ferreira J., Aguiar C., Seabra-Gomes R., “TIMI, 

PURSUIT and GRACE risk scores: sustained prognostic value and 

interaction with revascularization in NSTE-ACS”, European Heart 

Journal, Vol. 26, pp. 865-872, 2005.  

[17] Twardy C., Nicholson A., Korb K., McNeil J., “Data Mining 

cardiovascular Bayesian networks, School of Computer Science 

Software Engineering, Monash Univ., Melbourne, Tec. report, 2004. 

http://www.ehnheart.org/publications/annual-reports.html
http://www.ehnheart.org/publications/annual-reports.html
http://www.ehnheart.org/publications/annual-reports.html
http://www.ehnheart.org/publications/annual-reports.html

