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a b s t r a c t

This work proposes the application of neural network multi-models to the prediction of adverse acute

hypotensive episodes (AHE) occurring in intensive care units (ICU). A generic methodology consisting of

two phases is considered. In the first phase, a correlation analysis between the current blood pressure

time signal and a collection of historical blood pressure templates is carried out. From this procedure

the most similar signals are determined and the respective prediction neural models, previously

trained, selected. Then, in a second phase, the multi-model structure is employed to predict the future

evolution of current blood pressure signal, enabling to detect the occurrence of an AHE.

The effectiveness of the methodology was validated in the context of the 10th PhysioNet/Computers

in Cardiology Challenge—Predicting Acute Hypotensive Episodes, applied to a specific set of blood

pressure signals, available in MIMIC-II database. A correct prediction of 10 out of 10 AHE for event 1 and

of 37 out of 40 AHE for event 2 was achieved, corresponding to the best results of all entries in the two

events of the challenge. The generalization capabilities of the strategy was confirmed by applying it to

an extended dataset of blood pressure signals, also collected from the MIMIC-II database. A total of

2344 examples, selected from 311 blood pressure signals were tested, enabling to obtain a global

sensitivity of 82.8% and a global specificity of 78.4%.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Hypotension, a clinical condition characterized by abnormal
low blood pressure values, is one of the recurrent situations
occurring in intensive care units. Among the most frequent
events, acute hypotensive episodes (AHE) are particularly critical,
since they may result in irreversible organ damage and, even-
tually, death [1]. As a consequence, the characterization of such
episodes is of fundamental importance in the management of
critical ill patients. In fact, when promptly detected, it is possible
to improve the clinical decision concerning which intervention is
more appropriated for each specific condition (sepsis, myocardial
infarction, cardiac arrhythmia, pulmonary embolism, hemor-
rhage, dehydration, or any of a wide variety of other causes of
hypovolemia, insufficient cardiac output, or vasodilatory shock).
Additionally, early detection of AHE will give professionals
enough time to select a more effective treatment, without expos-
ing the patient to additional risks of delaying therapy. Therefore,
the development of methodologies able to detect not only the
presence of this condition but also to predict its occurrence, is of
ll rights reserved.
extreme importance concerning appropriated clinical interven-
tions. Moreover, since clinical interventions to treat such events
are usually invasive and aggressive, a prediction system that
could identify an imminent episode would be a significant benefit
to timely support non-invasive and preventive treatments.

It is clinically accepted that if there exists enough patient’s
clinical information, then a prediction system for hypotensive
episodes, over a specific time period, can be developed. Typically,
this information is based on the medical record, such as clinical
history, laboratory tests and medications, as well as on informa-
tion extracted from physiologic vital signals, such as electrocar-
diogram, blood pressure and respiration. In this context, Singla
et al. [2] showed the correlation between some independent
variables and the development of early hypotension episodes.
These variables included age, sex, body mass index, history of
hypertension, diabetes mellitus, anemia, heart rate, systolic and
diastolic blood pressure. Similarly, Lin et al. [3] studied the
association of specific variables with the increasing risk of
hypotensive episodes, namely weight, height, American Society
of Anesthesiologist physical status, surgical category (orthopedics,
plastic surgery, general surgery, obstetrics, and urology) and
systolic blood pressure. Based on these variables, Lin et al.
proposed a logistic regression model to assess the risk of devel-
oping a hypotensive episode.
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In practice, the development of automatic solutions for hypo-
tensive episodes prediction has explored the correlation between
patient’s clinical information collected in real-time, such as
arterial blood pressure (ABP), heart rate (HR) and oxygen satura-
tion (SO2), and the onset of the hypotensive episode. In particular,
Bassale [4] proposed the use of parametric and non-parametric
methods to analyze and characterize ABP before hypotensive
episodes. He concluded that ABP variability and shape features
have the potential to predict such events. Crespo et al. [5] also
suggested the use of changes in the ABP morphology occurring
immediately before an episode of hypotension. They proposed the
variance of the ABP signal and the variance of the wave slope as
the most relevant features to consider when predicting AHE.
Lehman et al. [6] presented a similarity-based searching and
pattern matching algorithm, applicable to classification and fore-
casting tasks. Using real physiological measurements, they
employed the methodology to forecast hypotensive episodes in
intensive care units. Also, Saeed et al. [7,8] introduced a new
temporal similarity metric, based on a transformation of time
series data into an intuitive symbolic representation. They used
wavelet decomposition to characterize time series dynamics at
multiple time scales. Their algorithm was employed to identify
similar physiologic patterns in hemodynamic time series from
ICU patients, with potential to be used in the detection of
imminent hemodynamic deterioration. Frolich et al. [9] suggested
the use of baseline HR as a significant predictor of obstetric spinal
hypotension. Basically, they showed that higher baseline HR
could be a useful parameter to predict postspinal hypotension.

Using spectral analysis of HR and ABP variability, Pelosi et al.
[10] identified precursors of hypotensive episodes during renal
dialysis. Also using frequency analysis techniques, Reich et al. [11]
investigated the correlation between HR variability analysis and
hypotension events. Chamchad et al. [12] found a significant
correlation between nonlinear HR variability dimension analysis
and the presence of hypotension, occurring after spinal anesthesia
for cesarean delivery. Hanss et al. [13] also concluded that HR
variability analysis could be used to predict the occurrence of
hypotension during spinal anesthesia. In particular, they investi-
gated the ratio of low to high frequency peaks of the HR variability
power spectrum (LF/HF) for the prediction of hypotension events
after spinal anesthesia, in the specific cases of pregnant women
[14] and elderly men [15]. Mancini et al. [16] showed the potential
of SO2 short-term variability in anticipating the hypotension onset.
Recently, Lee and Mark [17] investigated the existence of discri-
minatory patterns in ICU data that could be indicative of impend-
ing hypotensive episodes. Based on neural, they proposed a binary
classification scheme (normotensive vs. hypotensive) and an esti-
mation strategy for predicting future mean blood pressure values.

This work proposes the forecast of acute hypotensive episodes
through the development of predictive multi-models, applicable
to the mean ABP (MAP) time-series signal. To achieve this goal, a
generic methodology consisting of two main phases is considered.
In the first phase, a correlation analysis procedure is carried out
between the current MAP signal and a representative set of
historical MAP evolution trends. The most similar ones are
identified and the correspondent prediction neural multi-models,
previously trained using those historical signals, selected. In the
second phase, these models are employed to the current MAP
signal to predict its future evolution and, therefore, the detection
of an AHE occurrence. Basically, the prediction methodology
consists of a multi-model scheme using neural network struc-
tures. Multi-models do not recursively use model outputs as
inputs for step ahead predictions. Therefore, prediction errors
are not propagated and long-term predictions can be accurately
estimated. Among regression models, neural networks have
shown considerable capabilities to learn and to generalize from
non-linear environments, enabling to capture the fundamental
data dynamics. Moreover, multi-models can be trained by means
of simple standard backpropagation algorithms. In fact, since an
independent neural sub-model is used for each sampling instant
and does not depend on previous predictions, a static training
algorithm, as the referred backpropagation, can be employed.

The effectiveness of the proposed approach was validated in
the context of 2009 PhysioNet/Computers in Cardiology
challenge—Predicting Acute Hypotensive Episodes. The data for
training and validation purposes was obtained from MIMIC-II
dataset [18] that includes data before and during the prediction
horizon. The forecast was made using the trained neural multi-
model structure, only considering the information available
before the forecast period. The occurrence of an AHE within the
forecast window (one hour) was assessed according to AHE
definition [19]. A sensitivity of 94.74% and a specificity of
93.55% revealed the effectiveness of the strategy, which obtained
the best results of the challenge.1 Additionally, the generalization
ability of the strategy was confirmed by applying it to a larger
dataset of blood pressure signals, also belonging to the MIMIC-II
database. For a total of 2344 examples, selected from 311 blood
pressure signals, a global sensitivity of 82.8% and a global
specificity of 78.4% were achieved.

The paper is organized as follows: in Section 2 the 2009
PhysioNet/Computers in Cardiology challenge is presented. In
Section 3, it is described the general methodology for the predic-
tion task as well as how it can be used to address the challenge. In
Section 4, results using MIMIC-II dataset are presented and
discussed, both in the context of the PhysioNet/Computers in
Cardiology challenge, as well as considering an extended dataset.
Finally, in Section 5, some conclusions are drawn.
2. The 2009 physionet/computers in cardiology challenge

2.1. Challenge goal

The 2009 challenge was the tenth in the annual series of open
challenges hosted by PhysioNet in cooperation with Computers in
Cardiology Conference. The goal of that year’s challenge was to
predict which patients in the available dataset (MIMIC-II) would
experience an acute hypotensive episode beginning within the
forecast window, motivated by the possibility of improving care
and survival of these patients [19].

The challenge dataset included, among other data, a time series
of mean arterial blood pressure (MAP) at one-minute intervals.
Each sample of the series was an average of the blood pressure
measured in the radial artery over the previous minute. Given such
a time series, an AHE was defined, for the purposes of the
challenge, as any period of 30 minutes or more during which at
least 90% of the MAP measurements were at or below 60 mmHg.
The forecast window was defined as the one-hour period imme-
diately following a specified time instant To (Fig. 1). In the test sets,
all data following To was withheld and the forecast should be made
using the available information before To.

2.2. Mimic-II project

Data used in this challenge was collected and contributed to
PhysioNet by the MIMIC-II project (Multi-parameter Intelligent Mon-

itoring for Intensive Care), a Bioengineering Research Partnership
funded by the US National Institutes of Health and its National
Institute of Biomedical Imaging and Bioengineering, with additional

http://www.physionet.org/challenge/2009/final-scores
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support from Philips Medical Systems. The MIMIC-II project has
collected data from about 30,000 ICU patients to date, including
recorded physiologic signals and time series, as well as accompanying
clinical data such as interventions performed in the ICU, laboratory
tests, observations and medication [20,21]. Basically, this information
is organized in two main databases: numerics record that contains
time-series data and clinical records that deal with clinical information
(observations, medication, etc.). The intent is that a MIMIC-II record
should be sufficiently detailed to allow its use in studies that
otherwise would require access to an ICU, e.g., for basic research in
intensive care medicine, or for development and evaluation of
diagnostic and predictive algorithms for medical decision support.

2.3. Training and test datasets

The 2009 challenge dataset consisted of selected patient records
from the MIMIC-II database. In the training set, the records
included all available data before and after instant To. In the test
sets the records were truncated at To, being the data after this
instant unknown during the period of the challenge and made
available only after its conclusion. The records that were chosen for
the challenge dataset included, at a minimum: (i) at least 12 h of
data before To, and at least one hour of data after To; (ii) ECG and
arterial blood pressure (ABP) signals sampled at 125 Hz; (iii) time
series of vital signs sampled once per minute (in the training set)
and once per second (in the test sets). These comprised heart rate
and mean systolic and diastolic ABP. The majority of the records
included a variety of additional vital signals time series, most often
containing respiration rate and oxygen saturation.

In particular, the training set consisted of 60 records (with data
after To) belonging to two groups: H and C. Records in group H
contained an episode of acute hypotension beginning during the
Fig. 1. 2009 PhysioNet—Computers in cardiology challenge goal.
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forecast window (the one-hour period following To), while records in
group C contained no AHE within the forecast window. Within group
H, 15 records belonged to subgroup H1—patients who received
pressor medication, and 15 belonged to subgroup H2—patients
who did not receive pressor medication. Within group C, 15 records
belonged to subgroup C1—patients with no documented AHE at any
time during their hospital stay, and 15 records belonged to subgroup
C2—patients who had AHE before or after the forecast window.

The validation set consisted of two datasets, A and B. The test
set A comprised 10 records, excluding data after To. From these,
5 records were from subgroup H1 (AHE in subjects receiving
pressors) and 5 were from subgroup C1 (no AHE in subjects
receiving pressors). The test set B consisted of 40 records, also
excluding data after To. Between 10 and 16 from these belonged
to group H and between 24 and 30 belonged to group C.

2.4. Challenge events

The challenge comprised two events. The event 1, using A
dataset, focused on patients who were receiving pressor medica-
tion and aimed to distinguish between two groups of ICU patients:
the ones who would experience an acute hypotension episode and
those who would not. The event 2, using B dataset, addressed the
broad question of predicting an AHE in the general population.
3. Methodology

Fig. 2 gives an overview of the methodology proposed in this
work. The detection of a future acute hypotensive episode (AHE)
is carried out by means of multi-models trained using mean
arterial blood pressure signals (MAP).

The input consists of a MAP signal available before To, the
instant where the forecast period starts. From a correlation analysis
procedure, between the current MAP signal and a set of MAP
templates, representative of historical MAP evolution trends, the
most similar templates are identified. After that, the correspondent
neural multi-models, previously trained using those historical
templates, are selected and employed to predict the future evolu-
tion of the current MAP input signal, from instant To until the end
of the forecast window. Finally, the occurrence of an AHE is
straightforward determined.

This section starts by introducing the general multi-model
scheme approach for prediction purposes. Then, the neural network
mplates
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models structure and their incorporation into the multi-model
scheme are presented. Finally, the prediction of AHE based on this
strategy is addressed.

3.1. Multi-models

Regression representations are common techniques for mod-
eling and prediction tasks. By means of autoregressive represen-
tations, information from past instants can be used to estimate
future values, usually one-step ahead. Consider a single-input
single-output (SISO) system described by the following discrete-
time nonlinear autoregressive (NAR) model:

yðkÞ ¼ f1ðyðk�1Þ,yðk�2Þ,:::,yðk�NÞÞ ð1Þ

where y(k) is the measured value (scalar) at instant k, N is the order

of the model and f1 is the model/mapping such that f1:RN-R. At
each instant k, it is assumed the availability of the information
j(k)ARNþ1 is composed of current and past data (N instants).

jðkÞ ¼ fyðkÞ,yðk�1Þ, yðk�2Þ, . . ., yðk�NÞg ð2Þ

Using this autoregressive representation, the output at instant
kþ1, y(kþ1), can be estimated using the available information
j(k)and the mapping f1, as follows:

ŷðkþ19kÞ ¼ f1ðyðkÞ, yðk�1Þ, . . ., yðk�Nþ1ÞÞ ð3Þ

Following the same approach, the output at instant kþ2 can
also be estimated using the same formulation, as given by:

ŷðkþ29kÞ ¼ f1ðŷðkþ19kÞ, yðkÞ, . . ., yðk�Nþ2ÞÞ ð4Þ

Using this representation, the value ŷðkþ19kÞ is one input of the
f1 mapping, which is used for the prediction of value ŷðkþ29kÞ. Since
the value ŷðkþ19kÞ is an estimation of the actual output y(kþ1),
prediction errors are propagated and long-term predictions cannot
be accurately performed by means of autoregressive models.

Using a multi-model strategy, one independent sub-model is
employed for each sampling instant within the prediction hor-
izon. Consequently, future predictions do not depend on previous
predictions, allowing to obtain more accurate estimations.
According to multi-model approach [22], Eq. (4) can be reformu-
lated using Eqs. (3) and (1), originating the recursive Eq. (5),
equivalent to the non-recursive Eq. (6)

ŷðkþ29kÞ ¼ f1ðf1ðyðkÞ, . . ., yðk�Nþ1ÞÞ, yðkÞ, . . ., yðk�Nþ2ÞÞ ð5Þ

ŷðkþ29kÞ ¼ f2ðyðkÞ, yðk�1Þ, . . ., yðk�Nþ1ÞÞ ð6Þ

The mapping f2 is a new mapping such that f2:RN-R. In
general, a specific future time instant P can be expressed by Eq.
(7), being fP a mapping such that fP:RN-R

ŷðkþP9kÞ ¼ fPðyðkÞ,yðk�1Þ, . . ., yðk�Nþ1ÞÞ ð7Þ

Thanks to this structure, predictions over a forecast horizon do
not depend on previous predictions, but only on information
available at current instant k, j(k). On the other hand, one
independent model (fi) has to be used for each sampling instant
within the prediction horizon. As a result, if a future instant P has
to be predicted, P distinct regression models have to be derived.
Fig. 3 illustrates this prediction process using multi-models.

3.2. Neural-network regression models

Artificial neural networks (ANN) have been widely used in
several areas due to their powerful capacity to capture nonlinear
mappings, high accuracy for learning and good robustness proper-
ties [23]. They also have the capacity to learn the behavior of
poorly understood phenomena and systems where the dependency
between inputs and outputs are too complex to be mathematically
described. Additionally, the prediction results of a well-trained
neural network are usually accurate.

Therefore, each regression sub-model (fi) is here implemented
by means of a neural network model. In particular, generalized
regression neural networks (GRNN), a type of radial basis function
networks, are considered. In effect, GRNN models can be seen as a
normalized radial basis function (RBF) network, in which there is
a hidden unit centered at every training case. These RBF units are
called ‘‘kernels’’ and are usually probability density functions,
such as Gaussian functions. The weights from hidden to output
layer are just the target values, so the output is simply a weighted
average of the target values of training cases close to the given
input case. As a consequence, the only parameters to be learned
are the widths of the RBF units [24].

Fig. 4 depicts an example of a particular GRNN, consisting of
three inputs xi, i¼1, 2, 3 and one output, y. Furthermore, four
hidden neurons, hi, i¼1, ..., 4, are considered, as a result of four
training cases {xti,yt} t¼1, .., 4 i¼1, .., 3.

Receiving the vector of input values ðx¼ x1 x2 x3
� �T

Þ from
the input layer, the hidden layer hi(U) computes the Euclidean
distance between the input vector and the neuron’s center of the
kernel (predetermined by the training inputs xt), and then
computes the RBF kernel function, jt(x�xt). The resulting values
are passed to the numerator and denominator neurons in the
pattern layer, respectively, c1(U) and c2(U). This second unit
(denominator) adds the values coming from each of the hidden
neurons jt(U), while the first unit (numerator) adds those values
multiplied by the actual target value (yt) for each hidden neuron.
Finally, the decision layer, d, divides the value in the numerator
unit by the value in the denominator unit to derive the predicted
value, y(x). Mathematically, a GRNN can be described by (8):

yðxÞ ¼
c1ðUÞ

c2ðUÞ
¼

PNP
t ¼ 1 ytjtðx�xtÞPNP

t ¼ 1 jtðx�xtÞ
ð8Þ
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The vector x represents the current input, jt(U) identifies the
particular kernel radial basis function, yt is the target output
correspondent to the input xt and NP is the total number of
training pairs {xt,jyt} t¼1, y, NP. In case a Gaussian radial basis
function is used, follows Eq. (9), where the parameter s repre-
sents the kernels width

jtðUÞ ¼ exp�ðx�xt Þ
T
ðx�xt Þ=2s2

ð9Þ

The principal advantages of GRNN are their aptness for smooth
function-approximation, their ability to predict behavior of sys-
tems based on few training samples and their interpolation
properties between training samples [24]. They enable a fast
learning and are often more accurate than multilayer perceptron
networks. Moreover, they are especially advantageous due to its
ability to converge to the underlying function of the data with only
few training samples available. These properties make GRNN a
very useful tool to perform predictions [25]. On the other hand, like
kernel methods, they suffer from the curse of dimensionality
dilemma, requiring more memory space to store the trained model.

As mentioned, although multi-models are used for long-range
prediction, each neural network can be trained by means of a
standard backpropagation algorithm. Actually, as referred, the dimen-
sion of the training dataset {xt, yt} t¼1, y, NP, predetermines the
number of hidden neurons (NP). Thus, the training of a GRNN only
involves the estimation of the kernels width, s, Eq. (9). In the
application of the GRNN structure to the particular problem of AHE
prediction, the number of previous instants considered by each
model (designated here as the order) together with the time period
before the starting of the forecast window (designated here as size)
determine the dimension of the dataset, therefore the number of the
hidden layers. These size and order parameters will be detailed in
section 4.1.1. The width of each hidden neuron is automatically
determined using Matlab, based on an algorithm proposed by [26].

3.3. Application to the prediction of AHE

As illustrated in Fig. 2, the prediction of an AHE is based on a
set of multi-models trained using mean arterial blood pressure
Resampling Noise reductionMissing values
MAP

yr yym

Fig. 5. Pre-processing stages.
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The input consists of a discrete MAP signal (sampled once per
minute) considering the information available before To. This signal
passes through a set of pre-processing techniques, namely to deal
with missing information, noise reduction and normalization. Then,
a correlation analysis procedure is carried out using the processed
MAP signal and a set of MAP templates, representative of historical
MAP evolution trends. From this correlation analysis the most
similar templates are identified and the correspondent multi-
models, previously trained, are selected. These specific neural
multi-models are then employed to predict the future evolution of
the particular MAP input signal, from instant To until the end of the
forecast window (one hour). Finally, an AHE is identified if, accord-
ing to the challenge definition, at least 90% of the MAP predicted
signal is at or below 60 mmHg during a period of 30 min or more.

3.3.1. Pre-processing

Firstly, a pre-processing stage is applied to the original MAP
signal. This processing involves resampling the raw signals, deal
with missing values and perform a noise reduction, as illustrated
in Fig. 5.

In the first phase all MAP signals are resampled to 1 sample
per minute. Thus, for signals presenting a sampling rate of 1 Hz (A
and B testing datasets) the average of the blood pressure mea-
sured in each 60 samples is considered.

To deal with missing values a simple procedure is carried out.
In case the lack of MAP a first order linear interpolation is
performed. This process uses the values in the limits of the
missing interval, e.g, the last available value (on the left) and
the first available value (on the right).

For noise reduction a simple first order filter is used, consider-
ing a pole at 0.8.

yðkÞ ¼
0:2 q�1

1�0:8 q�1
ymðkÞ ð10Þ

Finally, the same duration is assumed, equal to T¼11 h, for all
signals. Specifically, periods of 10 h and 1 h are considered,
respectively, before and after the instant To.

Fig. 6 illustrates the pre-processing procedure for the particu-
lar signal H1_#1 (training set group H1 signal #1, h1_a40439). As
can be seen, missing values, approximately between instants 320
and 380 min and between 480 and 580 min, are replaced using
the described technique.
y(k)

400 500 600 660

ym(k)

To

Missing
values Missing values

ple/min); Ym - replacing of missing values; y—filtered signal.
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3.3.2. MAP templates and GRNN multi-models

To define the MAP templates a representative historical
dataset composed of past and future tendencies has to be
considered. In the proposed strategy, the template dataset con-
sists of 59 training records (H and C) is available in Physionet/
CinC challenge [27]. Actually, one signal was excluded (C2_#4,
c2_40234), since it presented a significant discontinuity in the
neighborhood of the instant To, which caused significant difficul-
ties during the training phase. Therefore, a matrix of D templates,
YARD� T, with D¼59 and T¼660 min is defined.

Y ¼

Y1

Y2

:::

YD

2
6664

3
7775 with YiART , i¼ 1. . .D ð11Þ

The pre-processing phase, described in the last section, is
applied to each Yi template.

To address future predictions, each of these time series templates
(H and C) is modeled using the GRNN multi-model approach. These
models are trained using past and future information (before and
after To). Moreover, to reduce the number of sub-models, each
GRNN structure is trained to deal with 15 step ahead predictions.
As result, given the forecast period (1 h), 4 neural sub-models are
considered for each MAP template (f1, f2, f3, f4). Consequently, the
total number of models is 59�4¼236.
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3.3.3. Prediction of MAP signals

Given a new MAP testing signal, truncated at time instant To, the
MAP forecast is done based on previous trained GRNN multi-models.
To select the specific multi-models, a correlation analysis procedure
takes place. Basically, correlation coefficients CCi between new MAP
signal and stored MAP templates are, in a first stage, calculated.

CCi ¼

PTo
k ¼ To�sizeðXk�XÞðYi

k�Y
i
kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPTo

k ¼ To�size ðXk�XÞ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPTo

k ¼ To�size ðY
i
k�Y

i
kÞ

2
q i¼ 1, . . ., D

ð12Þ

The correlation vector, CCARD, is computed for a specific
period of time (size), starting before the forecast window until
instant To (size parameter will be introduced in the next section).
The signal X represents the new MAP signal, with dimension
XART. As referred, the signal Yi represents the ith template
(i¼1, y, D) of the matrix Y. The scalars X and Y

i
define the

means of vectors X and Yi, respectively.
In a second stage, the MAP templates that present a correlation

coefficient verifying a given threshold value are selected. In
particular, being CCLARL (LrD) the vector composed of all
positive correlation coefficients (sorted in descending order), the
first M templates are selected, such that Eq. (13) is verified.

PM
i ¼ 1 CCLðiÞPL
i ¼ 1 CCLðiÞ

4tolerance ð13Þ

The parameter tolerance is a pre-defined scalar, aiming to only
select the most relevant multi-models (with the highest correla-
tion). Therefore, using this approach a variable number of multi-
models is selected for each particular MAP signal.

Finally, the occurrence of an AHE is assessed according to the
AHE definition [27], considering the predicted MAP signal yp(k) over
the forecast window. For the forecast of the MAP signal, a weighted
average of the predictions performed by the M multi-models is
computed, as described by Eq. (14).

ypðkÞ ¼

PM
i ¼ 1 CCLðiÞ � Yi

PM
i ¼ 1 CCLðiÞ

k¼ To, . . ., Toþ60 ð14Þ
4. Results

Following, the main topics of validation results are presented.
It should be referred that all the implementations done in this
work (regarding database access, signal processing, classification,
training and validation) were carried out using Matlab [28].

4.1. GRNN multi-models

4.1.1. GRNN size and order

When modeling each MAP signal template, the selection of the
order (N) and the size (S) is of particular importance. The parameter
size is defined as the period before the starting of the forecast
window, from where information is used for training purposes. The
parameter order defines the previous instants considered by each
model, Eq. (1). In order to estimate these parameters an optimiza-
tion procedure was carried out, by means of the minimization of
the least square prediction error over the forecast window

min
size,order

Xk ¼ Toþ60

k ¼ To

ðyðkÞ�ypðkÞÞ
2

ð15Þ

Variables y(k) and yp(k) define, respectively, the actual and the
predicted MAP signal. The referred minimization procedure was
performed considering different values for the order and size

parameters, specifically in the ranges orderA[60y90] and
sizeA[120y180], with increments of 10 min.

Fig. 7 depicts the histogram regarding the order and size

parameters obtained for all test datasets (H and C datasets, 60
signals). As can be seen, the predominance of the models can be
described by (order, size)¼(60, 170) and (order, size)¼(80, 140).
The statistic analysis of mean and standard deviation results in
the following values: mean(size)¼152 min, std(size)¼15 min;
mean(order)¼70 min, std(order)¼9 min. Based on these results,
it can be concluded that the evolution of the MAP signals can be
characterized, on average, using the past 70 minutes (order), and
the models should be trained using the past 2.5 h (size).

4.1.2. GRNN training

The GRNN structures were defined and trained using the
newgrnn function [25], available in Matlab toolbox. Basically,
the training of a GRNN is performed in a single step (no back-
propagation of error is involved). In particular, the training
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comprises the determination of kernels widths. Fig. 8 presents the
training results for the particular testing record H1_#4
(h1_a40834). For this specific signal, the size and order values
are, respectively, 140 and 80 min.

It is important to stress that the neural network multi-models
predict future behavior of signals over the whole prediction
horizon, only using information available before the starting of
the forecast window (instant To).
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4.2. AHE prediction in the challenge context

Using the present strategy, test datasets available in the
Physionet/CinC challenge (10 records of A dataset, and 40 records
of B dataset) were used for validation purposes. Firstly, each of
these 50 signals was correlated with the MAP templates, con-
sidering a specific period of size minutes before instant To (which
depends on the specific signal). The correspondent GRNN models,
determined from the correlation analysis procedure, were used to
predict future MAP values.

Fig. 9 shows the prediction over the forecast window for the
particular signal A_#10 (a_110bnm). For the determination of
models to be employed, a tolerance of 0.15 was considered in Eq.
(13). From this computation, 4 templates (M¼4) were obtained.
These templates correspond to the training records C2_#9
(c2_a40329), H1_#9 (h1_a41835), C2_#8 (c2_a40306) and
C2_#10 (c2_a40355), with correlation coefficients of 0.5370,
0.5126, 0.5031 and 0.4997, respectively.

The final MAP predicted signal is computed as the weighted
average of all four estimated predictions, Eq. (14), being the
identification of an episode straightforward performed using the
definition of AHE. In this work, an AHE is considered to occur if in
a period of 20 min or more, at least 90% of the MAP measure-
ments are at or below 60 mmHg (instead of the 30 min originally
defined by the challenge). This reduction is mainly due to the
processing phase, since it introduces some delay in the signal
evolution as well as it produces a smoothness of the original
signal. Fig. 10 shows the prediction of the specific MAP signal
A_#10 (a_110bnm) over the forecast horizon, resulting from the
weighted average of the mentioned templates. For this particular
case, using the previous definition an AHE is identified.

Table 1 presents the global results for the 2009 PhysioNet/
Computers in Cardiology challenge. As can be observed, for the
event 1 (using dataset A) 5 AHE were identified, corresponding to
the signals {1, 2, 4, 9, 10}. For the event 2 (using dataset B) 15
episodes were identified.

The proposed methodology achieved a correct prediction of 10
out of 10 AHE for event 1 and of 37 out of 40 AHE for event 2,
which were the best results of all entries in the two events of the
challenge.
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4.2.1. Discussion of results

The obtained results can be described in terms of sensitivity,
specificity and accuracy. Sensitivity (SE), Eq. (16), gives the
percentage of actual AHE that were correctly identified; specifi-
city (SP), Eq. (17), gives the percentage of AHE that did not occur
and were correctly identified, and accuracy (AC), Eq. (18), gives
Table 1
AHE detection.

AHE detected

Dataset A 1, 2, 4, 9, 10

Dataset B 2, 3, 5, 7, 9, 14, 17, 18, 22, 23, 25, 26, 34, 38, 39
the total percentage of correct predictions.

SE¼
TP

TPþFN
ð16Þ

SP¼
TN

TNþFP
ð17Þ
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Fig. 11. MAP signals incorrectly classified: predicted and actual values.
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AC ¼
TPþTN

TPþTNþFPþFN
ð18Þ

The variables TP, TN, FP and FN define, respectively, true
positive, true negative, false positive and false negative events
detected.

In the validation phase, three incorrect predictions were made:
one FN event {B_#26} and two FP events, {B_#5, B_#24}. As
result, the global sensitivity, specificity and accuracy values were,
respectively, SE¼94.74%, SP¼93.55% and AC¼94.00%.

Fig. 11 shows the predicted results as well as the actual MAP
signals for the AHE incorrectly classified (the last were made
available only after the conclusion of the challenge).

Concerning the FN episode (record B_#24), as can be seen in
Fig. 11(a), actual MAP signal presents a sudden drop approxi-
mately at instant Toþ35 minutes. Although the multi-model
strategy was able to capture the evolution trend of the signal it
was not fast enough to identify the AHE event.

Regarding the FP episodes (records B_#5 and B_#26), there is
not an obvious justification for the verified situations. Since the
proposed strategy only uses MAP history and no clinical informa-
tion (observations, medication), possibly for these particular cases
other sources of information (such as clinical record data) should
be considered, in order to achieve a correct prediction. On the
other hand, given that the prediction scheme is based on a set of
representative templates, these particular signal evolutions can
be interpreted as uncommon behaviors that are not characterized
by these templates.

In conclusion, although the obtained results are relevant, the
experiments performed have suggested that additional clinical
information, such as medication, should be considered in a future
implementation. Additionally, one of the drawbacks of the pro-
posed strategy relies on the number of models involved (236
models). A methodology able to reduce this number should be
also considered, in order to improve the robustness of the
approach.

4.3. AHE prediction using an extended dataset

Finally, the prediction strategy was tested considering a larger
number of cases, obtained from MIMIC II waveform database
(mimic2db) that contains 3915 records of adult ICU patients.
From these, a representative sub-set of 311 records of blood
pressure signals was selected. To increase the probability to
obtain an AHE episode, segments where blood pressure values
were higher or lower than a pre-specified threshold (respectively
75 and 50 mmHg) were discarded. As a result, a total of 2344
segments were obtained, each one with duration of 11 h. From
these, 285 contained an AHE episode.

Fig. 12 illustrates the selection procedure of the cases to be
tested.

4.3.1. Discussion of the results

Applying the proposed prediction methodology to the 2344
cases previously referred, a global sensitivity of SE¼82.8% and a
global specificity of SP¼78.4% were obtained. Although these
results are not so relevant as the ones achieved in the challenge,
they still are satisfactory. Moreover, it is important to note that
the neural network models have not been re-trained. Actually,
they were the same that were trained using the original dataset
consisting of 60 records, which can justify the deterioration of the
AHE detection performance. Possibly, the use of a larger training
dataset could contribute to improve these results.
5. Conclusions

In this work, generalized regression neural network models,
integrated into a multi-model structure, were proposed to
address time-series prediction over a forecast horizon. Although
this is a generic technique, with potential to be employed in
different areas, it was validated in the prediction of acute
hypotensive episodes. The methodology consists of two steps:
in the first, a correlation analysis procedure is carried out
between the current signal and a representative set of historical
evolution trends signals. The most similar ones (templates) are
identified and the correspondent prediction neural models, pre-
viously trained using those historical signals, selected. In the
second step this multi-models structure is employed to the
current signal to predict its future evolution.

Applied to the mean arterial blood pressure (MAP) time-series,
considered in the 2009 PhysioNet/Computers in Cardiology chal-
lenge, the referred strategy allowed to adequately capture MAP
evolution and, consequently, to detect the occurrence of hypo-
tensive episodes. In this context, a correct prediction of 10 out of
10 AHE for event 1 and of 37 out of 40 AHE for event 2 was
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achieved (SE¼94.74% and SP¼93.55%), enabling to obtain the
best results of all entries in the two events of the challenge. One
the other hand, applied to an extended dataset of blood pressure
signals also collected from MIMIC-II, the strategy attained values
of SE¼82.8% and SP¼78.4%.

Despite the success achieved by the proposed methodology,
future work should consider other sources of information, as well
as the reduction of the number of templates and, consequently,
the number of multi-models involved.
Conflicts of interest

None declared.
Acknowledgments

This work was supported by HeartCycle, a project partly
funded by the European Community’s Seventh Framework Pro-
gram, FP7-216695, and by CISUC, Center for Informatics and
Systems of University of Coimbra, Portugal.

References

[1] J. Piccini, K. Nilsson, The Osler Medical Handbook, in: R. Scott Stephens,
S. Haldar, C. Wiener (Eds.), Hypotension and Shock, 2nd ed.,Elsevier, Saun-
ders, 2006 (Chapter 20).

[2] D. Singla, et al., Risk factors for development of early hypotension during
spinal anesthesia, J. Anaesth. Clin. Pharmacol. 22 (4) (2006) 387–393 387.

[3] C.-S. Lin, et al., Predicting hypotensive episodes during spinal anesthesia with
the application of artificial neural networks, Comput. Methods Programs
Biomed. 92 (2008) 193–197.

[4] J. Bassale, Hypotension Prediction—Arterial Blood Pressure Variability, Tech-
nical Report, 2001.

[5] C. Crespo, et al., Precursors in the arterial blood pressure signal to episodes of
acute hypotension in sepsis, in: Proceedings of the 16th International
EURASIP Conference BIOSIGNAL, vol. 16, 2002, pp. 206–208.

[6] L. Lehman, M. Saeed, G. Moody, R. Mark, Similarity-based searching in multi-
parameter time series databases, Computers in Cardiology 35 (2008)
653–656.

[7] M. Saeed, Temporal Pattern Recognition in Multiparameter ICU Data.;
Doctoral dissertation, Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, 2007.
[8] Saeed, M., Mark, R.; A. Novel Method for the efficient retrieval of similar
multiparameter physiologic time series using wavelet-based symbolic repre-
sentations, in: Proceedings AMIA Annual Symposium Proceedings 2006,
2006, pp. 679–683.

[9] A. Frolich, D. Caton, Baseline heart rate may predict hypotension after spinal
anesthesia in prehydrated obstetrical patients, Can. J. Anesth. 49 (2002)
185–189.

[10] G. Pelosi, et al., Impaired sympathetic response before intradialytic hypoten-
sion: a study based on spectral analysis of heart rate and pressure variability,
Clin. Sci. 96 (1999) 23–31.

[11] D. Reich, S. Hossain, M. Krol, et al., Predictors of hypotension after induction
of general anesthesia, Anesth. Analg. 101 (2005) 622–628.

[12] D. Chamchad, V. Arkoosh, J. Horrow, et al., Using heart rate variability to
stratify risk of obstetric patients undergoing spinal anesthesia, Anesth. Analg.
99 (2004) 1818–1821.

[13] R. Hanss, et al., Heart rate variability predicts severe hypotension after spinal
anesthesia, Anesthesiology 104 (2006) 537–545.

[14] R. Hanss, B. Bein, T. Ledowski, et al., Heart rate variability predicts severe
hypotension after spinal anesthesia for elective cesarean delivery, Anesthe-
siology 102 (2005) 1086–1093.

[15] R. Hanss, B. Bein, H. Francksen, et al., Heart rate variability-guided prophy-
lactic treatment of severe hypotension after subarachnoid block for elective
cesarean delivery, Anesthesiology 104 (2006) 635–643.

[16] L. Mancini, et al., Short term variability of oxygen saturation during
hemodialysis is a warning parameter for hypotension appearance, Comput.
Cardiol. 35 (2008) 881–883.

[17] J. Lee, R. Mark, An investigation of patterns in hemodynamic data indicative
of impending hypotension in intensive care, BioMedical Engineering OnLine
9.1, 62, 2010.

[18] /http://www.physionet.org/challenge/2009/training-set.shtmlS (training data).
/http://www.physionet.org/pn3/challenge/2009/S (test data).

[19] PhysioNet/Computers in Cardiology Challenge 2009, Predicting Acute Hypo-
tensive Episodes Home Page. /http://www.physionet.org/challenge/2009/S.

[20] M. Saeed, C. Lieu, G. Raber, R.G. Mark, I.I. MIMIC, A massive temporal ICU
patient database to support research in intelligent patient monitoring,
Comput. Cardiol. 29 (2002) 641–644.

[21] /http://mimic.physionet.org/S.
[22] Lawrynczuk, M., Computationally efficient nonlinear predictive control based

on RBF neural multi-models, In: Proceedings of the 18th International
Conference on Artificial Neural Networks, Prague, Czech Republic, 3–6
September, 2008.

[23] S. Haykin, Neural Networks and Learning Machines, third ed., Prentice Hall,
2008.

[24] Bauer, M.r1995.
[25] P. Sherrod, DTREG Predictive Modeling Software, Copyright& 2003–2010.

/www.dtreg.comS.
[26] P. Wasserman, Advanced Methods in Neural Computing, Van Nostrand

Reinhold, New York, 1993, pp. 155–161.
[27] G.B. Moody, L.H. Lehman, Predicting acute hypotensive episodes: the 10th

annual PhysioNet/computers in cardiology challenge, Comput. Cardiol.
(2009).

[28] MatLab; Mathworks, Inc., 2007.

http://www.physionet.org/challenge/2009/training-set.shtml
http://www.physionet.org/pn3/challenge/2009/
http://www.physionet.org/challenge/2009/
http://mimic.physionet.org/
www.dtreg.com

	Prediction of acute hypotensive episodes by means of neural network multi-models
	Introduction
	The 2009 physionet/computers in cardiology challenge
	Challenge goal
	Mimic-II project
	Training and test datasets
	Challenge events

	Methodology
	Multi-models
	Neural-network regression models
	Application to the prediction of AHE
	Pre-processing
	MAP templates and GRNN multi-models
	Prediction of MAP signals


	Results
	GRNN multi-models
	GRNN size and order
	GRNN training

	AHE prediction in the challenge context
	Discussion of results

	AHE prediction using an extended dataset
	Discussion of the results


	Conclusions
	Conflicts of interest
	Acknowledgments
	References




