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a b s t r a c t

In this work a new strategy for automatic detection of ischemic episodes is proposed. A new measure for
ST deviation based on the time–frequency analysis of the ECG and the use of a reduced set of Hermite basis
functions for T wave and QRS complex morphology characterization, are the key points of the proposed
methodology.

Usually, ischemia manifests itself in the ECG signal by ST segment deviation or by QRS complex and
T wave changes in morphology. These effects might occur simultaneously. Time–frequency methods
are especially adequate for the detection of small transient characteristics hidden in the ECG, such as
ST segment alterations. A Wigner–Ville transform-based approach is proposed to estimate the ST shift.
To characterize the alterations in the T wave and the QRS morphologies, each cardiac beat is described
ermite functions

igner–Ville transform
eural networks classifier

by expansions in Hermite functions. These demonstrated to be suitable to capture the most relevant
morphologic characteristics of the signal. A lead dependent neural network classifier considers, as inputs,
the ST segment deviation and the Hermite expansion coefficients. The ability of the proposed method
in ischemia episodes detection is evaluated using the European Society of Cardiology ST–T database. A
sensitivity of 96.7% and a positive predictivity of 96.2% reveal the capacity of the proposed strategy to

es ide
perform ischemic episod

. Introduction

The World Health Organization estimates that 17.5 million peo-
le died of cardiovascular diseases in 2005, representing 30% of all
lobal deaths. Out of these, 7.6 million were due to coronary artery
isease (CAD) [1]. As one of the leading causes of death worldwide,
his cardiovascular condition represents a focus of international
nterest. On the other hand, the use of new monitoring technolo-
ies and specialized processing based on wearable and information
echnologies, provide professionals with adequate information that
llows the evaluation of cardiovascular conditions and symptoms
rogression, enabling the early detection of forthcoming clinical

evere conditions [2]. In this context, personal Health systems
pHealth) are a new and fast growing concept. The patient is at the
enter of the health delivery process and, through remote mon-
toring and management applications, pHealth systems aim the
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continuity of care at all levels of health care delivery. Following this
perspective, several research projects have been developed over
the past few years [3].

This work focuses coronary artery disease and, in particular,
the development of algorithms for myocardial ischemia detection.
Moreover, the feasibility of incorporating the designed algorithms
into pHealth monitoring systems (e.g. personal data assistant) is
also a fundamental aspect and, therefore, the computational effi-
ciency of the algorithms is essential.

In CAD, coronary arteries become narrowed by atherosclerosis,
restricting the supply of blood and oxygen to the heart. This depri-
vation may originate a cardiac disorder called myocardial ischemia,
which can be silent, without evidence of symptoms, or it might
be characterized by chest pain also known as angina pectoris. A
severe and sudden blockage of coronary arteries causing a pro-
longed lack of blood supply to the heart may lead to a myocardial
infarction due to cellular necrosis. Moreover, myocardial ischemia
is the pathological substrate to originate serious abnormal heart

rhythms (arrhythmias), which can cause fainting or frequently sud-
den death. Hence, it is observed that early diagnosis and treatment
of CAD is of primary importance to avoid serious consequences for
patient’s health, treatment success and quality of life. In effect, if
blood supply of the heart muscle is timely reestablished, myocar-
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2. Proposed methodology

Fig. 1 depicts the schematic diagram of the methodology fol-
lowed in this work. The input consists of a discrete ECG signal,
which is passed through a set of preprocessing stages for noise
72 T. Rocha et al. / Biomedical Signal P

ial ischemia can be reversed, cellular necrosis limited and severe
omplications avoided.

The analysis of the electrocardiogram’s (ECG) characteristics,
amely the ST segment deviation as well as the QRS complex and
he T wave morphologies, are determinant for accurate detection
f ischemic episodes [4]. The automatic diagnosis of myocardial
schemia based on the ECG signal usually involves two phases:
schemic beat classification and ischemic episode identification. In
he first phase, each cardiac beat is labeled as normal or ischemic
nd, in the second phase, sequential ischemic beats are appropri-
tely grouped in order to identify ischemic episodes.

In the context of ischemic beat detection and ischemic episodes
dentification using the ECG, several methodologies have been
eveloped. Time, frequency and time–frequency domain analy-
is techniques [5–10] have been successfully applied for feature
xtraction and analysis. Some authors have explored the projection
nto different sets of basis functions for feature extraction. In this
ontext, principal component analysis (PCA) and Karhunen–Loève
ransform (KLT) [11–13] have been extensively utilized, while a few
umber of works have used discrete Hermite functions [14]. The
lassification stage has been tackled using different approaches. For
nstance, artificial neural networks-based methods [15–17] have
een proposed. Other authors favor rule-based [18,19] and fuzzy
ule [20,21] approaches.

In terms of time and frequency domain analysis techniques,
kselrod et al. [5] proposed the first method for direct analysis
f the ST segment. It is based on a single measure of the magni-
ude of the point located 104 ms after the R peak. Another method
as proposed by Benhorim et al. [6], in which two points, consid-

red as the start and end points of the ST segment, are calculated
epending on the RR interval of each beat. Badilini et al. [7] pre-
ented an algorithm that uses statistic variables, extracted from
he frequency distributions of ST displacements, to discriminate
etween normal and ischemic ambulatory ECG recordings. Further-
ore, ischemic episodes are identified by using a cluster technique.
arcia et al. [8], applied an adaptive amplitude threshold method

o the root mean square series of differences between ST–T complex
or ST segment) and an average pattern segment, to detect ischemic
pisodes. Ranjith et al. [9] employed a wavelet transform to deter-
ine ECG characteristic points from which ST segment deviation

nd T wave amplitude measures are obtained and used to detect
schemic episodes. Milosavljevic and Petrovic [10] proposed the use
f wavelets for extracting myocardial ischemia characteristic pat-
erns, which are obtained through different decomposition scales.
T deviation is calculated for each beat and the number of ST devi-
tions is correlated with the time of consecutive appearances in
rder to distinguish normal from ischemic ECGs.

Regarding methods based on neural networks, Maglaveras et
l. [15] introduced an adaptive backpropagation neural network to
dentify ischemic beats. In this approach, ischemic episodes clas-
ification is achieved by analyzing a sequence of classified beats.
ohebbi and Moghadam [17] also proposed a beat classification
ethod based on an adaptive backpropagation neural network. In

16], Papaloukas et al. employed a feed-forward neural network
trained using a Bayesian regularization method) as a beat classifier,
hich was integrated into a four-stage procedure for the detection

f ischemic episodes.
With respect to PCA and KLT approaches, Castells et al.

11] reviewed the application of principal component analysis
echniques for the detection of myocardial ischemia and abnor-

alities in ventricular repolarization. Pang et al. [12] utilized

arhunen–Loève transform parameters extracted from ST–T com-
lex and a measure of the ST segment deviation to detect ischemia
y means of an adaptive neuro-fuzzy logic classifier. In turn, Afsar
t al. [13] used Karhunen–Loève transform to reduce ST segment
ata together with an ensemble of lead-specific neural networks
ing and Control 5 (2010) 271–281

classifiers to detect ST segment deviation episodes. In terms of Her-
mite functions based methods, Gopalakrishnan et al. [14] used ECG
expansion in discrete Hermite functions for a real-time monitoring
of ischemic changes. Namely, the first fifty Hermite coefficients are
applied as inputs to a committee neural network classifier, trained
to identify ischemic beats.

Regarding rule-based systems methods, Papaloukas et al. [18]
proposed a strategy to detect ECG changes suggestive of ischemia
using a rule-based expert system. Specifically, the system is able to
distinguish between episodes of ST segment deviation and T wave
changes. Andreao et al. [19] presented an ischemia detection sys-
tem that uses a hidden Markov model approach for online beat
detection and segmentation, and a rule-based classifier for ischemic
episodes detection, derived from some heuristic rules defined by
cardiologists.

Vila et al. [20] developed an intelligent monitoring system
supported on fuzzy set theory, which uses three electrocardio-
graphic leads and one invasive cardiovascular pressure signal in
real-time to detect ischemic episodes. Exarchos et al. [21] proposed
a methodology to create fuzzy expert systems for ischemic beats
detection that involves a set of rules extraction using a decision
three.

Despite of the many works that have been developed in the con-
text of ischemia automatic detection, the results achieved in terms
of sensitivity and positive predictivity can yet be improved. Thus,
the search for better results is an incentive for further investigation.

In the present paper a new methodology for automatic detection
of ischemic episodes is proposed considering the ST segment devi-
ation, the T wave and the QRS morphology variations. In effect, it is
known that variations in the ST segment are not always associated
with ischemia. For example, sudden changes in QRS morphology
can reflect shifts in the electrical axis and ventricular depolariza-
tion of the heart, which usually causes considerable alterations in
the ST segment level [11]. Thus, taking into account the QRS mor-
phology, it is expected to improve the detection of true ischemic
beats. A new measure of ST deviation based on the time–frequency
analysis of the signal and the expansion onto Hermite basis func-
tions to capture the T wave and the QRS complex morphologies are
the key points of the proposed strategy.

The paper is organized as follows: in the next section the pro-
posed methodology is described, in Section 3 validation results,
using the European Society of Cardiology (ESC) ST–T database, are
presented and, finally, in Section 4 some conclusions are drawn.
Fig. 1. Proposed ischemic episode detection methodology.
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Table 1
ST deviation—measuring point.

Heart rate (bpm) Measuring point

<100 Rpeak + 120 ms
Fig. 2. Baseline removal.

eduction, fiducial points identification, premature ventricular con-
ractions (PVCs) elimination and baseline removal. Following this,
he algorithm involves two processing steps: firstly, each individ-
al beat is classified as normal or ischemic. For this end, features
ased on the ST deviation, the T wave and the QRS complex mor-
hologies are considered. Secondly, ischemic episodes detection is
erformed using a sliding window procedure. The detailed algo-
ithms are introduced in the next subsections.

.1. Preprocessing

The first stage of preprocessing is concerned with noise reduc-
ion. This is achieved by applying a low-pass filter to the ECG signal.
n particular, a 4th order Butterworth low-pass filter, with a cut off
requency of 40 Hz, is employed for this purpose.

Afterwards, a segmentation algorithm is used in order to identify
he beginning, the peak and the end of each ECG characteristic wave
P, Q, R, S and T). The applied algorithm is based on the work intro-
uced by Sun [22]. After the segmentation stage, PVCs are detected
nd removed from the signal. The algorithm implemented for this
ask is adapted from Couceiro et al. [23].

The final preprocessing stage consists of baseline wander
emoval. Baseline wander presence increases the difficulty of the
CG analysis, especially while assessing ST segment deviation.
ince the spectrum of baseline wander and the low frequency com-
onents of the ECG usually overlap, baseline removal using filtering
an cause significant distortion of important clinical information,
articularly, ST segment alterations. An effective baseline removal
pproach has been proposed by Wolf [24]. This method does not
equire isoelectric level determination and preserves the low fre-
uency ECG information. Originally, the method considered the
verage of the distances between consecutive R peaks to split the
ignal into cardiac cycles. As it is illustrated in Fig. 2, based on the
egmentation procedure previously mentioned, Wolf’s method is
odified to consider as starting and ending points the start of the P
ave (Pbegin) and the end of the T wave (Tend), respectively. The aver-

ge of the first and last N cardiac cycle samples (in this work N = 5)
s used to define a first order polynomial. Fundamentally, baseline
hift is approximated by this first order polynomial being the base-
ine removal procedure completed by subtracting this baseline shift
rom the original cardiac cycle signal.

.2. Features extraction

The approach followed here, assumes that variations in the
wave and QRS complex morphologies, and the ST segment

hift estimation, can be used to discriminate ischemic from non-
schemic episodes.
.2.1. ST segment deviation
The ST segment deviation is assessed considering two different

pproaches. In the first, the ST deviation is evaluated based on the
100–110 Rpeak + 112 ms
110–120 Rpeak + 104 ms

>120 Rpeak + 100 ms

heart rate and on the R peak location. This information can be easily
obtained by means of any ECG segmentation algorithm. Mainly for
this reason, this is a very simple and practical method, guarantying
robustness, even in the presence of noise and artifacts. However,
since it basically depends on the R peak location and not on the
ECG waves morphology, this method does not guarantee accurate
results. On the other hand, the second approach, based on the time
frequency analysis is able to explicitly capture the transient char-
acteristics of the ECG waves. Given these properties, this method is
ideal to estimate the ST deviation being, however, more sensitive to
noise and artifacts. The strategy followed in this work aims to take
advantage of both approaches by providing accurate ST estimation
in the case of noise free signals, while ensuring satisfactory results
in the presence of artifacts.

2.2.1.1. ST segment deviation based on R peak location. Through a
correlation analysis procedure, three algorithms for ST shift estima-
tion ([5,12,25]) have been implemented, compared and validated
using the ESC ST–T database. In view of the obtained results, the
method proposed by Pang et al. [12] was chosen for this task. In
this method, the ST segment deviation is evaluated in a point that
depends on the heart rate and on the R peak location, according to
Table 1.

2.2.1.2. ST segment based on time–frequency analysis. In general,
time–frequency methods are applied to provide a more detailed
view of the time distribution of the spectral components that con-
stitute a signal. In particular, it is recognized that time–frequency
methods are especially adequate for the detection of small transient
characteristics hidden in the ECG, such as ST segment alterations.
Thus, this work proposes a new approach for the estimation of ST
deviation based on a time–frequency analysis, in particular using
the Wigner–Ville transform, since it offers a good balance between
time and frequency resolution.

The Wigner–Ville distribution (WVD) Wx(t, f) for a complex con-
tinuous time signal x(t) is defined in the time domain as:

Wx(t, f ) =
∫ ∞

−∞
x
(

t + �

2

)
x∗

(
t − �

2

)
e−j2�f�d� (1)

where r(�) = x(t + (�/2))x*(t − (�/2)) is the instantaneous autocor-
relation function and the operator (*) indicates the conjugate
operation. The correspondent discrete time transform Wx(nT, f) is
given by Eq. (2).

Wx(nT, f ) = 2T

L∑
p=−L

x(n + p)x∗(n − p)w(p)w∗(−p)e−j4�fp (2)

In this equation, T represents the sampling period and w is a
sliding window, symmetrical and with finite-length duration, veri-
fying w(pT) = 0 for abs(p) > L. This relationship defines the discrete
WVD at the time origin. At any other point in time, the discrete

WVD can be obtained by shifting the signal x(t), so that time t is
mapped on the time origin. To avoid interference between the neg-
ative and positive regions of the spectrum, the equivalent analytic
signal of the real ECG time-series has to be used. In effect, it can be
obtained by adding to the real signal its Hilbert transform as the
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Fig. 3. WVD transform of a cardiac beat.

maginary part, as shown by Eq. (3).

(k) = X(k) + jH[X(k)] (3)

In the previous equation X(k), k = 1, . . . N, represents the real ECG
ignal (being N the number of samples), Y(k) denotes the equivalent
nalytic one and H[.] corresponds to the Hilbert transform.

The Wigner–Ville transform presents a constant resolution.
hus, specifically in the low frequencies, which are prevalent in
he ST segment, WV transform preserves a good time–frequency
esolution, while not presenting serious artifacts, as in higher fre-
uencies.

Fig. 3 illustrates the WV transform, corresponding to the cardiac
ycle shown in Fig. 4a.

Using this time frequency map, particular characteristics of a
pecific region can be analyzed. With respect to the ST shift esti-
ation, two time bands and one frequency band were taken into

ccount. Regarding the time bands, the regions considered were
hose on the left and on the right of the R peak, as seen in and
igs. 3 and 4a. In each of these time bands (Time band 1 and Time
and 2) the purpose is to determine the sections where there is
o signal activity. These points correspond, respectively, to the

soelectric line and to the ST segment deviation point. Regarding
he frequency band, the low frequency regions where the ST seg-
ent is prevalent is considered. Fig. 4b shows the low frequency
omponents (corresponding to the frequency content below 0.2
n the normalized frequency range). The isoelectric and J′ points
re identified by the minimums of the sum of the low frequency
omponents’ absolute value in each of the above mentioned time

Fig. 4. (a) Cardiac cycle and (b) respec
ing and Control 5 (2010) 271–281

bands. Having determined these points, the ST deviation value is
measured as the difference between the ECG’s amplitudes at the J′

and isoelectric points.

2.2.2. QRS complex and T wave characterization
As already mentioned, ischemia may induce morphology alter-

ations in the T wave and in the QRS complex. In order to characterize
changes in the T wave and in the QRS morphologies, each car-
diac beat is represented in a space spanned by a limited number
of Hermite basis functions. Basically, using the expansion in Her-
mite functions method, the signal of interest is decomposed into
a linear combination of orthonormal basis functions, which coeffi-
cients can be used as features in the classification process, just as
with the principal component analysis technique [11]. However,
the former has the advantage to be patient independent, since the
set of basis functions are predefined (Fig. 5) and do not require any
prior knowledge of the data set. This reason, coupled with its ability
in capturing the relevant morphology changes using a low number
of basis functions led to the choice of the expansion in Hermite
functions methodology for the present work.

2.2.2.1. Expansion in Hermite functions. The Hermite functions
form an orthonormal basis of L2(R), the space of integrable func-
tions. They can be determined as the product of a Gaussian by the
Hermite polynomials with some normalization constants [27], i.e.

Hn(t, l) = 1√
n!2n

√
�l

e−t2/2l2 Pn
(

t

l

)
(4)

In the previous equation Pn(t/l) represents the Hermite polyno-
mial of order n, with l as a scaling factor (allows width adjusting).
The Hermite polynomials can be determined by the following
recursive relations:

P0(x) = 1
P1(x) = 2x

Pn(x) = 2xPn−1(x) − 2(n − 1)Pn−2(x)
(5)

Fig. 5 shows the first six Hermite functions (n = 0, 1, . . ., 5), con-
sidering the scaling factor l = 3.

In order to approximate as closely as possible the shape of each
beat to the shape of the Hermite functions, while using a reduced

number of coefficients, each cardiac cycle was divided into two
segments: Segment1 is defined from the end point of the P wave
until the J′ point and Segment2 is defined from the J′ point until the
end of the T wave. Thus, two expansions in Hermite functions were
actually carried out for each cardiac beat. The goal was to describe

tive low frequency components.
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In order to determine the adequate number of Hermite basis

functions several experiments were carried out, which results are
summarized in Fig. 6. In effect, for a selected set of representative
Fig. 5. First six Hermite

ach discrete signal segment y(k) as

ˆ(k) =
m−1∑
j=0

cjH
j(k, l) (6)

In the previous equation, ŷ(k) stands for the estimated signal
egment, m defines the number of basis functions and cj corre-
pond to the expansion coefficients. The last ones can be obtained
y minimizing the sum squared error, as follows:

(cj) =
∑

k

⎡
⎣y(k) −

m−1∑
j=0

cjH
j(k, l)

⎤
⎦

2

(7)

In matrix notation, given a signal Y (N × 1) and being H a (N × m)
atrix formed by the Hermite functions
= [H0, H1, . . . , Hm−1] (8)

he vector of coefficients C (m × 1)

= [c0, c1, . . . , cm−1] (9)

Fig. 6. Approximation of Segment1 and Segment2 using Hermite functions.
ons (order n = 0 to n = 5).

is obtained by using a pseudo inverse formulation:

C = (HT H)
−1

HT Y = H+Y (10)

2.2.2.2. Number of Hermite basis functions, scaling factors and expan-
sion coefficients. One of the main assumptions in this work is that
the expansion coefficients C can reflect the changes in the ECG’s
morphology induced by ischemia and, therefore, be able to repre-
sent the second set of features used in beat classification process. It
is important to highlight that it is not fundamental to obtain very
low approximation errors. In fact, the underlying idea is that the
approximated signal and, indirectly, the Hermite coefficients have
the capacity to capture the most relevant morphologic character-
cardiac beats, several expansions were done considering different

Fig. 7. Approximation of a cardiac beat using expansion in Hermite functions.
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umbers of basis functions and the respective errors calculated (as
he difference between the real signal and the estimated one). Fig. 6
resents the mean error obtained from the selected set of signals,
hich is separately indicated for Segment1 and Segment2. From

he analysis of both error curves it can be concluded that a total
f six Hermite basis functions is a choice that leads to an accept-
ble error at the same time that guaranties a number of coefficients
ufficiently low for both segments.

Regarding, the scaling factors, a similar strategy was followed.
he estimation of the adequate scaling factors resulted from exper-
ments in which the values of these parameters were varied in a
iven range [2–15]. The scaling factors for each segment (Segment1
nd Segment2) were independently obtained by the minimization
f the error between the real and the estimated signals. These val-
es were of l = 5 and l = 8, respectively for Segment1 and Segment2.

The number of Hermite basis functions, as well as the values
f the scaling factors, were considered constants for all the sig-
als. Actually, as referred above, it was not fundamental to obtain
ery low approximation errors for each specific case, but to capture
he most relevant morphologic characteristics of each cardiac beat.

ith the selected values this goal was achieved.
Fig. 7 depicts a real cardiac beat and the correspondent approx-

mation using its expansion in Hermite functions. The Hermite
oefficients were evaluated for each segment (each one resampled
o 64 samples) using m = 6, and l = 5 and l = 8, for Segment1 and Seg-
ent2, respectively. For each segment, the resulting coefficients
ere C1 and C2, presented below.

C1 =
[

0.9835 −0.1700 −0.2926 0.1298 0.0595 −0.0840
]

C2 =
[

0.1631 −0.0041 −0.0451 0.0294 −0.0107 0.0188
]

(11)

To analyze how changes in the ECG morphology are reflected in
he Hermite coefficients, a simulated cardiac beat was created: the
rst segment presenting a deep Q wave and the second segment
xhibiting an inverted T wave. Fig. 8 shows this simulated cardiac
eat and the respective Hermite approximation. The correspondent
ermite coefficients are C1 and C2 presented below, with the same

caling factors as before.

C1 =
[

0.8561 0.3626 −0.2008 0.0496 −0.1550 0.1959
]

C2 =
[

−0.3369 −0.2261 0.0349 0.0955 −0.0562 −0.0092

(12)

For these two particular situations, the coefficients revealed the

orphology changes in the ECG. In fact, for the first segment, the
ajor variation occurred in the second coefficient that assumed
value of −0.1700 for the original signal and of 0.3626 for the

imulated one. This disparity reflects the Q wave variation, mainly
orresponding to the Hermite function observed in Fig. 5 with n = 1.

Fig. 9. Proposed classi
Fig. 8. Approximation of a cardiac beat using Hermite expansion.

For the second segment, the major variation was verified in the first
coefficient, which took a value of 0.1631 in the case of the original
segment and of −0.3369 in the case of the simulated one. Clearly,
this difference is related to the T wave inversion, as observed in
Fig. 5 with n = 0. These results confirm that the QRS complex and
the T wave morphologies can be characterized by a relatively small
number of Hermite functions and that the correspondent coeffi-
cients have the potential to be used as features for ischemic beats
identification.

2.3. Classification

The first classification strategy considered two classifiers: one
to deal with ST elevation and other to manage ST depression.
However, since the morphology of the ECG waves depends on
the specific ECG acquisition lead, the results achieved with this
approach were not significant when compared to the ones pre-
sented in literature. Therefore, to deal with the particularities of
each lead configuration, a lead dependent classification system was
the chosen solution. As a result, a specific classifier is implemented
for each lead.

Given their properties, neural networks have been recognized as

a powerful tool for pattern classification problems, especially when
applied to numeric data classification. In the context of ischemic
beats classification, neural networks have been extensively applied
with significant performances results [15,16]. Due to their univer-
sal approximation nature, low complexity and excellent results

fication scheme.
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Fig. 10. ST deviation.
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chieved in similar classification tasks, neural networks are used
n this work.

Fig. 9 depicts the main modules of the classification scheme.

.3.1. Beat classification
For classifier selection several experiments were carried out

ith different types of neural networks. The chosen strategy con-
ists of two independent feed-forward neural networks (FFNNs)
or each lead: the first classifies the nature of the ST elevation
f each beat and the second distinguishes beats with ST depres-
ion from others. After beat classification a sliding window with
ize of 40 beats is applied to each FFNN output signal in order to
liminate isolated misclassified beats. At the end, the outputs from
oth networks (elevation and depression) are combined by an OR
peration.

.3.2. Episode detection
Ischemia episodes detection involves two steps: first a sliding

indow procedure is applied to the entire ECG signal. The window’s
ength is set to 40 beats. It is considered as an ischemic episode if

ore than 50% of the beats are classified as ischemic. In a second
hase, the classification done in the previous step is reviewed and
pisodes with a separation of less than 40 beats are merged.

. Results

For algorithm validation purposes the European Society of Car-
iology ST–T database was used [25,26]. This database consists of
0 annotated excerpts of ambulatory ECG recordings from 79 sub-

ects for which myocardial ischemia was diagnosed or suspected.
ach record is 2 h in duration and contains two signals from 8 dif-
erent leads (V1, V2, V3, V4, V5, MLI, MLIII and D3). These signals are
ampled at 250 Hz. From the 90 complete records of this database,
8 records are freely available and were used in this work.

To assess the quality of the proposed algorithms, sensitivity (SE)
nd positive predictivity (PP) have been evaluated, according to Eqs.
11) and (12), respectively.

E = TP

TP + FN
(13)

P = TP

TP + FP
(14)

In the equations above, TP (true positives) represents the
nnotated beats/episodes in the database that were identified
y the algorithms, FN (false negatives) corresponds to the anno-
ated beats/episodes that were not detected and, finally, FP (false
ositives) denotes the number of beats/episodes that were not
nnotated in the database, but that were incorrectly identified by
he algorithms.

.1. Features extraction

The extracted features in each cardiac cycle were related with
T segment deviation as well as with the QRS and the T wave
orphology changes. ST deviation has been evaluated using both

pproaches described in Section 2.2.1. In turn, each cardiac beat
egment (Segment1 and Segment2) was approximated by a linear
ombination of the first six Hermite functions (orders 0–5). Taking
nto account that the expansion of each segment originated 6 coeffi-
ients, a total of 14 features were determined for each cardiac beat:
features related to the ST deviation and 12 Hermite coefficients.
ubsequently, a moving average filter of order 10 was applied to all
he features.

To validate the potential of the referred features in discrimi-
ating normal from ischemic beats, a linear correlation analysis
rocedure took place. In effect, the correlation coefficients between
Fig. 11. First three coefficients of Hermite expansion—Segment1.

the computed Hermite coefficients and the beat classification
according to ESC ST–T database were assessed. Table 2 presents the
average correlation coefficients and the respective standard devia-
tions computed from all the beats considered in this study. The ST1
and ST2 labels represent the ST deviation calculated using the two
different approaches mentioned before (Section 2.2.1) and the Hj
j = 0, . . ., 5, denote the Hermite coefficients from orders 0 to 5. The
values presented in Table 2 confirm the potential of the features in
question.

Figs. 10–12, illustrate this correlation analysis performed on the
e0103 record, channel 2, lead MLIII, which is composed of 6997
beats. In order to simplify the visualization, only some of the fea-
tures are depicted. Thus, Fig. 10 depicts the ST deviation obtained
using the Wigner–Ville approach. Fig. 11 shows the first three Her-
mite coefficients corresponding to Segment1 and Fig. 12 presents
the first three Hermite coefficients corresponding to Segment2. For
this particular example, the correlation coefficients obtained are
presented in Table 3.

The correlation coefficients presented in Table 3, as well as the

respective visualization in Figs. 10–12, demonstrate the discrimi-
nation effectiveness of the selected features.
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Table 2
Features correlation analysis.

Correlation coefficient ST deviation Hermite coefficients for Segment1 Hermite coefficients for Segment2

ST1 ST2 H0 H1 H2 H3 H4 H5 H0 H1 H2 H3 H4 H5

Average 0.63 0.64 0.30 0.34 0.41 0.40 0.37 0.35 0.35 0.41 0.28 0.46 0.48 0.63
Standard deviation 0.21 0.23 0.25 0.22 0.27 0.26 0.24 0.26 0.26 0.26 0.20 0.24 0.23 0.22

Table 3
Correlation analysis for the e0103 record.

ST deviation Hermite coefficients for Segment1 Hermite coefficients for Segment2

ST2 H0 H

Correlation coefficient 0.82 0.53 0

3
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end of them matched within a defined tolerance (40 beats) then

T
T

Fig. 12. First three coefficients of Hermite expansion—Segment2.

.2. Training and validation

.2.1. DataSet
Regarding training and validation, data subsets from the 48

reely available signals of the ESC ST–T database were selected
ccording to each lead. Each ECG record was split into two sub-
ecords, i.e. one from channel 1 and another one from channel
, originating 96 signals for training and validation. Each specific
lassifier for each lead was trained and validated using signals
ontained in the database for that lead type. Moreover, after the
reprocessing phase, some of the cardiac cycles were removed and
ere considered neither for training nor for validation purposes. In
his category are PVCs and noisy beats.
To validate beat classification, 81 of the 96 available signals

ere utilized. In effect, some signals containing annotations that
ere not considered consistent were discarded. An example of an

able 4
raining and validation dataset.

Lead No. of signals in database Cardiac cycles in database

V1 5 33,554
V2 8 49,704
V3 3 14,487
V4 19 1,34,872
V5 27 1,92,249
MLI 8 63,851
MLIII 25 1,59,142
D3 1 1465
Total 96 6,49,324
1 H2 H0 H1 H2

.49 0.79 0.83 0.11 0.44

ambiguous situation is illustrated in Fig. 13. The figure on the left
(Fig. 13a) shows a 4 s section of the e0207 record, channel 1, lead
V5, starting at index 1620900. The figure on the right (Fig. 13b)
shows a 4 s section of the e0303 record, channel 2, lead V5, starting
at index 1107300.

According to the ESC ST–T database classification, the signal on
the right has been annotated as normal, while the one on the left
has been considered as having ST depression. However, as can be
observed, this classification contradicts what one might expect.

Table 4 presents the exact number of cardiac cycles used for each
lead (after PVCs, noisy and non-consistent beat elimination). The
discarded signals, for each lead, were: e0207 for lead MLI, e0109,
e0121, e0609 and e0613 for lead MLIII, e0403 for lead V1, e0415 and
e0603 for lead V2, e0119, e012 and e0161 for lead V4, and e0207,
e0213, e0303 and e0405 for leadV5.

3.2.2. Training and validation
For training purposes only a small portion of representative sig-

nals (30 beats before and after the annotated episodes transitions)
were applied. As already mentioned, beat classification was lead
dependent and was carried out by means of two FFNNs per lead.
Considering the 8 different leads (V1, V2, V3, V4, V5, MLI, MLIII
and D3) present in the ESC ST–T database, a total of 16 neural net-
works were utilized. A neural architecture composed by two hidden
layers (sigmoid tangent activation functions) was considered. The
number of hidden neurons was experimentally determined and the
parameters (weights and bias) that characterize all the FFNNs were
trained using the Levenberg Marquardt algorithm. Table 5 presents,
for each lead, the architecture applied for each classifier. The nota-
tion used is the number of neurons corresponding to [inputs, first
layer, second layer, output].

For ischemic episode validation, beat sequences of annotated
and identified episodes were compared. If the beginning and the
episode detection was considered as successful. Otherwise, it was
considered as unsuccessful. In Fig. 14, a representative example
of ischemic episodes identification by the proposed algorithms is
presented using the e0103 record. In fact, the manifest overlap

No. of signals considered Cardiac cycles considered

4 30,548
6 35,110
3 14,487

16 1,08,107
23 1,62,747

7 56,990
21 1,33,477

1 1465
81 5,42,931
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Fig. 13. Non-consistent beat classification examples. (a

etween the annotated episodes and the ones identified by the
lgorithms, testifies the ability of the methodology to perform the
ntended detection task.

. Results and discussion

The results achieved by the proposed algorithms for ischemic

eat classification and ischemic episode detection are presented in
ables 6 and 7.

As can be observed in the tables above, the global sensitivity and
ositive predictivity reached average values of 96.7% and 96.2%,
espectively.
ST–T depression beats and (b) ESC ST–T normal beats.

Despite the importance of evaluating the performance of the
proposed algorithms with respect to other state of the art meth-
ods, it is observed that this is a very difficult task due to the fact
that different data sets are applied to derive the reported results
in many of these papers. Badilini et al. [7] uses a private database.
Although many authors use the ESC ST–T database to evaluate their
algorithms, it is observed that some (e.g. [10,14]) do not specify

the number of records (although the latter refers the number of
ischemic/normal beats used). Others (e.g. [16]) use all the available
records of the database but with reviewed annotations. In other
studies, as those reported in [17,21], only a small set of records
are utilized (5 and 10, respectively) for validation purposes. On the
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Table 5
Lead NN structure.

Lead NN structure

V1 [14,5,3,1]
V2 [14,5,3,1]
V3 [14,5,3,1]
V4 [14,6,4,1]
V5 [14,7,3,1]
MLI [14,3,3,1]
MLIII [14,5,3,1]
D3 [14,5,3,1]
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Table 7
Episodes detection performance.

Lead Episodes TP FP FN SE PP

V1 5 5 0 0 100.0% 100.0%
V2 5 5 0 0 100.0% 100.0%
V3 2 2 0 0 100.0% 100.0%
V4 34 32 2 4 88.9% 94.1%
V5 38 35 3 6 85.4% 92.1%
MLI 5 5 1 0 100.0% 83.3%
MLIII 32 32 0 0 100.0% 100.0%
D3 1 1 0 0 100.0% 100.0%
Total 122 117 6 10 96.7% 96.2%

T
B

Fig. 14. Ischemic episodes validation (e0103 record).

ther hand, some authors evaluate their methods using all database
ecords with the original annotations. This is the case of Pang [15]
nd Vila et al. [20] (ischemic episodes detection), where SE varies
rom 81.3% to 83.0% and PP ranges from 74.7% to 75.0%. For ST seg-

ent deviation episodes, Garcia et al. [8] and Papaloukas et al. [18]
eport for SE between 84.7% and 92.0%, while PP ranges from 86.1%
o 93.8%. Another group of authors base their evaluation on the 48
ecords freely available. This is the case of the method for ischemic
pisodes detection introduced by Andreao et al. [19] that achieves a
E of 83.0% and a PP of 85.0%. The algorithm reported by Afsar et al.
16] for ST segment deviation episodes achieves a SE of 90.8% and
PP of 89.2%. For obvious reasons, it would be unfair to compare

he current work with the group that used the entire records of the
atabase as they would be in disadvantage. In fact, the most suit-

ble studies for comparison are actually those reported by Andreao
t al. and by Afsar et al., since the data set used for their evaluation
s basically the same as the one applied in the present study. Con-
equently, it can be concluded that the results presented in Table 7
ignificantly improve the results achieved by the methods reported

able 6
eat classification performance.

Lead No. of signals No. of beats F

S

V1 4 30,548 10
V2 6 35,110 9
V3 3 14,487 10
V4 16 1,08,107 9
V5 23 1,62,747 9
MLI 7 56,990 9
MLIII 21 1,33,477 10
D3 1 1465
Total 81 5,42,931 9
by these authors, both in terms of sensitivity (96.7%) as well as in
terms of positive predictivity (96.2%).

It should be stressed that all modules of the algorithm have been
designed to operate on short signal windows (40 beats). This is an
important aspect, since it does not require significant durations
of ECG to perform ischemia characterization. Since the proposed
detection scheme is based on neural network models, the classifi-
cation process is very fast. Thus, this methodology has the potential
to be used in home monitoring pHealth applications.

5. Conclusions

In this paper a strategy for ischemic episode detection was pro-
posed. The methodology consists of two main steps: first, each
individual beat is classified as normal or ischemic, considering fea-
tures based on the ST deviation, the T wave and the QRS complex
morphologies. To deal with the particularities of each lead con-
figuration, a lead dependent classification scheme is implemented
using two FFNNs per lead, specifically designed to deal with ST ele-
vation and ST depression, respectively. In the second stage of the
algorithm, ischemic episodes detection is performed based on a
sliding window procedure.

The most innovative aspects are the new approach for accu-
rate ST shift and isoelectric point estimation based on the
time–frequency analysis, and the ECG beat morphology effective
characterization using the expansion in Hermite functions.

The methodology’s potential was confirmed by using the Euro-
pean Society of Cardiology ST–T database. In fact, the achieved
results (sensitivity of 96.7% and positive predictivity of 96.2%) are
relevant when compared with similar works reported in literature.

Given the relative simplicity of the algorithm it will be straight-
forward to incorporate it into pHeath systems. In particular, the
developed solution will be part of a cardiovascular status assess-

ment tool that is being developed under HeartCycle European
Project.

FNN neg. FFNN pos.

E PP SE PP

0.0% 100.0% – –
9.6% 99.9% 100.0% 100.0%
0.0% 99.3% – –
4.6% 92.8% 100.0% 100.0%
5.7% 97.5% 100.0% 100.0%
9.2% 98.7% 99.6% 99.3%
0.0% 100.0% 96.4% 97.0%
– – 100.0% 100.0%
8.4% 98.3% 99.3% 99.3%
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