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1. Introduction 
 
One of the main features of a solar power plant is that its primary energy source, the solar 
radiation, cannot be manipulated by the control system. Moreover, since the solar radiation 
changes substantially due to the daily solar cycle and to the atmospheric conditions, 
significant variations in the dynamics of the plant are observed. Therefore, it is difficult to 
achieve a satisfactory performance over the whole operating range by using conventional 
non-adaptive linear control strategies. In fact, using a conventional approach the design of a 
controller usually demands an accurate analytical model of the process under consideration. 
However, in real world applications, mainly due to the processes complexity, hard 
nonlinearities or unmodelled dynamics, the obtained analytical models do not reflect the true 
physical properties of the process. In such cases, as a result of model/plant mismatch, poor 
performance of the control system can occur. An alternative is to develop experimental 
models based on observed input and output data. 
 
The ability of neural networks to learn and generalize based on the input-output behavior of 
a given process has a great impact. Their universal approximation and generalization 
properties, and the ability to adjust online their parameters, allow neural networks to answer 
two of the main challenges for which conventional techniques present serious limitations [1] 
[2]: i) generality and precision in modeling problems and ii) adaptation capabilities to time-
varying dynamics.  
Basically, neural networks can be classified as static (feedforward) and dynamic (recurrent). 
Dynamic or recurrent neural networks (RNN) were first introduced in [3] and have been 
developed in other works [4], [5], [6], [7]. Due to their intrinsic ability to incorporate time 
(involving dynamic elements and internal feedback), RNN structures have advantages with 
respect to static neural networks for modeling dynamic processes. Moreover, RNN are in a 
standard form and present a lower order compact structure, making them ideal candidates to 
be incorporated within model based control schemes [8]. These reasons justify their use in 
this work. 

 

*Author to whom correspondence should be addressed: jh@dei.uc.pt 



 

2 

 

An RNN affine structure is proposed here, as a compromise between two main goals: i) the 
development of generic structures, appropriate to modeling nonlinear processes and ii) 
effectiveness for both parameter estimation and control design procedures. 
Concerning the neural network training, and taking into account the available data, a 
previous parameterization for the network is obtained. Subsequently, an online learning is 
further considered to mitigate the discrepancies between the output of the neural model and 
current output of the system during operation. This task is carried out by considering the 
specific state space form of the recurrent neural network, thus enabling a joint estimation of 
parameters and states. This is carried out based on a dual Kalman filter approach, along 
with Lyapunov stability analysis for the weights updating.   
 
Moreover, the problem of order estimation for state–space neural networks is addressed as 
well. The proposed approach is based on subspace projections and on the formal specificity 
of the nonlinear model structure. The involved matrices are generated using input/output 
data collected from the system and the order extracted by means of a singular value 
decomposition (SVD) applied to a non–orthogonal space projection.  
Concerning control strategies, there are two main approaches in which neural models can be 
incorporated [9]: i) the neural network is itself a controller (in this case the most common 
strategy consists in learning the plant’s inverse) or ii) the network is used as model for the 
system, being the controller designed through a model based control approach. Although the 
use of a neural network to learn the plant’s inverse is theoretically a viable option, in practice 
the estimated inverse neural model may not be well defined or stable [10]. Mainly for this 
reason, the second mentioned control strategy, analogous to a conventional indirect 
strategy, was the approach followed in this work. Thus, assuming the approximation 
properties, the recurrent neural model replaces the plant, resulting in a nonlinear control 
problem suitable to be solved by a nonlinear control technique. Among nonlinear control 
techniques, the output regulation (OR), which is proposed in this work, enables to derive a 
control law such that the closed loop system is stable and the tracking error converges to 
zero.  
 
This methodology was applied to the temperature control of a distributed collector field of a 
solar power at Plataforma Solar de Almeria, in the south of Spain. This book chapter is 
organized as follows: in section 2 the solar power plant is presented and some applied 
control strategies are reviewed. Section 3 introduces the proposed control scheme. In 
particular the affine recurrent neural network architecture and the respective offline and 
online learning laws are described. Additionally, the subspace projection approach regarding 
the complexity management is presented, and the output regulation control strategy 
described. Section 4 provides some insights on how the proposed control scheme can be 
applied to the solar power plant. Section 5 presents the experimental results and in section 6 
some conclusions are drawn. 
 
 

2. The Solar Power Plant 

 

2.1 Distributed Solar Collector Field 

 
The Acurex distributed solar collector field at Plataforma Solar de Almeria (PSA) is located at 
the desert of Tabernas, in south of Spain. For an extensive description the reader is referred 
to López, [11]. The field consists of 480 distributed solar collectors arranged in 20 rows, 
which form 10 parallel loops. Each loop is 172 m long and the total aperture surface is 

22672 m , enabling to provide 1.2 MW peak of thermal power. A schematic diagram and a 

partial picture of the plant are shown, respectively in Figure 1 and Figure 2. 
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Figure 1: Schematic diagram of the Acurex field. 

 

Figure 2: Partial picture of the Acurex field. 

 
The cold inlet synthetic oil is collected from the bottom of the storage tank and is passed 
through the field by means of a pump at the field inlet. After having picked up the heat 
transferred from the tube walls the heated fluid is fed to the storage tank to be used for 
electrical energy generation or feeding a heat exchanger of the desalination plant. The fluid 
used for heat transmission is the Santotherm 55, which is a synthetic hydrocarbon with a 
maximum film temperature of 318 ºC and an auto ignition temperature of 357 ºC. Therefore 
300 ºC is set as the maximum temperature allowed. If the system reaches this temperature 
in any loop the collectors are sent, for safety reasons, into desteer. Each collector uses 
parabolic mirrors to concentrate the radiation in a receiver tube being the field also provided 
with a sun tracking system that causes the mirrors to revolve around an axis parallel to that 

of the pipe. The manipulated variable in the plant is the oil flow rate, inQ , being the main 

goal to regulate the outlet field oil temperature, outT , at a desired value, refT  (Figure 2). The 

main disturbances are the solar radiation, rrI , and the inlet oil temperature, inT . The pump 

has a maximum flow rate of 12 l/s and the lowest flow rate permitted is 1.6 l/s. However, for 
safety reasons the flow rate is set between 2 l/s and 9 l/s. In case of pump stop the field 
goes automatically into desteer to avoid overheating of the oil in the parabolic trough loops. 
 
 

2.2 Control Strategies Applied to the Solar Power Plant 

 
As stated, one of the main features of this plant is that its primary energy source, the solar 
radiation, cannot be manipulated by the control system. Moreover, since the solar radiation 
changes substantially throughout the plant operation, due to the daily solar cycle, 
atmospheric conditions such as the cloud cover, humidity and air transparency, significant 
variations in the dynamics of the field (e.g. the response rate and time delay) are observed, 
corresponding to different operating conditions. Therefore, it is difficult to obtain a 



 

4 

 

satisfactory performance over the whole operating range with a sole linear fixed controller. 
One possibility to overcome these issues is to use adaptive control schemes on the basis of 
local linear models, which can capture dynamics variations during the operation. In this 
context, Camacho et al [12] and Rubio et al [13] proposed a self tuning scheme involving a 
PI (Proportional-Integral) controller. Pickhardt and Silva [14] proposed an adaptive predictive 
control scheme, using an input output linear model of the plant. A feature of the distributed 
solar collector field is that the main disturbances, the solar radiation and the inlet oil 
temperature, are measurable. Following this idea Coito et al [15] presented simulation and 
experimental results concerning the design of a predictive controller (MUSMAR), and 
Cardoso et al [16] presented a fuzzy supervisory strategy that takes into account these 
disturbances.  
Another possible alternative could be the commissioning of a switching controller using 
different models of the plant for different operating points. Henriques et al [17] proposed a 
control strategy based on a PID control design with fuzzy switching supervisory. Combining 
the potentialities of neural networks for approximation purposes with the well known theory 
and widespread application of PID techniques to this type of processes, Henriques et al [18] 
developed and applied successfully a simple but effective structure that uses a feedforward 
neural network for scheduling a PID controller, from a bank of PID controllers, previously 
tuned for the most relevant operating point.  
Other authors suggested intelligent control techniques (Rubio et al, [19]), such as fuzzy 
systems (Flores et al, [20]), neuro-fuzzy and evolutionary programming (Kharaajoo, [21]) or 
neural networks (Lalot, [22]). Using neural network methodologies Gil et al [23] proposed a 
feedback linearization control scheme where a recurrent neural network is employed as a 
predictive model; furthermore, given the neural model mismatches, the control system is 
also provided with a steady offset compensation, being an internal model control strategy 
considered in their methodology.  
Other authors have followed a modeling approach, in order to derive predictors, to be used 
in nonlinear predictive control schemes. In this context Gil et al [24], have proposed the 
application of a nonlinear adaptive constrained model based predictive control scheme to the 
distributed collector field. Their methodology exploits the intrinsic nonlinear modeling 
capabilities of nonlinear state space neural networks and their online training by means of an 
unscented Kalman filter. Carrillo et al, [25], [26] proposed the application of a nonlinear 
control strategy, designated as nonlinear extended prediction self adaptive control, where a 
Smith Predictor is used together with a model of the plant. Arahal et al [27] proposed the use 
of neural networks to modeling the plant and their incorporation in a nonlinear generalized 
predictive control scheme. Kharaajoo [21], proposed the application of an intelligent 
predictive control strategy. A neuro-fuzzy scheme is used to characterize the future behavior 
of the plant over a certain prediction horizon, while an evolutionary programming algorithm 
computes the control action, by means of an optimization procedure. 
Camacho et al [28], [29] presented an extensive survey on automatic control approaches 
that have been applied to the distributed collector field of the PSA during the last years. A 
classification of the modeling and control approaches is proposed in order to expose the 
main features of each strategy. 
 

 

3. Nonlinear Control Approach 

 
As mentioned above, an important characteristic of a solar power plant is that the primary 
energy source, the solar radiation, cannot be manipulated. It varies throughout the day, 
causing changes in plant dynamics conducting to distinct main several operating points. 
Thus, the control design of such processes is commonly addressed by considering a specific 
controller for each local conditions. In this context, traditional PID controllers have some well 
known advantages, such as the performance provided for some particular nominal operating 
points and their industrial widespread. Moreover, they are simple to implement and they can 
successfully control many industrial processes with distinct specifications.  
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Although it is possible to design an acceptable PID controller for each operating condition of 
the solar power plant, due to the underlying complex behavior, poor transient performance is 
achieved in other operating conditions. To deal with these constraints, an indirect adaptive 
control methodology is proposed. This methodology has the ability to recursively adjust the 
model parameters, at each sampling time, based on specific plant conditions. Then, based 
on the adaptive model, an appropriate controller can be designed. In particular, due to the 
non-linear characteristics of the plant, non-linear control strategies are expected to 
outperform linear approaches. 
 
 

3.1 Affine Recurrent Neural Networks 

 
Given the approximation capabilities of RNN [8] it is assumed that there exists an affine 
RNN, described by (1) and shown in Figure 3 that is able to describe the plant dynamics.  

( )( 1) ( ) ( ) ( )n n nx k A x k B u k D x kσ+ = + +  

( 1) ( 1)n ny k C x k+ = +  

(1)

where the vector ( ) n
nx k ∈ℜ  is the output of the hidden neural layer, also known as the 

network hyper-state, ( ) ny
ny k ∈ℜ  is the network output and ( ) nuu k ∈ℜ  and ( ) nyy k ∈ℜ  are, 

respectively, the input and output vectors, at discrete-time k. n nA ×∈ℜ , n nuB ×∈ℜ , 
ny nC ×∈ℜ  and n nD ×∈ℜ  are interconnection matrices. The activation function, ( )σ ⋅ , is 

chosen as the hyperbolic tangent function. 

 

 
Figure 3: Affine recurrent neural network. 

 
It is important to stress that the network does not behave in the strictest sense as an 
observer. In fact, it is not expected that the true states of the system are correctly 
determined, but that a state space representation for the system is achieved. The main goal 

is that the plant identification error, ( ) ny
ie k ∈ℜ , defined as the difference between the real 

process output, ( )y k , and of the neuronal output, ( )ny k , converges to zero: 

( )lim ( ) lim ( ) ( ) 0i n
k k

e k y k y k
→∞ →∞

= − =  (2)
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3.2 Learning Methodology 

 
The learning methodology consists in a prior offline learning and an a posteriori online 
adjusting of the model’s parameters.  
 
 
3.2.1 Offline learning 

 
As pointed out by Suratgar [30] the Levenberg-Marquardt algorithm is more efficient than 
other techniques when the network contains no more than a few hundred parameters. Due 
to its effectiveness this algorithm is applied to offline training. This initial training phase 
provides the interconnection matrices A, B, C and D. 
 
3.2.2 Online learning 

 
The online learning law for estimating the RNN parameters is based on a dual Kalman filter, 

where both the estimated hyper-state ( )sx k  and the network parameters ( )W k  are updated. 

The schematics showing the simultaneous estimation of the state vector and parameters is 
depicted in Figure 4. 

 

Figure 4: Joint estimation of parameters and states. 

Let assumes that A and C do not change (offline evaluated) and only matrices B and D are 
updated online, at each time step k. The online learning problem aims at evaluating an 

estimation ( ) n
sx k ∈ℜ  for the hyper-states ( )nx k  and to evaluate the parameter vector 

( ) nwW k ∈ℜ , defined at each instant by (3), where wn  is the number of parameters to be 

adapted (matrices B and D), w un n n n n= × + × . 

( ) ( ) ( )W k B k D k =  
� �

 (3)

Vectors ( ) nbB k ∈ℜ
��

 and ( ) ndD k ∈ℜ
��

 are composed of the elements of matrices B and D 

( b un n n= ×  and dn n n= × ). 

For the hyper-state estimation, a nonlinear observation methodology was developed and 
implemented. Namely, the observation results proposed by Thau [31] for continuous 
nonlinear systems are extended to the proposed recurrent nonlinear model, assuming the 

pair ( , )A C  observable.  

Concerning the second problem, several training algorithms have been proposed to 
recursively adjusts the neural network’s parameters. Basic examples are the real time 
recurrent algorithm [32], the dynamic backpropagation [33], and the backpropagation trough 
time [34]. Recently, other advanced methods have been proposed, [35], [36]. Basically, the 
training algorithm iteratively update the weights W according to (4). 

( 1) ( ) ( )W k W k W k+ = + ∆  (4)

However, with respect to the updating law, few stability results have been presented. In the 
following, a stable online updating law based on the Lyapunov stability theory is proposed, 



7 

 

analogous to a result established in the context of control [37]. Additionally, it is assumed 
that A is a Hurwitz matrix, that is, its eigenvalues lie in the unitary circle. 
 
 

Hyper-state estimation 

 
The recurrent network consists of a hybrid model where the nonlinear part (1) is due to the 
hyperbolic tangent, which is a Lipschitz function (nonlinearity with constant ς ).  

( ) ( ) ( ) ( )n nD x k x kσ ς=  (5)

Taking into account this nonlinearity, the state observation procedure exploites the extension 
of the continuous-time results proposed by Thau, [31]. The observer is defined as follows 
[18], similar to an Luenberger observer [38]. 

( ) ( )( 1) ( ) ( ) ( ) ( ) ( )s s s n sx k Ax k Bu k D x k L y k Cx kσ+ = + + + −  

( ) ( )s sy k Cx k=  
(6)

Assuming that the pair ( , )A C  is observable, there exists a matrix n nyL ×∈ℜ  (observer gain) 

that places the eigenvalues of matrix n n
oA

×∈ℜ , defined as (7), at desired locations. 

oA A LC= −  (7)

In these conditions the observation error converges to zero if the following relation holds 
[18]. 

2 min

max

( )
 

( )
o o

Q
D A A

P

λ
τ

λ
< − + +  (8)

min( )Qλ  and max ( )Pλ  are, respectively, the minimum and maximum eigenvalues of matrices 

Q and P and M  is the quadratic norm of matrix M. n nP ×∈ℜ and n nQ ×∈ℜ are positive 

definite symmetric matrices for which the discrete-time Lyapunov equation (9) holds. 

T
o oA PA P Q− = −  (9) 

 

Parameters Adaptation 

 
Following the estimation of the states, the next step involves the adaptation of the network’s 

parameters. Analogous to a dual Kalman filter, the states of the neural model ( )nx k  are 

assumed to be known and thus the problem consists in updating the network matrices ( )B k  

and ( )D k  such that the observation error converges to zero. Assuming the observer 

described by: 

( )( 1) ( ) ( ) ( ) ( ) ( )s s sx k Ax k B k u k D k x kσ+ = + +  

( ) ( )s sy k Cx k=  
(10)

and the affine neural network (1) it is possible to write (11). 

( ) ( ) ( )( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )n s n sk Ax k Ax k B B k u k D x k D k x kε σ σ+ = − + − + −  (11)

Assuming the estimation of the states, thus ( ) ( )( ) ( )n sx k x kσ σ≈  

( ) ( ) ( )( 1) ( ) ( ) ( ) ( ) ( ) ( )n s nk Ax k Ax k B B k u k D D k x kε σ+ = − + − + −  (12)



 

8 

 

Let the matrix errors n nuB ×∈ℜɶ  and n nD ×∈ℜɶ  be respectively given by (13). 

( ) ( )B k B B k= −ɶ  

( ) ( )D k D D k= −ɶ  
(13)

Then, from (12), (13) and follows (14), 

� � ( )( 1)  ( ) ( ) ( ) ( ) ( )nk A k B k u k D k x kε ε σ+ = + +  (14)

or,  

( 1)  ( ) ( ) ( )k A k k W kε ε ϕ+ = + ɶ  (15)

where ( ) n nwkϕ ×∈ℜ  is an information matrix depending on the state ( )( )nx kσ and on the 

input ( )u k , given by, 

( )

( )

( ) ( )

( )

( ) ( )

TT
u u n x x

TT
u u x x n

u k x k

k

u k x k

σ
ϕ

σ

 ∅ ∅ ∅ ∅ 
=  

 
∅ ∅ ∅ ∅  

… ⋮ …

… … … … ⋮ … … … …

… ⋮ …

 (16)

where the vectors ( ) nu
u k∅ ∈ℜ  and ( ) n

x k∅ ∈ℜ  are composed of zeros. The vector 

( ) nwW k ∈ℜɶ is composed of the parameters errors to be estimated, defined by (17). 

( ) ( ) ( )W k B k D k =   

� �ɶ ɶɶ  (17)

Since the difference between two consecutive instants can be written as 

( ) ( ) ( 1)W k W k W k∆ = − −ɶ ɶ ɶ  (18)

it is possible to relate ( )W k∆ ɶ  with ( )W k∆  by (19). 

( ) ( )( ) ( ) ( 1) ( )W k W W k W W k W k∗ ∗∆ = − − − − = −∆ɶ  (19)

Where W* is a vector composed of the parameters of matrices B and D. Thus, once the 

parameter vector error ( )W kɶ  obtained at instant k and since ( 1)W k −ɶ  is known, it is possible 

to evaluate ( )W k∆ ɶ and so updating ( )W k∆ .  

With these definitions in mind, the updating law of weights variations given by 

1( ) ( ) ( )    ( )T
yW k M k k P A C e kϕ−= −ɶ  (20)

ensures the convergence of the observation error ( )kε . The matrix ( ) nu nwM k ×∈ℜ is defined 

by (21) and n nP ×∈ℜ  is a positive definite matrix obtained from the discrete-time Lyapunov 

equation (22). 

ϕ ϕ 
= +  

1
( ) ( )  ( )

2

T
nwM k I k P k  (21)

TA PA P Q− = −  (22)

n nQ ×∈ℜ  is a positive definite matrix to be specified by the designer and nw nw
nwI

×∈ℜ  is the 

identity matrix. 



9 

 

Since the eigenvalues of matrix A are in the closed unitary circle the solution P to equation 

(22) exists and is unique. P and M are symmetric matrices, thus TP P= and TM M= . Given 

that M is a square matrix, with dimension ( , )w wn n , its inversion, to be performed at each 

discrete-time, should be regarded as a drawback of the algorithm. 
 
 

Discussion 

 
As mentioned, it is not intended in any case to determine precisely the true states of the 
plant and, in this sense, the proposed methodology should not be viewed as a true observer. 
To be precise, only one possible state space description of the plant is obtained. In fact, the 
strategy followed here provides a procedure that ensures the stability and convergence to 

zero of the observation error ( )kε . However, since output error is given by ( )C kε , output 

convergence error is straightforward. The proposed methodology can only be applied if the 

pair ( , )A C  is observable and the eigenvalues of matrix A lie within the unitary circle. 

Therefore, if one considers the neural model as a hybrid structure, composed of a linear and 
a nonlinear part, then this methodology will only be feasible if the linear part is observable 
and stable. Considering practical applications, this constraint has to be considered as a 
limitation of the proposed methodology. In practice, such imposition restricts the initial 
determination of the network parameters and the class of systems to which this method can 
be applied. 
 
 

3.3 Order Estimation 
 
An important issue concerning the generalization capabilities of state–space neural networks 
is the complexity of the underlying topology. As pointed out elsewhere (see e.g. [39]), neural 
networks are intrinsically prone to overfitting as a converging result of an excessive number 
of parameters and the unconstrained minimisation of the empirical loss function.  
One method known to control the smoothness of the fit is to add a regularization term to the 
loss function (see e.g. [40]). Other techniques, which are devoted to selecting the number of 
hidden-layer neurons, include network pruning and constructive methods (see e.g. [41]), 
statistical approaches, such as the Network Information Criteria (NIC) [42] and methods 
based on the application of Vapnik–Chevornenkis dimension [43]. Using a global 
optimization approach based on the advantages of simulated annealing and tabu search T. 
Ludermir et al [44] have proposed a methodology for simultaneous optimization of weights 
and topologies with few connections and high generalization capabilities. A different 
approach was followed in [45] where the number of hidden layer neurons is selected so as to 
guarantee a given approximation order, depending on the number of inputs provided to the 
neural network and the desired approximation order. Based on the singular value 
decomposition (SVD) of the output activation matrix along with constructive heuristics Teoh 
et al [46] proposed a methodology to estimate the appropriate number of hidden layer 
neurons. 
In this book chapter it is proposed a conceptually different approach to deal with the problem 
of selecting the appropriate number of neurons to be inserted in the hidden layer of the 
affine state–space neural network structure. The underlying idea relies, essentially, on the 
specificity of the model structure and is based on the application of the SVD to a given 
subspace projection.  
Let consider the affine state-space model given by (1) and assume that the nonlinear term 
associated with the sigmoidal activation function performs a spatio–temporal compensation 
to the linear part contribution provided by a linear model. Thus, by removing the nonlinear 
term it is possible by using the SVD applied to a given subspace projection (see e.g. [47]) to 
come up with a vector basis for a linear state–space realization. The dimension of this vector 
basis can be regarded as a bound to the number of hidden layer neurons. This stems from 



 

10 

 

the fact that i) the order of each affine state–space realization is inexorably related to the 
number of hidden layer neurons and ii) the linear model complexity, measured by the 
model’s order, is likely to be higher than the affine state–space topology in order to capture 
the relevant system’s dynamics embedded in the data set.  

A finite dimensional discrete–time invariant linear system can be represented in the state–
space form as 

( ) ( ) ( ) ( )
( ) ( ) ( )
1x k A x k Bu k k

y k C x k k

η

ϑ

+ = + +

= +
 (23)

where nη ∈ℜ  and nϑ ∈ℜ  are unobserved Gaussian distributed, zero mean, white noise 

sequences, and assuming the system (23) satisfies the orthogonality property (24) and the 
estimation data are ergotic. 

( )
( ) ( ) ( )( ) 0

x k
E k k

u k
ϑη

  
=      

T T  (24)

 

 
3.3.1 Subspace Projection 

 

Let the future input block Hankel matrix f |2 -1i iU U=  be defined as 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1 2

2 1 2 2 2

u i u i u i j

u i u i u i j
U

u i u i u i j

 + + −
 + + + 
 
 

− + −  

⋯

⋯
≜

⋮ ⋮ ⋯ ⋮

⋯

f
 (25)

and the future output block Hankel f |2 -1i iY Y=  given by 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1

1 2

2 1 2 2 2

y i y i y i j

y i y i y i j
Y

y i y i y i j

 + + −
 + + + 
 
 

− + −  

⋯

⋯
≜

⋮ ⋮ ⋯ ⋮

⋯

f
 (26)

Where the number of block rows i should be larger than the “expected” maximum order of 
the system ( )n i≪  and j → ∞ . 

Definition 1 (Oblique projection): The oblique projection of the row space of p j×Α∈ℝ  along 

the row space of q j×Β∈ℝ  on the row space of q j×Γ∈ℝ  is given by 

1:

/

r

Β

  ΓΓ ΓΒ    Α Γ = Α Γ Β Γ    ΒΓ ΒΒ   

T T

T T

T T

†

 (27)

Definition 2 (Persistency of excitation): A signal mu∈ℝ  fulfils the condition of persistent 

excitation of order 2 i  if the input covariance matrix T 1
0|2 1 0|2 1[ ]i iU U j −− −  is of full rank. 

Theorem 1 (Main subspace identification theorem [48]): Assuming that: 

i) The deterministic input is uncorrelated with the process noise and measurement noise; 
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ii) The process noise and the measurement noise are not identically zero; 

iii) The exogenous input is persistently exciting of order 2i ; 

iv) The data set is large enough ( j → ∞ ). 

Then: 

i) The projection iΠ  can be defined as the oblique projection of the row space of fY  on 

the past input/output row space along the row space of fU ; 

f
f p/i UY MΠ =  (28)

with 
0| 1

p
0| 1

i

i

U
M

Y

−

−

 
 
 
 
≜ . 

ii) The order of the system is given by the number of non-zero singular values of iΠ . 

 

The rank of iΠ , which is given by the cardinality of the non–zero singular values, provides 

an estimate to the linear state space model order. A straightforward way to retrieve the 

singular values of iΠ  is by using the SVD of the underlying projection, under the strict 

conditions of theorem 1. 
 

Theorem 2 (The SVD theorem [49]): Let the projection matrix p q
r
×Π∈ℝ  [ ]p q

r
×ℂ . Then there 

exist orthogonal (unitary) matrices p pU ×∈ℝ  [ ]p p×ℂ  and q qV ×∈ℝ [ ]q q×ℂ  such that, 

TU VΠ = Σ  H[ ]U VΠ = Σ  (29)

where 
0

0 0

S 
Σ =  

 
 and ( )1, , rS diag σ σ= … , with 1 2 10r r qσ σ σ σ σ+≥ ≥ > = = =⋯ ⋯ . 

 

When applying this approach to finite data sets ( j ∞≪ ) and/or to data collected from 

nonlinear systems, even in the case of infinite data sets, the underlying oblique projection 

iΠɶ  will have, in most cases, full rank (q p i= ⋅ ), regardless the number of row blocks i. In 

these cases it is necessary to carry out an additional complexity reduction by finding the 
cardinality of dominant singular values, instead of relying on the dimension of nonzero 
singular values. 
 
 

3.3.2 Numerical Rank  

 
Assume that the full rank degeneracy is derived from additive contamination of an unknown 

“ideal” projection iΠ , considering an infinite noise-free data set sampled from a linear 

system, that is, 

i i iΠ = Π + Θɶ  (30)

where iΘ  is an unknown perturbation matrix. 

The problem of finding the numerical rank of iΠɶ  can be tackled by defining a tolerance ε , 

related to its “dominant” singular values, such that iΠɶ  is numerically defective in rank if, to 

within this tolerance, it is near a defective matrix. Specifically, iΠɶ  has rankε −  r n<  with 

respect to the norm ⋅  if 
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( ){ }inf rank :i i ir ε= Π Π − Π ≤ɶ  (31)

By imposing a bound δ  on the threshold such that the numerical rank remains at least equal 

to r  the rankε −  formulation can be rewritten as follows, 

( ){ }sup : ranki i i rε δ η η< ≤ Π − Π ≤ ⇒ Π ≥ɶ  (32)

Definition 3 (Numerical rank [49]): A matrix M  has numerical rank ( ), ,rδ ε  with respect to 

the norm ⋅  if δ , ε  and r  satisfy (31) and (32). 

When the norm is the Frobenius norm 
2

F
⋅  the problem of finding the numerical rank can be 

solved in terms of singular values, that is, 

2 2 2 2
1 2Frank( )

inf
i

i i r r n
r

σ σ σ+ +
Π ≤

Π − Π = + + +ɶ ⋯  (33)

Theorem 3 [49]): Let 1 2 nσ σ σ> > >ɶ ɶ ɶ⋯  be the singular values of iΠɶ . Then the projection 

matrix 
i

Πɶ  has numerical rank ( )
F

, ,rδ ε  if and only if, 

2 2 2 2 2 2 2
1 1r r q r qσ σ σ δ ε σ σ+ ++ + + ≥ > ≥ + +ɶ ɶ ɶ ɶ ɶ⋯ ⋯  (34)

This theorem states that the presence of small singular values is a sufficient condition for 

rank deficiency. Since the projection 
i

Π  is assumed as being contaminated with error iΘ  a 

plausible bound for the tolerance 2ε  can be chosen by means of Schmidt’s subspace 

theorem [50], that is, 

22 2
1 Fr q iσ σ+ + + ≤ Θɶ ɶ⋯  (35)

Thus the SVD of iΠɶ  reveals the numerical rank in the sense that the sum of squares of its 

q r−  smallest singular values is bounded by the Frobenius norm of the contamination matrix 

iΘ  [51]. Therefore, the spaces spanned by 1U
ɶ , 2Uɶ , 1V

ɶ  and 2V
ɶ  are approximations to the 

uncontaminated subspaces that are accurate to about 1
r iσ − Θɶ . If rσɶ  is large enough, 

compared to the contamination matrix iΘ , the problem has a favourable signal to noise ratio 

and consequently the underlying SVD provides good estimations to the uncontaminated 

subspaces. Moreover, rσɶ  can be interpreted as a dependable measure of how far, in the 

⋅  sense, a matrix is from matrices of lesser rank. 

Despite its formal feasibility, the current approach has the implicit drawback of requiring 

some a priori knowledge on the error matrix iΘ , either under the form of an estimate of a 

norm of iΘ  or the size of a “typical” element of iΘ , or even a statistical distribution of the 

entries of iΘ . 

Another way of defining a threshold for rank deficiency is by restating theorem 3 in terms of 
spectral norm. 

Theorem 4 ([49]): Let 1 2 nσ σ σ> > >ɶ ɶ ɶ⋯  be the singular values of iΠɶ . Then the projection 

matrix iΠɶ  has numerical rank ( )
2

, ,rδ ε  if and only if, 

1r rσ δ ε σ +≥ > ≥ɶ ɶ  (36)

This theorem states that if there exists a given threshold δ  such that rσ δ≥ɶ  and a “gap” 

µ δ ε= −  between consecutive singular values, 1r rσ σ µ+− ≥ɶ ɶ , then ( )rank i i rε − Π + Θ = . 
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Thus, the numerical rank of iΠɶ  can be characterized in terms of sensitivity of the underlying 

singular values, that is, 

( ){ }
2

min rank i i

i

r
εΘ ≤

= Π + Θ  
(37)

 
3.3.3 Information Criteria 
 
An alternative approach for managing the model’s complexity based on the information 

embedded in singular values of iΠɶ  is by comparing the significance of including additional 

coordinates in the underlying realization to a given penalty term. This term is chosen such 
that the parameterization estimates present a number of required properties, in particular, 
consistency.  
Let the general singular value criteria (SVC) be described by the following function [47]: 

( ) ( ) ( ) T
T

ˆSVC , r

d r C
r C R

T
= Φ +  (38)

where ˆ
rR  is the approximation error due to removed singular values 1, ,r nσ σ+ɶ ɶ… , ( )d r  

denotes the number of parameters associated to a thr  order state–space realization, 

T 0C > , 1
T 0C T − →  is a penalty term punishing high complexity structures, where T  refers 

to the data set length and ( )Φ ⋅  a real valued function.  

The estimated order is then obtained as the minimizing argument of (38): 

( )T
0

ˆ arg min SVC ,
r n

r r C
< <

=  (39)

Concerning the function ( )ˆ
rRΦ  Bauer [47] has proposed the squared of Euclidean norm of 

the contamination matrix 

( ) 2
1

ˆ
r rR σ +Φ = ɶ  (40)

Concerning TC  several choices have been suggested (see e.g. [52]), although it is 

recognised that further work is still required to improve the overall contribution of the penalty 

term. Specifically, T logC T=  tends to overestimate the system’s order for large data sets, 

while 2
T AIC

ˆ logC p T= , with AICp̂  the auto regressive model order given by the Akaike 

information criterion (AIC) shows high rate of misspecification for small data sets. 
 
 

3.4 Nonlinear Output Regulation Theory 

 
The output regulation problem for linear systems was first solved by Francis and Wonham, 
[53]. For nonlinear systems, the fundamental results were introduced by Isidori and Byrnes 
[37]. They have extended the results of Francis to the general case of time-varying 
exosystems, and have shown that the linear matrix equations of Francis are particular cases 
of certain nonlinear partial differential equations, known as Francis-Isidori-Byrnes equations.  
Basically, the idea of Isidori and Byrnes consists in finding a feedback control law such that it 
stabilizes the plant around the equilibrium point at the origin with a zero exogenous signal 
(reference). Consequently, by applying the Center Manifold theory [54], they have presented 
conditions for closed loop asymptotic stability in case of a small exogenous signal.  
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3.4.1 Problem Formulation 
 
Given a general multivariable state space discrete-time system  

( )
( )

( 1) ( ), ( ), ( )

( ) ( )

x k f x k u k k

y k g x k

ρ+ =

=
 (41)

with an additional external variable ( )kρ , defined as (42). 

( )( 1) ( )k s kρ ρ+ =  (42)

This vector ( ) qkρ ∈ℜ  defines the disturbances and/or the reference signal, generated by a 

so-called exosystem, being : q qs ℜ → ℜ is a nonlinear function. The output tracking error, 

( ) ny
ce k ∈ℜ is defined by ( ) ( ( )) ( )c de k g x k y k= − , considering the desired output ( ) ny

dy k ∈ℜ  

(reference) generated by (43), where : q nyr ℜ → ℜ  is a nonlinear mapping. 

( )( ) ( )dy k r kρ=  (43)

It is assumed that the mappings ( )( ), ( ), ( )f x k u k kρ  and ( )( )s kρ are smooth functions 

satisfying ( )0,0,0 0f =  and (0) 0s = . Given this extended system, the problem of 

asymptotically tracking a reference trajectory is to find a state feedback control law such that 

the error ( )ce k  goes to zero and the whole system is asymptotically stable. Specifically, it is 

desired to find a controller in the form, 

( )( ) ( ), ( )u k x k kγ ρ=  (44)

where ,: n q nuγ ℜ → ℜ  is a smooth mapping, satisfying requirements R1 and R2. 

R1: The equilibrium point ( ) 0x k =  of dynamics 

( )( 1) ( ), ( ( )),0x k f x k x kγ+ =  (45)

is locally exponentially stable.  

R2: There exists a neighborhood of the origin (0,0) such that, for each initial state 

( )(0), (0)x ρ  the solution of the closed loop system given as, 

( )
( )

( 1) ( ), ( ( ), ( )), ( )

( 1) ( )

x k f x k x k k k

k s k

γ ρ ρ

ρ ρ

+ =

+ =
 (46)

satisfies the control error condition as follows. 

lim ( ) ( ) ( ) 0c d
k

e k y k y k
→∞

= − =  (47)

 
3.4.2 Problem Solution 

 
Solutions to the regulation problem have been presented both in continuous and discrete-
time context, Isidori and Byrnes [37] and Castillo-Toledo et al, [60], [61], [62]. However, they 
have assumed the exact knowledge of the true model and that the systems’ states are 
completely accessible, which is not always viable. One way to overcome these limitations is 
to exploit the modeling capabilities of the affine state space neural network. In fact, the 
neural model can be considered as an observer for a nonlinear process along with joint 
estimation of parameters and states. On the other hand, due to nonlinearities, the derivation 
of an analytical solution to the regulation problem is, in most cases, impossible. One way to 
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come up with a solution to the underlying problem is by means of an iterative algorithm, 
based on the RNN structure. The approach enables the OR problem to be handled as an 
eigenvalue assignment design, for which is possible to achieve a convergent solution. 
In particular, Castillo-Toledo et al [61] have shown that the state feedback discrete-time 

regulator problem is locally solvable if there exist two mappings ( )( ) ( )x k kπ ρ= and 

( )( ) ( )u k kα ρ= , with ( )(0) 0π ρ =  and ( )(0) 0α ρ = , such that the following set of nonlinear 

difference equations, known as regulation equations, is held. 

( )( ) ( ) ( )( )
( )( ) ( )

( ) ( ) , ( ) , ( )

0 ( ) ( )

s k f k k k

g k r k

π ρ π ρ α ρ ρ

π ρ ρ

=

= −
 (48)

Once the mappings ( )( ) ( )x k kπ ρ=  and ( )( ) ( )u k kα ρ=  are evaluated, it is straightforward to 

show [37] that a particular control law satisfying S1 and S2 is given by (49) and shown in 
Figure 5. 

( ) ( ) ( )( )( ) ( ), ( ) ( ) ( ) ( )u k x k k k K x k kγ ρ α ρ π ρ= = + −  (49)

 

Figure 5: Control structure. 

nu nK ×∈ℜ  is a matrix that places the eigenvalues of the first approximation of the state 

space model ( )( 1) ( ) ( )x k Ax k Bu k+ = +  in desired locations, assuming the pair ( ),A B is 

controllable. Except in very few cases, it is difficult to derive an analytical solution to the 

mappings ( )( ) ( )x k kπ ρ=  and ( )( ) ( )u k kα ρ= that solve the regulation equations, since it 

requires solving a set of complex nonlinear difference equations (48). One possibility to 
overcome this drawback is to solve approximately the regulation equations. Castillo-Toledo 
[61] have presented and derived conditions for the existence of an approximate solution to 
the discrete-time case based on a polynomial expansion. Based on a Taylor series 
expansion, Huang and Rugh [55] have proposed an approximation method for the 
continuous case. The same authors have presented an alternative approximation (Huang 
and Rugh, [56]) using a type of RNN, analogous to a cellular network. With a correct choice 
of parameters, the RNN is able to solve the regulation equations, in the least square sense, 
by means of a gradient descent minimization. Zhang and Wang [57] propose a neural based 
control system for continuous systems. By using a power series approximation, a recurrent 
neural network is developed for online computation of the output regulation feedback gain. 
 
 
3.4.3 Output Regulation Based on Affine Neural Networks 

 
Based on the particular RNN nonlinearities (hyperbolic tangent), an iterative method that 
efficiently solves the regulation equations can be derived. The algorithm can be regarded as 
of gradient type, such that the adaptation gain is adjusted each time in order to guarantee 
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the stability of the iterative procedure. The problem is driven to an eigenvalue assignment, 
being the convergence guaranteed once the appropriate eigenvalues are selected. When 
applied to the recurrent neural model (1), the goal is to determine a control law in the form  

( )( ) ( ), ( )nu k x k kγ ρ=  (50)

such that the closed loop system is stable and simultaneously condition (51) on neural 

control error ( ) ny
ne k ∈ℜ  is held. 

lim ( ) ( ) ( ) 0n n d
k

e k y k y k
→∞

= − =  (51)

The application of the zero output constrained dynamics algorithm to the present recurrent 

neural model leads to the following set of m equations ( )um n n= + , 

( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )

0 ( ) ( )

k A k B k D k

C k r k

π ρ π ρ α ρ σ π ρ

π ρ ρ

= + +

= −
 (52)

which can be solved through the evaluation of mappings, ( )( ) ( ) nx k kπ ρ= ∈ℜ  and 

( )( ) ( ) nuu k kα ρ= ∈ℜ . For clarity, it is assumed the following simplified notation 

( )( ) ( )kπ ρ π ρ≡ and ( )( ) ( )kα ρ α ρ≡ . It is considered a square system ( )y un n=  and a 

constant reference problem, as well as the existence of a solution ( )π ρ ∗
 and ( )α ρ ∗  verifying 

(53). 

( ) ( ) ( )( ) ( )0  A B Dπ ρ α ρ σ π ρ π ρ∗ ∗ ∗ ∗= + + −  

(53)

( ) ( )0  C rπ ρ ρ∗
= −  

Let the vector ( )( ) mkρΓ ∈ℜ  be comprised of two mappings (54). 

( ) ( )
( )

( )
( )

( )

k
k

k

π ρ
ρ

α ρ

 
Γ =  

 
 (54)

Given a solution ( )iπ ρ  and ( )iα ρ  at iteration i, one obtains the error 1
i nE ∈ℜ and 2

i nuE ∈ℜ , 

defined as 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )1( )
i i i iiE k A B D A B Dπ ρ α ρ σ π ρ π ρ π ρ α ρ σ π ρ π ρ∗ ∗ ∗ ∗   = + + − − + + −      

 

(55)

( ) ( ) ( ) ( )2( )
iiE k C r C rπ ρ ρ π ρ ρ∗   = − − −      

 

Let the solution at iteration 1i +  given as: 

( )
( )
( )

( )
( )

( )
( )

1
1

1

i i i
i

i i i

π ρ π ρ π ρ
ρ

α ρ α ρ α ρ

+
+

+

     ∆
     Γ = = +
     ∆     

 (56)

From (55) the error difference between two iterations 1i +  and i, can be written as. 

( ) ( ) ( ) ( )( ) ( )( ) ( )1
1 1( ) ( )

i i i i i ii iE k E k A B Dπ ρ α ρ σ π ρ π ρ σ π ρ π ρ+  − = − ∆ − ∆ − + ∆ − + ∆  
 

(57)
( )1

2 2( ) ( )
ii iE k E k C π ρ+ − = − ∆  

Since the nonlinearity (hyperbolic tangent) is Lipschitz, one can write (58) 

( ) ( )( ) ( )( ) ( )σ π ρ π ρ σ π ρ π ρ+ ∆ ≤ + ∆  (58)
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or, approximately, (59), 

( ) ( )( ) ( )( ) ( )Gσ π ρ π ρ σ π ρ π ρ+ ∆ ≈ + ∆  (59)

being n nG ×∈ℜ  a diagonal matrix defined by (60), where '( )σ ⋅  is the derivative of the 
hyperbolic tangent function. 

{ }'( ( ))G diag σ π ρ=  (60)

Equation (55) can be written as (61), 

( )1( ) ( )  
ii iE k E k ϑ ρ+ − = − ∆Γ  (61)

where i mE ∈ℜ  is the error corresponding to mappings ( )iπ ρ  and ( )iα ρ  at each iteration i. 

The matrix m mϑ ×∈ℜ is given by (62), 

0

nA DG I B

C
ϑ

− + − 
= −  

 
 (62)

where n n
nI

×∈ℜ is an identity matrix. Following this approach the problem can be stated as 

an eigenvalue assignment. Actually, if the increment ( )iρ∆Γ  is given by (63) 

( )  ( )i iF E kρ∆Γ =  (63)

one obtains,  

[ ]1( ) ( ) ( )i i i
mE k I F E k E kϑ+ = − = Λ  (64)

where m m
mI

×∈ℜ  and m mF ×∈ℜ . Thus, it is possible to ensure the error convergence if 

matrix F is adequately chosen such that m m×Λ∈ℜ  is Hurwitz. 

 

 

4. Application to the Solar Power Plant 

 
The strategy presented in this book chapter combines the potentialities of a affine recurrent 
neural network for approximation purposes along with the output regulation theory for 
nonlinear control design.  

 

Figure 6: Proposed control structure. 
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However, since the exact knowledge of the parameters is not viable in practice the design of 
the model based output regulator cannot assure a zero tracking error. To address this 
problem an adaptive approach is applied with online adjusting of the neural network’s 
weights. A schematic diagram of the proposed adaptive control structure is shown in Figure 
6. 
 
 

4.1 Adaptive Nonlinear Control  
 
Most of the control stabilization results rely on the Lyapunov theory to develop a stable 
control law. A distinct approach consists in the output regulation theory, described in the last 
section. When applied to the affine RNN (1) the output regulator design ensures (under 
some constraints) the asymptotic convergence of the neural network tracking error: 

lim ( ) ( ) ( ) 0n n d
k

e k y k y k
→∞

= − =  (65)

thus guaranteeing the stability and convergence of the closed loop system. However, the 

main goal is to ensure that the tracking error ( )ce k , (42), converges to zero. Assuming the 

separation principle, the system tracking error can be written as a function of the 
identification and control errors,  

( ) ( ) ( )c de k y k y k= −   

( ) ( ) ( ) ( ) ( )c n n de k y k y k y k y k= − + −  (66)

( ) ( ) ( )c i ne k e k e k= −  

On the other hand, based on the identification error the learning law is used for updating 
weights and states, guaranteeing, by means of the Lyapunov theory, the convergence for 

the error ( )ie k : 

lim ( ) ( ) ( ) 0i n
k

e k y k y k
→∞

= − =  (67)

Thus, ( )ce k  will converge provided that the regulator ensures the ( )ne k  control error 

convergence, and the updating algorithm ensures the identification error convergence, 

( )ie k . Even in the presence of system variations or unmodelled dynamics, the proposed 

strategy still ensures that the system tracking error will convergence to zero.  
 
 

4.2 Acurex Field Environment  

 
The experiments were carried out on the Acurex Solar Collectors Field. The proposed 
control was implemented in C code and operates over a software developed at PSA (López, 
1996) also in C code. The effectiveness of the developed approach was first tested using a 
nonlinear distributed parameter model of the Acurex field, developed at the University of 
Sevilla (Berenguel et al [58]), (Camacho et al, [59]). The sampling time was chosen as 15 

seconds and the output temperature ( outT ) was considered as the maximum temperature of 

all the loops (another usual strategy is to assume the average temperature). 
Additionally, a feedforward compensation term (Figure 7) obtained using the static behavior 
of the plant, was introduced to compensate the effects of the radiation and the difference 
between the desired output temperature and the inlet temperature, [58]. 

�

�

0.7869 0.485 ( 151.5) 80.7

( )

refrr
in

ref in

I T
Q

T T

− − −
=

−
 (68)
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Figure 7: Schematic diagram of control scheme the Acurex field. 

 

 

5. Experimental Results 

 

5.1 Model Parameterization 

 
The DSC’s dynamics is approximated by using the proposed affine state-space neural 
network structure (1). In order to come up a with a particular parameterization for this 
topology the Acurex field was prior subjected to a series of experiments so as to collect 
informative data sets to be used during the subsequent training stage. Figure 8 presents one 
of those data sets. 

 

Figure 8: Data set collected on July 23. 

 
By applying the proposed methodology to estimate the number of hidden-layer neurons, 

based on the SVD of iΠɶ , and considering the number of block rows as 15 the following 

singular values were obtained: 
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1279.9

27.79

8.5948

1.0603

0.6615

0.4998

0.3634

=     0.3539

0.3335

0.3026

0.2701

0.2568

0.1156

0.0987

0.0042

σ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

 

As can be observed from the singular values vector, the cardinality of the dominant ones is 
at most 3 and consequently, according to the rationale behind the proposed approach, the 
affine state space neural network order is chosen as 3. In Figure 9 it is presented the 
prediction performance of this particular topology trained using the Levenberg-Marquardt 
algorithm. 

 

 

Figure 9: Measured and predicted outlet oil temperature. 

 

From the comparative results, in terms of prediction capabilities for the outlet oil 
temperature, it is notorious that the affine state space neural network is able of capturing the 
nonlinear system dynamics embedded in the training data set. 
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5.2 Control 

 
The present experiment was carried out to assess the performance of the control system on 
the real plant considering different reference temperatures. Fortunately, the effect of strong 
disturbances caused by large passing clouds, which produce drastic changes in the direct 
solar radiation level was possible to test, as well as the effect of inlet oil temperature 
variation. As can bee seen in Figure 10, the closed loop performance is quite acceptable. 
The response presents almost no oscillations neither overshoots and after an initial transient 
period the outlet oil temperature stabilizes close to the reference.  

 
(a) Reference, output temperature and pump flow rate. 

 
(b) Solar radiation and inlet oil temperature. 

Figure 10: Experimental results obtained. 

 
Although, it should be expected a zero steady state error, the actual steady state off-set 
error is justified by the lower gain characteristics of the online learning. Since it was not 
possible to adjust during the operation both learning and controller parameters their choice 
were not the most favorable. In Figure 10 the behavior of the closed loop  system when 
intermittent clouds occur (11h50m and 15h40m) can also be analyzed. They lead to changes 
in solar radiation that disturb the outlet oil temperature level during operation. As observed 
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the control action is very acceptable in this case. The disturbance rejection capabilities of the 
controller are also acceptable, resulting in a change in the inlet oil temperature, carried out at 
instant 15h00m. 
From several simulations, tested by using the nonlinear distributed parameter model of the 
Acurex field, ( [58], [59]), together with the experiments, it can be inferred that the neural 
output regulation strategy performs according to its design. By online adjusting the neural 
parameters it is possible to reduce gradually the model plant mismatch contributing to the 
convergence of the tracking error to zero. Moreover, it provides a control law such that the 
closed loop system is stable. 
 
 

5.3 Discussion 

 
It is known that a fixed parameter PID controller can provided acceptable results in the case 
of linear systems. However, when dealing with non-linear processes, the overall closed-loop 
performance deteriorates for different operating conditions and disturbances. The proposed 
control scheme is able to inherently deal with these non-linearities, providing substantial 
improvements in terms of closed loop performance. Actually, apart from closed loop 
robustness, the output presents almost no overshoot and a settling time of about 15 
minutes. This means that the current non-linear strategy is able to capture the underlying 
non-linear system dynamics, providing remarkable results. Moreover, since the model 
parameters are adjusted at each sampling time, based on the specific plant conditions, it is 
possible to cope with the model plant mismatches by adjusting, in real time, the model 
parameters. Regarding the controller scheme, the output regulation theory was considered 
given the ability to design a stable closed loop control system, as well as to ensure the 
convergence of the control error. 
 
 

6. Conclusions 

 
An indirect adaptive nonlinear control scheme combining an affine recurrent neural network 
and the output regulation theory was implemented in real-time and applied on a distributed 
solar collector field.  

In order to manage the network complexity it was used a subspace based technique where 
the estimated model order can be regarded as a majorant for the number of neurons to be 
inserted in hidden layer.  

To cope with the inaccuracy of offline estimated neural parameters, and possible changing 
dynamics, an adaptive strategy was applied. The methodology was based on an online 
identification, ensuring stability and convergence properties, by means of the Lyapunov 
theory. Thus, the neural model can adaptively learn the system dynamics and the regulator 
law adjusts the control action in order to guarantee an asymptotic control error convergence.  

Experimental results confirm those obtained in simulation and show that the system has 
robustness with respect to changes in solar radiation, inlet oil temperature and operating 
conditions. This experimental study has shown that neural networks are an important 
methodology for many industrial control applications. The simplicity and reliability of neuro-
control presents high potential for the development of efficient and intelligent control 
systems. 

 

 

 

 

 



23 

 

Acknowledgements 
 
The experiments described in this book chapter were carried out within the project Improving 
Human Potencial Program (EC-DGXII) supported by the European Union Program Training 
and Mobility of Researchers. The authors would like to express their gratitude to the staff of 
Plataforma Solar de Almeria. 

 

 

References 
 

[1] Principe, J. N. Euliano, W. Lefebvre, “Neural and Adaptive Systems: Fundamentals 
Through Simulation”, John Wiley & Sons; 2000. 

[2] Haykin, S., ”Neural Networks and Learning Machines” Third Edition. Prentice Hall, 
2008. 

[3] Hopfield, J. “Neural Networks and Physical Systems with Emergent Collective 
Computational Abilities” , National Academy of Sciences, 79, 2554-2558, USA, 1982. 

[4] Gupta, M., Jin, L., N. Homma, ”Static and Dynamic Neural Networks: From 
Fundamentals to Advanced Theory”, 2003. 

[5] Becerikli, Y., A. Konar, T. Samad, “Intelligent optimal control with dynamic neural 
networks”, Elsevier Science Ltd, Neural Networks archive, Volume 16 , 2, 2003.  

[6] Bambang, R. “Nonlinear active noise control using EKF-based recurrent fuzzy neural 
networks”, International Journal of Hybrid Intelligent Systems archive, Volume 4, 4, 
2007. 

[7] Sun, F., J. Zhang, Y. Tan, J. Cao, W. Yu, “Advances in Neural Networks” - ISNN 2008: 
5th International Symposium on Neural Networks, Beijing, China, September 24-28, 
2008. 

[8] Han, M., Z. Shi, W. Wang, “Modeling Dynamic System by Recurrent Neural Network 
with State Variables”, Lecture Notes in Computer Science, Springer Berlin, 2004. 

[9] Norgaard, M. O. Ravn, L. Poulsen, L. Hansen, “Neural Networks for Modelling and 
Control of Dynamic Systems”, Springer-Verlag, London, 2000. 

[10] Stephanopoulos G., C. Han, ”Intelligent Systems in Process Engineerin g”, 5th 
International Symposium on Process System Enginnering, Kyongju, Korea, 1994. 

[11] López, J., ”Acurex Field DAS”, Internal Report 08/96, Plataforma Solar de Almería, 
1996. 

[12] Camacho, E., Rubio, F., Hughes, F. “Self-tuning Control of a Solar Power Plant with a 
Distributed Colletor Field”, IEEE Control Systems Magazine, Vol 12, No. 2, pp. 72-78, 
1992. 

[13] Rubio et al., “Self-tuning PI Control of a Solar Power Plant”, IFAC Symposium on 
Adaptive Systems in Control and Signal Processing, pp. 335-340, 1989. 

[14] Pickhardt, R., R. Silva, ”Application of a nonlinear predictive controller to a solar power 
plant” , Proceedings of the IEEE Conference on Control Applications, Trieste, 1998. 

[15] Coito, F., J. Lemos, R. Silva, E. Mosca, “Adaptive control of a solar energy plant: 
Exploiting accessible disturbances” , Int. Journal of Adaptive Control and Signal 
Processing, 11, 4, 327-342, 1997. 

[16] Cardoso, A., J. Henriques, A. Dourado, “Fuzzy supervisor and feedforward control of a 
solar power plant using accessible disturbances”, ECC99, 5rd European Control 
Conference, Karlsruhe, Germany, 1999. 

[17] Henriques, J., A. Cardoso, A. Dourado, “Supervision and C-Means Clustering of PID 
Controllers for a Solar Power Plant”, International Journal of Approximate Reasoning, 
22, 73-91, 1999. 

[18] Henriques, J., P. Gil, A. Dourado “Neural Output Regulation for a Solar Power Plant”, 
IFAC 2002, Barcelona, 2002. 

[19] Rubio, F., E. Camacho, M. Bergenguel, “Control de Campos de Colectores Solares”, 
Revista Iberoamericana de Automática e Informática Industrial, vol. 3, n. 4, pp. 26-45, 
2006. 



 

24 

 

[20] Flores, A., D. Saez, J. Araya, M. Berenguel, A, Cipriano, “Fuzzy predictive control of a 
solar power plant, “IEEE Transactions on Fuzzy Systems, vol 13, February 2005. 

[21] Kharaajoo, M., “Predictive Control of a Solar Power Plant with Neuro-Fuzzy 
Identification and Evolutionary Programming Optimization”, Book Series Lecture Notes 
in Computer Science, Publisher Springer Berlin, 2004. 

[22] Lalot, S., “Artificial Neural Networks in Solar Thermal Energy Systems”, Chapter 3, 
Artificial Intelligence in Energy and Renewable Energy Systems S. Kalogirou (Editor), 
2006. 

[23] Gil, P., J. Henriques, H. Duarte-Ramos, A. Dourado, “Recurrent Neural Networks and 
Feedback Linearization for a Solar Power Plant Control”, EUNIT01, Tenerife, 13-16 
December, 2001. 

[24] Gil, P., J. Henriques, P. Carvalho, H. Duarte-Ramos, A. Dourado “Adaptive Neural 
Model-Based Predictive Control of a Solar Power Plant” , International Join Conference 
on Neural Networks, Honolulu, Hawai, May 12-17, 2002. 

[25] Carrillo, M., Keyser, R., Ionescu, C., “Comparison between Model Based Controllers 
for a Distributed Collectors Field”, European Control Conference 2007, Kos, Greece, 
Paper No. 519, 2007a. 

[26] Carrillo, M., Keyser, R., Ionescu, C., “Application of a Smith predictor Based Nonlinear 
predictive controller to a solar power plant”, 7th IFAC Symposium on Nonlinear Control 
Systems, NOLCOS 2007, Pretoria, South Africa, 2007b. 

[27] Arahal, M., Berenguel, M., Camacho, E., ”Neural Identification applied to predictive 
Control of a Solar Plant". Control Engineering Practice. Vol. 6-10, pp. 333-334. 1998. 

[28] Camacho, E., Rubio, F., Berenguel, M., Valenzuela, L. “A survey on control schemes 
for distributed solar collector fields. Part I: Modeling and basic control approaches”, 
Solar Energy, vol. 81, pp. 1240-1251, 2007a. 

[29] Camacho, E., Rubio, F., Berenguel, M., Valenzuela, L. “A survey on control schemes 
for distributed solar collector fields. Part II: Advanced control approaches. Solar 
Energy, vol. 81, pp. 1252-1272, 2007b. 

[30] Suratgar, A., M. Tavakoli, A. Hoseinabadi, “Modified Levenberg-Marquardt Method for 
Neural Networks Training”, Proceedings of World Academy Of Science, Engineering 
and Technology, Volume 6, 2005. 

[31] Thau, F., ”Observing the State of Nonlinear Dynamical Systems”, International Journal 
of Control, 17, 471-479, 1973. 

[32] Williams, R., D. Zipser ”Gradient-based learning algorithms for recurrent networks and 
their computational complexity”. Backpropagation: Theory, architectures and 
applications”, Y. Chauvin and D. Rumelhart Eds, Chap.13, 433-486, 1995. 

[33] Narendra K., K. Parthasarathy ”Gradient methods for the optimisation of dynamical 
systems containing neural networks” , IEEE Trans. on Neural Networks, 2, 2, 252-262, 
1991. 

[34] Werbos, P. ”Backpropagation through time: what it does and how to do it” , 
Proceedings of the IEEE, 78, 10, 1550-1560, 1990. 

[35] Cai, X., “Advanced architecture and training algorithms for recurrent neural networks”, 
University of Missouri/Rolla Piblisher, 2006. 

[36] Pattamavorakun, S., S. Pattamavorakun, “A Comparison of Selected Training 
Algorithms for Recurrent Neural Networks”, Book Series Lecture Notes in Computer 
Science, Publisher Springer Berlin, 2006. 

[37] Isidori, A., C. Byrnes, “Output regulation for nonlinear systems”, IEEE Trans. 
Automatic Control, 26, 131-140, 1990. 

[38] Luenberger, D., ”An Introduction to Observers”, IEEE Trans. on Automatic Control, 16, 
596-602, 1971. 

[39] S. Lawrence and C. Giles, “Overfitting and Neural Networks: Conjugate Gradient and 
Backpropagation,” Proc. of IEEE-IJCNN, pp. 114-119, Como, Italy, 2000. 

[40] Y. Jin, T. Okabe and B. Sendhoff, “Neural Network Regularization and Ensembling 
Using Multi-objective Evolutionary Algorithms,” IEEE Evolutionary Computation, vol.1, 
pp. 1-8, 2004. 



25 

 

[41] M Costa, A. Braga and B. Menezes, “Constructive and Pruning Methods for Neural 
Network Design,” Proc. of the IEEE-SBRN’02, pp. 49-54, 2002. 

[42] N. Murata, S. Yoshizawa and S. Amari, “Network Information Criteria–Determining the 
Number of Hidden Units for an Artificial Neural Network Model,” IEEE Trans. On 
Neural Networks, vol. 5, no. 6, pp. 865-872, 1994. 

[43] [CHE, 99] V. Cherkassky, X. Shao, F. Mulier and V. Vapnik, “Model Complexity 
Control for Regression Using VC Generalization Bounds,” IEEE Trans. On Neural 
Networks, vol. 10, no. 5, pp. 1075-1089, 1999. 

[44] T. Ludermir, A. Yamazaki and C. Zanchettin, “An Optimization Methodology for Neural 
Networks Weights and Architectures,” IEEE Trans. on Neural Networks, vol. 17, no. 6, 
pp. 1452-1459, 2006. 

[45]  S. Trenn, “Multilayer Perceptrons: Approximation Order and Necessary Number of 
Hidden Units,” IEEE Trans. on Neural Networks, vol. 19, no. 5, pp. 836-844, 2008. 

[46] E. Teoh, K. Tan and C. Xiang, “Estimating the Number of Hidden Neurons in a 
Feedforward Network Using The Singular Value Decomposition,” IEEE Trans. on 
Neural Networks, vol. 17, no. 6, pp. 1623-1629, 2006. 

[47]  D. Bauer, “Order Estimation for Subspace Methods,” Automatica, vol. 37, pp. 1561-
1573, 2001. 

[48] B. De Moor, P. Overschee and W. Favoreel, “Algorithms for Subspace State–space 
Identification – An Overview,” In Biswa Datta eds., Birkhauser Book Series on Applied 
and Computation Control, Signals and Circuits, pp. 247-311, 1999. 

[49] G. Golub, V. Klema and G. Stewart, “Rank Degeneracy and Least Squares Problems,” 
Technical Report TR-456, Department of Computer Science, University of Maryland, 
1976. 

[50] W. Schmidt, “Diophantine approximations and Diophantine equations,” Lecture Notes 
in Mathematics, Springer Verlag, 2000. 

[51]  G. Stewart, “Determining Rank in the Presence of Error,” Linear Algebra for Large 
Scale and Real-Time Applications, Moonen, Golub, and De Moor eds., Kluwer 
Academic Publishers, Dordrecth, 1992. 

[52] D. Bauer, “Estimating ARMAX systems for multivariate time series using the state 
approach to subspace algorithms,” Journ. of Multivariate Analysis, 
doi:10.1016/j.jmva.2008.05.008, 2008 

[53] Francis, B., W. Wonham “The internal model principle for linear multivariable systems”. 
J. Appl. Math. Optimistion, 2, 170-194, 1975. 

[54] Carr, J., “Applications of Center Manifold Theory”, Springer Verlag, New York, USA, 
1981. 

[55] Huang, J., W. Rugh “An approximation method for the nonlinear servomechanism 
problem”, IEEE Trans. Autom. Control, 37, 9, 1395-1398, 1992. 

[56] Huang, J., W. Rugh “Stabilization on zero-error manifolds and the nonlinear 
servomechanism problem”, IEEE Trans. Autom. Control, 37, 7, 1009-1003, 1999. 

[57] Zhang, Y., J. Wang, ”Recurrent neural network for nonlinear output regulation”, 
Automatica, 37, 1161-1173, 2001. 

[58] Berenguel, M., E. Camacho, F. Rubio, “Simulation Software Package for the Acurex”, 
Internal Report, Sevilla, 1993. 

[59] Camacho, E., Berenguel, M., Rubio, F. “Advanced Control of Solar Plants”, Springer, 
London 1997. 

[60] Castillo-Toledo, B., S. DiGennaro, “Asymptotic Output Tracking for SISO Nonlinear 
Discrete Systems” , 30th Conference on Decision and Control, 1802-1806, Brighton, 
England, 1991. 

[61] Castillo-Toledo, B., S. DiGennaro, D. Normand-Cyrot, “Nonlinear regulation for a class 
of discrete-time systems” , Systems Control Letters, 20, 57-65, 1993. 

[62] Castillo-Toledo, B., “Output Regulation of Nonlinear Systems with More Inputs than 
Outputs” , International Journal of Control, 57, 6, 1343-1356, 1994.  

 


